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Abstract—Previous electroencephalogram (EEG) emotion recognition relies on single-task learning, which may lead to overfitting and
learned emotion features lacking generalization. In this paper, a graph-based multi-task self-supervised learning model (GMSS) for
EEG emotion recognition is proposed. GMSS has the ability to learn more general representations by integrating multiple
self-supervised tasks, including spatial and frequency jigsaw puzzle tasks, and contrastive learning tasks. By learning from multiple
tasks simultaneously, GMSS can find a representation that captures all of the tasks thereby decreasing the chance of overfitting on the
original task, i.e., emotion recognition task. In particular, the spatial jigsaw puzzle task aims to capture the intrinsic spatial relationships
of different brain regions. Considering the importance of frequency information in EEG emotional signals, the goal of the frequency
jigsaw puzzle task is to explore the crucial frequency bands for EEG emotion recognition. To further regularize the learned features and
encourage the network to learn inherent representations, contrastive learning task is adopted in this work by mapping the transformed
data into a common feature space. The performance of the proposed GMSS is compared with several popular unsupervised and
supervised methods. Experiments on SEED, SEED-IV, and MPED datasets show that the proposed model has remarkable advantages
in learning more discriminative and general features for EEG emotional signals.

Index Terms—EEG emotion recognition, multi-task learning, self-supervised learning, graph neural network.
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1 INTRODUCTION

EMOTION is close to everyone and plays an important
role in our daily lives [1]. It is a complex and compre-

hensive psychological and physiological state that can be
characterized by behavioral and physiological signals [2].
Neuroscience research indicates that physiological signals
are closer to the source of emotion than behavioral signals
[3]. As a physiological signal, EEG has the advantage of be-
ing difficult to disguise and hide compared with behavioral
signals, such as facial expressions and voice [4]. Moreover,
EEG signals significantly benefited from the technological
developments in non-invasive EEG recording methods, and
are widely used in the research on emotion recognition [5]
[6]. In recent years, emotion recognition has become a re-
search hotspot in human-computer interaction and affective
computing [7].

A wide variety of methods has been proposed to effec-
tively analyze EEG emotional signals over the past decades.
Traditional machine learning methods typically adopt a
two-stage model to implement emotional recognition. For
example, Lin et al. [8] extracted power spectrum density, dif-
ferential asymmetry power, and rational asymmetry power
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as features of EEG signals, and then classified them using
a support vector machine to study the relationship between
emotion and EEG signals. Jenke et al. [9] studied and com-
pared the effects of EEG emotion features extracted from the
time domain, the frequency domain, and the time-frequency
domain on EEG emotion signal recognition. However, tra-
ditional machine learning methods rely on handcrafted
features and expert experience [10]. With the spectacular
success of deep learning methods in the field of com-
puter vision and language recognition, many researchers
have considered deep learning models for EEG emotion
signals for their ability to automatically extract complex
features [11] [12]. For instance, some researchers utilized
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) to handle emotion recognition [13] [14].
Recently, the topological structure of EEG signals has been
increasingly studied in EEG emotion recognition owing to
the superior performance of graph neural networks (GNNs)
in irregular data structures [15]. Wang et al. [16] proposed
a multichannel EEG emotion recognition method based on
phase locking value (PLV) graph convolutional neural net-
works (P-GCNN) to extract the spatio-temporal characteris-
tics and the inherent information in functional connections.

Based on the literature, most EEG-based emotion recog-
nition methods basically face three challenges: (1) how to
generalize the emotion recognition model, and correctly
classify new data; (2) how to make full use of EEG charac-
teristics to capture more discriminative data representation
for emotion recognition; and (3) how to solve the problem
of emotional noise labels. Regarding the first challenge,
EEG displays a highly heterogeneous and nonstationary
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behavior because emotional signals usually consist of many
neural process [17]. The enormous data distribution shift
leads to a lack of generalization for data from different
subject or new situation of the current subject [18]. Thus,
some researchers have adopted the domain adaptation (DA)
method to improve generalization. For example, Li et al.
[18] proposed a bi-hemisphere domain adversarial neural
network (BiDANN) that contains three domain discrimina-
tors to assist with the learning of discriminative emotional
features, narrowing the distribution gap between training
and testing data, and improving the generality of the recog-
nition model. However, most DA-based methods achieve
generality by training the model on labeled training data
and unlabeled testing data, which is not suitable for real
applications. Thus, it is meaningful and applicable to ex-
plore other methods that learn general data representations
without test data. For the second challenge, handcrafted
features such as power spectrum density, statistical mea-
sure, and discrete wavelet transform are frequently used
for generic EEG signal classification tasks. However, these
features are not specially designed for EEG emotion signal
[18]. This issue has also been discussed in recent deep-
learning literature on EEG emotion recognition. For exam-
ple, Zheng et al. [19] employed a deep belief network (DBN)
to directly model the EEG emotion signal. Even though
these handcrafted and deep features have been able to
extract certain emotion discriminative information, they do
not sufficiently exploit specific emotion-related information
in EEG emotion recognition tasks. Thus, it is necessary to
utilize the characteristics of EEG signals to extract high-
level features. Regarding the third challenge, the emotion
labels in the collected EEG data may be noisy and inconsis-
tent as participants may not always produce the expected
emotions when watching emotions stimulate stimuli [20].
Consequently, it is challenging and meaningful to explore
how to solve the problem of emotional noise labels that are
often ignored in EEG emotion recognition research.

To address the above three major issues in EEG emo-
tion recognition tasks, in this paper we propose GMSS,
which can learn general EEG emotion representation and
improve EEG emotion recognition ability by solving three
self-supervised pretext tasks. To improve generality, GMSS
adopts multiple EEG emotion-related tasks that share
learned knowledge to generate more general features and
avoid overfitting [21]. GMSS consists of two graph-based
jigsaw puzzle tasks and a contrastive learning task, making
it capable to study the impact of emotional expression on
spatial and frequency information. The spatial jigsaw puzzle
task enables the predefined distant electrodes to become
neighbor electrodes and more emotion-related spatial in-
formation is learned in return. Meanwhile, the frequency
jigsaw puzzle task explores crucial frequency bands for EEG
emotion recognition. Utilizing the augmented samples of
the above jigsaw puzzle tasks, the contrastive learning task
further standardizes the feature space and enhances the gen-
eralization ability of the model. These self-supervised pre-
text tasks, which are based on the intrinsic attributes of EEG
emotion data, allow GMSS to deal with EEG noise labels
without semantic labeling. In this study, both unsupervised
and supervised approaches of GMSS were evaluated. The
experimental results show that GMSS achieves state-of-the-

art (SOTA) performance on three public datasets.
In summary, the contributions of this work can be out-

lined as follows:

• To the best of our knowledge, this is the first work
that adopts multi-task learning to improve model
generalization capability and avoid overfitting in
EEG emotion recognition.

• Through the pretext tasks of jigsaw puzzles and
contrastive learning, GMSS learns more discrimina-
tive features and alleviates the problem of emotional
noise labels, which further improves EEG emotion
recognition.

• The experimental results, based on both unsuper-
vised and supervised learning approaches, demon-
strate that GMSS can achieve SOTA performance on
three benchmark datasets.

The rest of this paper is organized as follows: Section II
provides an overview of previous studies on EEG emotion
recognition, graph neural networks, multi-task learning,
and self-supervised learning. Section III specifies the GMSS
method and its application to EEG emotion recognition.
In section IV the proposed method is evaluated for EEG
emotion recognition through extensive experiments. Finally,
section V concludes the paper.

2 RELATED WORKS

In this section, related works on EEG-based emotion recog-
nition, graph neural networks, multi-task learning, and self-
supervised learning are introduced.

2.1 EEG-based Emotion Recognition

The general process of EEG emotion recognition includes
feature extraction and classification. Traditional machine
learning-based methods typically adopt the statistical mea-
sure, discrete wavelet transform, or power spectrum density
[8] as features and then classify the extracted features using
SVM, LDA, or LR [22]. However, deep learning based meth-
ods generally extract features by designing feature extrac-
tion neural networks followed by linear layers to achieve
classification. Many deep learning methods such as CNN,
RNN and GNN have been introduced to effectively distin-
guish different emotional states in EEG emotional signals.
Li et al. [23] proposed a hierarchical spatial-temporal neural
network (R2G-STNN) based on a bidirectional long short-
term memory (BiLSTM) network to capture the intrinsic
spatial relationships of EEG electrodes within the brain
region and between brain regions for EEG emotion recogni-
tion. Song et al. [24] proposed a multichannel EEG emotion
recognition method based on a novel dynamic graph con-
volutional neural network (DGCNN) to dynamically learn
the intrinsic relationship between different EEG channels to
assist with features classification. Zhong et al. [20] proposed
a regularized graph neural network (RGNN) with two reg-
ularizers to deal with cross-subject EEG variations and the
noise label problem, and achieved promising results. Li et al.
[25] proposed a bi-hemispheric discrepancy model (BiHDM)
to learn discrepancy information between two hemispheres
to improve EEG emotion recognition ability.



3

2.2 Graph Neural Network
The traditional convolutional neural network is excellent for
dealing with Euclidean data. However, GNN is suitable for
handling non-Euclidean data and has shown great promise
in the field of social networks, recommendation systems,
and knowledge maps [26] [27] [28]. The GNN fall into two
categories, spectral-based and spatial-based. The spectral-
based method specifies graphic convolution by introducing
a filter from the perspective of graphic signal processing,
where the graphic convolution operation is viewed as noise
removal from the graphic signal. The spatial-based method
is based on the recurrent neural network theory and defines
the graph convolution through information propagation
[29]. Defferrard et al. [30] argued that the original spectrum
convolution suffers from the disadvantages of a large num-
ber of parameters and high complexity, and proposed a fast
localized convolution algorithm using a recursive formula-
tion of the K-order Chebyshev polynomials to approximate
the filters. Kipf et al. [15] proposed a graph convolutional
network (GCN) with a faster localized graph convolutional
operation, which is the first-order approximation of Cheby-
shev polynomials, that is, K = 1. Veli et al. [31] proposed
a graph attention network (GAT), which stacking layers
in nodes that are able to attend over their neighborhoods’
features, specifying different weights to different nodes in a
neighborhood, without requiring costly matrix operation or
depending on knowing the graph structure upfront.

Bianchi et al. [32] proposed a graph convolutional layer
that provides a flexible frequency response, which is more
robust to noise, and better captures the global graph struc-
ture. Bouritsas et al. [33] proposed a graph substructure net-
work that is more expressive than Weisfeiler-Leman graph
isomorphism test, which allows the model retains multiple
attractive properties of standard GNNs, while being able to
eliminate even hard instances of graph isomorphism. Ciano
et al. [34] proposed a mixed inductive–transductive GNN
model, study its properties and introduce an experimental
strategy that help to understand and distinguish the role
of inductive and transductive learning. Tiezzi et al. [35]
proposed an approach to learning in GNNs based on con-
strained optimization in the Lagrangian framework. Learn-
ing both the transition function and the node states is the
outcome of a joint process, in which the state convergence
procedure is implicitly expressed by a constraint satisfaction
mechanism, avoiding iterative epoch-wise procedures and
the network unfolding.

However, in EEG emotion recognition, some GNN-based
methods [24] only consider second-order or third-order
neighbors to avoid over-smoothing, which may result in
the loss of valuable information between distant nodes.
Thus, the spatial jigsaw puzzle was applied to challenge
this problem.

2.3 Multi-Task Learning
Multi-task learning is an effective machine learning method
and has shown its advantages in many fields, including
computer vision [36] [37], natural language processing [38],
and speech recognition [39]. Ruder et al. [21] introduced two
commonly used multi-task learning methods in deep learn-
ing, clarifying the working principle of multi-task learning

as well as pointing out that properly designed pretext tasks
can encourage the model to learn a more general represen-
tation while decreasing the risk of overfitting. Compared
with a single task, multi-task learning combines multiple
related tasks and utilizes all the data from each task so
that the knowledge on each task is shared. Additional
information on the associated tasks is also obtained in multi-
task learning models, resulting in significant improvements
in the learning ability, generalization capability, and robust-
ness of the model [40]. However, considering the different
significance of each task, the weight of each task should
be dynamic. Sener et al. [41] regarded multi-task learn-
ing as a multi-objective optimization problem and proved
that optimizing the upper bound of the multi-objective
loss can obtain the Pareto optimal solution. Kendall et al.
[37] proposed a principled approach to multi-task deep
learning that weighs multiple loss functions by considering
the homoscedastic uncertainty of each task to avoid the
cost of manual tuning. Benefiting from these advantages,
in this work, multi-task learning framework is adopted to
learn more generalization features and reduce the risk of
overfitting.

2.4 Self-Supervised Learning

Self-supervised learning is a popular method for learning
intrinsic information using unlabeled data [42]. Generally,
self-supervised learning applies the attributes of data to
generate pseudo labels as opposed to human-annotated
labels to train the network. Based on the different data
attributes used in the design, there are four categories of
pretext tasks: generation-based, context-based, free seman-
tic label-based, and cross-modal-based [42]. In the visual
feature learning field, context-based pretext tasks mainly
employs spatial structure, temporal structure, and context
similarity for the design. Many studies learn the general
features of images by predicting the relative position of
the patches to solve jigsaw puzzle tasks, thereby solving
the problem of image classification [43] [44] [45]. Gidaris
et al. [46] applied a 2D rotation to the image to construct
the pretext task and then predicted the rotation angle to
enable the model to learn the position, type, and posture
of objects in the image. Carno et al. [47] used a clustering
method to generate pseudo labels for images and combined
learning neural network parameters and result features to
obtain more abundant semantic information. Mathilde et al.
[48] proposed a method for unsupervised learning of visual
features by contrasting cluster assignments (SwAV), which
takes advantage of contrastive methods without requiring
to compute pairwise comparisons. He et al. [49] suggested
that momentum contrast (MoCo) would significantly nar-
row the gap between unsupervised representation learning
and supervised representation learning. The performance of
the contrastive SimCLR framework proposed by Chen et
al. [50] on ImageNet surpasses that of supervised learning
based models. Xinlei et al. [51] proposed a simple Siamese
(SimSiam) network that achieved the best results without
negative samples, large batches, and momentum encoders.
In addition, the contrastive learning method was applied
in the field of video processing, and achieved excellent
performance at the time it was proposed [52] [53]. In the
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Fig. 1. Framework of GMSS. In the unsupervised training mode, for the upstream task, the original graph data are not used to train the network. For
the downstream task, the feature extractor is frozen and only the pink part with a substituted one linear layer is executed. In the supervised training
mode, all the parts are executed simultaneously.

field of EEG emotion recognition, Xie et al. [54] proposed
an innovative solution which contains six different trans-
formations to learn high-level EEG representation (SSL-
EEG). Mohsenvand et al. [55] present a framework for
learning representations from EEG signals via contrastive
learning which recombines channels from multi-channel
recordings and trains a channel-wised feature extractor to
learn EEG emotion representation (SeqCLR). Inspired by
self-supervised learning, in this work, two jigsaw puzzle
tasks and a contrastive learning task were designed to assist
with the learning of general EEG emotional features while
circumventing the problem of EEG emotion noise labels.
Further, DeepCluster is a method based on clustering, and
SwAV use a swapped prediction mechanism to predict
the cluster assignment of a view from the representation
of another view, SSL-EEG learn the EEG representations
from complex signal transformation, while MoCo, SimCLR,
SimSiam and SeqCLR are methods based on maximizing
the similarity between positive pairs. Compared with these
methods above, our GMSS is a multi-task framework that
incorporates multiple emotion-related tasks that utilizes all
the data from each task so that the knowledge on each
task is shared. This will helpful to obtain the additional
information on the associated tasks that results in improving

the learning ability, generalization capability, and robustness
of the model. Another difference is that our self-supervised
model concentrates on the characteristics of EEG emotion
signal. For example, the jigsaw puzzle learning will force
our model focus on the important brain regions and fre-
quency bands of EEG signal, which are very important for
emotion expression.

TABLE 1
EEG electrodes associated with each brain region in the experiment.

Brain region Electrode name
Pre-Frontal AF3, FP1, FPZ, FP2, AF4

Frontal F1, FZ, F2, FC1, FCZ, FC2
Left Frontal F7, F5, F3, FT7, FC5, FC3

Right Frontal F4, F6, F8, FC4, FC6, FT8
Left Temporal T7, C5, C3, TP7, CP5, CP3

Right Temporal C4, C6, T8, CP4, CP6, TP8

Central
C1, CZ, C2, CP1, CPZ,

CP2, P1, PZ, P2
Left Parietal P7, P5, P3, PO7, PO5, CB1

Right parietal P4, P6, P8, PO6, PO8, CB2
Occipital PO3, POZ, PO4, O1, OZ, O2
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3 GRAPH-BASED MULTI-TASK SELF-
SUPERVISED LEARNING FOR EEG EMOTION
RECOGNITION

The goal of GMSS is to capture general and discrimina-
tive EEG emotion features using multi-task self-supervised
learning, as illustrate in Fig. 1. Three self-supervised tasks
are designed to achieve this goal under unsupervised and
supervised modes. These tasks share a common feature
extractor. There are four task heads, i.e., Spatial HeadHs(·),
Frequency Head Hf (·), Projection Head Hp(·), Classifica-
tion HeadHc(·).Hs andHf are employed for spatial puzzle
and frequency puzzle respectively. Hp is adopted to project
the learned representation into feature space. Hc is used
for emotion recognition. Each head consists of three fully
connected layers.

F5 FC3F7 ···

AF4AF3 FP1 ···

F1 FZ FC2···

FT8F4 F6 ···

CP3T7 C5 ···

CP2C1 CZ ···

TP8C4 C6 ···

CB1P7 P5 ···
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CB2P4 P6 ···
   

P6 CB2P4 ···
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C4 C6 TP8···

CB1P7 P5 ···

CP2C1 CZ ···

FT8F4 F6 ···

FC2F1 FZ ···
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F2
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CP4
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T8
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FC6
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CP6

P6P4 P6 P8
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Fig. 2. Spatial jigsaw puzzle. The 62 electrodes are divided into 10
blocks according to the location of brain regions. The placement of these
channels is relocated while keeping the original connection based on the
topology of the scalp. The spatial jigsaw puzzle task is to identify which
of the 128 classes the channels reorganized by blocks belong.

3.1 Multiple Self-Supervised Tasks
To learn more generalized and discriminative features and
alleviate the noise problem of EEG emotion labels, multiple
self-supervised learning tasks are considered, including the
spatial jigsaw puzzle task, the frequency jigsaw puzzle task,
and the contrastive learning task. Each of these three pretext
tasks is described in depth.

3.1.1 Spatial Jigsaw Puzzle
The spatial jigsaw puzzle aims to capture the spatial pat-
terns of EEG electrodes in different brain regions. Due to
the different effects of brain regions on emotion expression,
the spatial jigsaw puzzle task is defined as a series of brain
region permutations [56] [57] [58] [59]. As shown in Table
1, the original EEG data X ∈ Rn×d are partitioned into
10 blocks according to the location of the brain regions,
denoted as X = (X̃1, X̃2, · · · , X̃10)T where X̃i ∈ Rni×d,∑10

i=1 ni = n, ni > 0. Then, all brain region permutations
can be obtained:

X̂1 = (X̃1, X̃2, · · · , X̃10|y1),

X̂2 = (X̃1, X̃2, · · · , X̃9|y2),
...

X̂10! = (X̃10, X̃9, · · · , X̃1|y10!),

(1)

where X̂i and yi represent the i-th permutation and its serial
number, respectively. There are 10! = 3628800 permutations
in total. The goal is to distinguish which permutation the
spatial transformed data corresponds to. However, it is quite
challenging to distinguish these massive permutations for
self-supervised pretext tasks. Therefore, we develop a Rk(·)
operator. Rk(·) selects the k permutations with maximum
Hamming distance from the full permutation of Eq. (1)
and randomly transformed the input data to one of the k
permutations. We define a unique pseudo label for each of
these k permutations, generating k different kinds of pseudo
labels in total, with a range from 1 to k. Each input data is
randomly transformed into one of the k permutations and
the corresponding unique pseudo labels are obtained. k is
set to 128. The overall permutation is displayed in Fig. 2,
and is formulated as follows:

(Xs, ys) = R128(X), (2)

where Xs is the generated EEG data with pseudo label ys ∈
Z128
+ .

To recognize these spatial jigsaw puzzles, a classification
head Hs(·) is applied, and cross entropy is adopted as the
loss function. Formally, the loss of spatial jigsaw puzzle
tasks can be expressed as Ls:

Ls = −
N∑
i=1

ȳsi log(Hs(F(Xs
i ))), (3)

where F(·) is the shared feature extractor, ȳsi is the one-hot
encoding of the corresponding pseudo label ysi , and N is the
number of training samples.

CB2AF3 FP1 ···
CB2AF3 FP1 ···

CB2AF3 FP1 ···
CB2AF3 FP1 ···

TP8AF3 FP1 ···

CB2AF3 FP1 ···
CB2AF3 FP1 ···
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CB2AF3 FP1 ···
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γ
δ
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α
θ
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FP2FP1
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Fig. 3. Frequency jigsaw puzzle. The frequency jigsaw puzzle transforms
the frequency bands of each channel of an EEG emotion data in the
same way. The goal of the frequency jigsaw puzzle is to figure out which
of the 120 classes the scrambled EEG emotion data belong.

3.1.2 Frequency Jigsaw Puzzle
The frequency jigsaw puzzle task is designed to learn the
inner relationship between frequency bands, explore the
crucial frequency bands for EEG emotion recognition and
improve the discrimination ability of the model. In general,
as illustrated in Fig. 3, the energy features of the EEG
data are extracted from five emotion expression-related
frequency bands, including δ (1-3 Hz), θ (4-7 Hz), α (8-
13 Hz), β (14-30 Hz), γ (31-50 Hz). Similar to the spatial
jigsaw puzzle, the original EEG data X are divided into
five blocks according to different frequency bands, denoted
as (x1, x2, · · · , x5), where xj ∈ Rn×1. The goal is to
identify the corresponding permutation of the frequency
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transformed data. All frequency bands permutations can be
obtained: 

X
′

1 = (x1, x2, · · · , x5|y
′

1),

X
′

2 = (x1, x2, · · · , x4|y
′

2),
...

X
′

5! = (x5, x4, · · · , x1|y
′

5!),

(4)

whereX
′

j and y
′

j represent the j-th permutation and its serial
number, respectively. In the frequency jigsaw puzzle, the
operator Rk(·) is applied to generate transformed data with
pseudo label, and k = 120:

(Xf , yf ) = R120(X), (5)

where Xf is the generated EEG data with pseudo label yf ∈
Z120
+ .

To recognize these frequency jigsaw puzzles, a classifica-
tion head Hf (·) is applied and cross entropy is adopted as
the loss function. Formally, the loss in the frequency jigsaw
puzzle task can be expressed as follows:

Lf = −
N∑
j=1

ȳfj log(Hf (F(Xf
j ))), (6)

where F(·) is the shared feature extractor and ȳfj is the one-
hot encoding of the corresponding pseudo label yfj .

M
axim

ize agreem
ent 

                                

Fig. 4. Contrastive learning. The original data applied with spatial trans-
formation and frequency transformation to generate the pairs data.

3.1.3 Contrastive Learning
To further regularize feature learning and encourage the net-
work to learn inherent representations, contrastive learning
is adopted to map the transformed data into a common
feature space. The purpose is to maximize the agreement
between the different augmented data of the same EEG
emotion data, as shown in Fig. 4. To ensure that positive
pairs move closer and negative pairs move far away in
feature space, a data augmentation operationQ(·) is defined
to consider the spatial and frequency transformations of
the same original EEG emotion data. For each original
EEG emotion data Xi, i ∈ {1, 2, · · · , N}, M augmented
data {Xi1, Xi2, · · · , XiM} = Q(Xi) are obtained. As a
result, each augmented data has (M − 1) positive pairs and
(N − 1) ×M negative pairs. In total, N ×M augmented
data are obtained by:

{Xnm;n ∈ {1, 2, · · · , N},m ∈ {1, 2, · · · ,M}} =

Q(X1) ∪Q(X2) ∪ · · · ∪ Q(XN ),
(7)

where Xnm ∈ Rn×d is the m-th transformation of the n-th
EEG sample.

Similar to SimCLR [50], a projection head Hp(·) is
applied to map the EEG emotion data onto the feature
space, that is, Znm = Hp(F(Xnm)). The similarity of two
data points is quantitatively described by the dot prod-
uct, which normalizes u and v through the `2-norm. i.e.,
sim(u, v) = uTv/ ‖u‖ ‖v‖. Then, the loss of all positive pairs
`n of sample Xn is calculated as follows:

`n = −log g+
g+ + g−

, (8)

g+ =
M−1∑
i=1

M∑
j=i+1

exp(sim(Zni, Znj)/τ), (9)

g− =
M∑
o=1

N∑
t=1

M∑
w=1

exp(sim(Zno, Ztw)/τ), t 6= n, (10)

where (Zni, Znj) are positive pairs, and (Zno, Ztw) are
negative pairs. τ is the temperature parameter and is set
to 0.5. Furthermore, the arithmetic average of the loss of all
positive pairs’ `n of all samples is calculated for backpropa-
gation as follows:

Lp =
1

N

N∑
n=1

`n, (11)

3.2 Training Mode for EEG Emotion Recognition
Two modes of training are provided: unsupervised and
supervised. The feature extractor F(·) in both modes are the
same. When training the feature extractor, the distinction is
in the presence or absence of ground-truth emotion labels.
In the unsupervised mode, instead of using ground-truth
emotion labels, the feature extractor F(·) is trained only on
the self-supervised tasks mentioned above. Then, the frozen
feature extractor F(·) is transferred to the downstream task
and the performance is verified using a linear classifier. In
the supervised mode, a joint training strategy is adopted.
The network is simultaneously trained on self-supervised
tasks and supervised tasks. To avoid manually tuning the
weights of the different loss functions, the total loss function
is defined by considering the homoscedastic uncertainty of
each task [37]. In particular, the training loss L is calculated
as follows:

L =
1

σ2
Ls

Ls +
1

σ2
Lf

Lf +
1

2σ2
Lp

Lp + log(σLs
σLf

σLp
)

+ ψ · ( 1

σ2
Lc

Lc + log(σLc
)),

(12)

ψ =

{
0, unsupervised mode,

1, supervised mode,
(13)

where Lc is the cross entropy loss of supervised EEG
emotion classification task; σLs , σLf

, σLp and σLc are the
observation noise scalars of the corresponding tasks [37]. ψ
is the mode-selection operator. The observation noise scalar
σ is a principled approach to multi-task deep learning which
weighs multiple loss functions by the homoscedastic uncer-
tainty of each task. This allows us to simultaneously learn
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various quantities with different units or scales in both clas-
sification and regression settings, which can balance these
weightings optimally, resulting in superior performance.
These scalars can be calculated as learnable parameters
which change constantly during the model training process
and the initial values are 1.
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Fig. 5. EEG graph structure and adjacency matrix A construction.

3.3 Feature Extractor of GMSS
As shown in Fig. 5, an undirected graph G(V, E) is em-
ployed to model the EEG data. Meanwhile, the adjacency
matrix A of the EEG data was obtained. In G(V, E), V
denotes the set of nodes where |V| = n; each node has d
dimensions. As a result, nodes can be represented by the
feature matrix X ∈ Rn×d. E denotes a set of edges between
nodes. (vi, vj) is the edge between nodes vi and node vj ,
that is, (vi, vj) ∈ E . The adjacency matrix A ∈ Rn×n con-
tains the topological information of the undirected graph,
that is, the EEG data. D is the degree matrix of the vertices,
and L = D − A is the combinatorial Laplacian matrix. In
this study, n denotes the channel number of EEG data; d
denotes the number of frequency bands and d = 5. The
energy feature is extracted from five bands, namely, δ (1-3
Hz), θ (4-7 Hz), α (8-13 Hz), β (14-30 Hz), γ (31-50 Hz).

In the GMSS model, Chebyshev polynomials are em-
ployed instead of the convolution kernel of SCNN [60] in
the spectral domain, so that there are only k parameters
in the convolution kernel, and feature decomposition is not
required, reducing the computational load. Thus, the feature
extractor F(·) of the GMSS can be formulated as:

F(X) = σ(
K−1∑
k=0

βkTk(L̃)X), (14)

where σ(·) is the activation function; X is the input EEG
emotion data; βk refers to the learning parameters in net-
work training; and Tk(·) is the Chebyshev polynomial of
order K . Additionally, L̃ = 2L/λmax− I , where λmax is the
maximum eigenvalue of Laplace matrix L. In this study, we
set K = 2 to avoid over-smoothing.

4 EXPERIMENTS

In this section, experiments were conduct on the following
three datasets to evaluate the performance of our model:
SEED [19], SEED-IV [64], and MPED [63]. All three datasets

were collected while subjects watched emotional video clips
in a quiet, comfortable, and non-interfering environment.
All three datasets were generated by recording EEG sig-
nals through the ESI NeuroScan system using 62 electrode
channels positioned according to the 10-20 system [56].
These three datasets are introduced next along with the
experimental results.

4.1 Experimental Dataset

SEED. In the SEED dataset, there are a total of 15 subjects.
There are three sessions associated with each subject. In each
session, there are a total of 15 film clips to induce happy,
neutral, and sad emotions, and there are 5 film clips for
each emotion. That is, there are 15 trials per session, and
each trial has 185-238 samples, resulting in approximately
3400 samples per session.
SEED-IV. In the SEED-IV dataset, similar to SEED, there are
15 subjects, and three sessions for each subject. The differ-
ence is that each session includes four kinds of emotions:
happy, neutral, sad, and fear. Each emotion has 6 different
film clips. As a result, there are 24 trials, and each trial has
12-64 samples for each session. Consequently, each session
has approximately 830 samples.
MPED. In the MPED dataset there are 30 subjects, and each
subject has only one session. In a session, there are seven
types of emotions: joy, funny, neutral, sad, fear, disgust,
and anger. Each type of emotion has 4 related film clips.
Therefore, there are 28 trials per session. Each trial consists
of 120 samples and there are a total of 3360 samples in one
session.

4.2 Experimental Protocol

To fully evaluate our model, two types of experiments are
implemented: subject-dependent and subject-independent
experiment. For the subject-dependent experiment, the
training data and testing data are obtained from different
EEG trials of the same subject. For the subject-independent
experiment, the training data and testing data are obtained
from different subjects.

For the subject-dependent experiment, the same exper-
imental protocol is applied as in [9] [19] [25] [63]. That is,
for the SEED dataset, the EEG data of the first nine trials
are used in each session as training data and the remaining
six trials in the session as testing data for each subject. For
the SEED-IV dataset, the first sixteen trials of the session
are used for each subject as training data and the remaining
eight trials as testing data. For the MPED dataset, the EEG
data of the first twenty-one trials in the session are adopted
for the training data and the remaining seven trials in this
session are the testing data for each subject.

For the subject-independent experiment, the leave-one-
subject-out (LOSO) cross-validation strategy is used in [25]
[65] for each subject. Namely, one subject’s EEG emotion
data constituted the testing data, and the remaining subjects’
EEG emotion data constituted the training data. The process
continued until all subjects’ EEG emotion data are tested
once.
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TABLE 2
Subject-dependent and subject-independent classification accuracy (mean/std) for unsupervised mode on SEED, SEED-IV, and MPED datasets

Model SEED SEED-IV MPED
dependent independent dependent independent dependent independent

DeepCluster [61] 74.60/12.17* 59.01/17.65* 49.60/10.28* 44.54/09.88* 26.38/05.59* 23.25/04.86*
MoCo [49] 76.58/10.72* 58.26/15.05* 49.40/10.99* 46.19/10.04* 27.47/05.27* 23.86/04.66*
SwAV [48] 77.81/10.15* 58.65/16.66* 52.03/14.71* 49.28/10.44* 27.91/05.05* 23.50/04.81*

SimCLR [50] 81.79/11.15* 63.45/15.96* 52.47/11.57* 50.07/11.17* 29.53/05.36* 24.21/05.10*
SimSiam [51] 80.18/10.53* 63.95/11.95* 53.71/11.98* 51.24/12.47* 28.19/05.88* 24.31/04.61*
SSL-EEG [54] 83.32/09.20* 67.52/12.73* 63.59/19.82* 53.62/08.47* 25.22/04.25* 21.87/02.53*
SeqCLR [55] 82.91/08.97* 64.56/11.89* 63.13/15.41* 50.75/07.71* 30.47/06.07* 23.33/03.89*

GMSS 89.18/09.74 76.04/11.91 65.61/17.33 62.13/08.33 34.81/06.88 26.97/05.01
* indicates the experiment results obtained by our own implementation.

Note: For the subject-dependent experiment, we calculate the average accuracy based on the results of all
the sessions. While for the subject-independent experiment, we calculate the average accuracy based on the
results of all the subjects.

TABLE 3
Subject-dependent and subject-independent classification accuracy (mean/std) for supervised mode on SEED, SEED-IV, and MPED datasets

Model SEED SEED-IV MPED
dependent independent dependent independent dependent independent

SVM [62] 83.99/09.72 56.73/16.29 56.61/20.05 37.99/12.52 32.39/09.53 19.66/03.96
DGCNN [24] 90.40/08.49 79.95/09.02 69.88/16.29 52.82/09.23 32.37/06.08 25.12/04.20
DANN [37] 91.36/08.30 75.08/11.18 63.07/12.66 47.59/10.01 35.04/06.52 22.36/04.37

BiDANN [18] 92.38/07.04 83.28/09.60 70.29/12.63 65.59/10.39 37.71/06.04 25.86/04.92
A-LSTM [63] 88.61/10.16 72.18/10.85 69.50/15.65 55.03/09.28 38.99/07.53 24.06/04.58
BiHDM [25] 93.12/06.06 85.40/07.53 74.35/14.09 69.03/08.66 40.34/07.53 28.27/04.99
RGNN [20] 94.24/05.95 85.30/06.72 79.37/10.54 73.84/08.02 — —

BiHDM w/o DA 91.07/08.21 81.55/09.74 72.22/14.69 67.47/08.22 38.55/07.22 27.43/04.96
RGNN w/o DA — 81.92/09.35 — 71.65/09.34 — —

GMSS 96.48/04.63 86.52/06.22 86.37/11.45 73.48/07.41 40.16/06.08 28.49/04.42
— indicates the experiment results are not reported on that dataset.

Note: For the subject-dependent experiment, we calculate the average accuracy based on the results of all
the sessions. While for the subject-independent experiment, we calculate the average accuracy based on
the results of all the subjects.

4.3 Experimental Details

In the experiments, the released differential entropy (DE) in
SEED and SEED-IV, and the short-time Fourier transform
(STFT) in MPED are feed into the model as input. The size
of the input X is 62 × 5; the output dimensions of each
electrode is 32; and K = 2, that is, the graph convolution
aggregated the information of the second-order neighbors.
In particular, GMSS is implemented by pytorch on a Nvidia
3080 GPU. The model is trained using the Adam optimizer
with a batch size of 100. The learning rate is 0.001, and
the weight decay rate is 8e-5. The mean accuracy (ACC)
and standard deviation (STD) are employed as evaluation
criteria in all datasets. The code of GMSS can be found at
https://github.com/CHEN-XDU/GMSS.

4.4 Experimental Results

4.4.1 Unsupervised Mode

In the upstream task, the model is trained by self-supervised
pretext tasks, consisting of two jigsaw puzzle tasks and one
contrastive learning task. In the downstream task, the frozen
feature extractor is applied and a linear classifier is used to
evaluate the performance of GMSS. We compared GMSS
with two self-supervised EEG emotion recognition methods
SSL-EEG [54] and SeqCLR [55]. In addition, since there
are few methods based on self-supervised EEG emotion
recognition and the code is not released, we also compared
with some popular self-supervised methods in other fields
such as DeepCluster [61], MoCo [49], SwAV [48], SimCLR
[50] and SimSiam [51]. These methods are reproduced and
maintain the experimental protocol consistent with GMSS.

For a fair comparison, all of these methods of other
fields adopted the same feature extraction operation as
GMSS. To fit the EEG emotion recognition task, MoCo,

https://github.com/CHEN-XDU/GMSS
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(a) SEED (b) SEED-IV

(c) MPED

(1) Subject-dependent experimental results

(d) SEED (e) SEED-IV

(f) MPED

(2) Subject-independent experimental results

Fig. 6. Confusion matrices in unsupervised mode. (a)-(c) and (d)-(f)
are the subject-dependent and subject-independent results on SEED,
SEED-IV and MPED datasets, respectively.

SwAV, SimCLR and SimSiam adopted the same data aug-
mented as GMSS. The experimental results are shown
in Table 2. Concretely, GMSS improves the accuracy by
5.86%, 8.52%, 2.02%, 8.51%, 4.34%, and 2.66% compared
with the existing SOTA methods in the subject-dependent
and subject-independent experiments on SEED, SEED-IV,
and MPED datasets, respectively. Especially compared with
MoCo, SwAV, SimCLR, SimSiam and SeqCLR which are also
contrastive learning-based methods, GMSS achieves better
results. This is attributed to GMSS having more positive
and negative pairs (We set M = 8), and two more pretext
tasks, that is, spatial and frequency jigsaw puzzle tasks,
which are helpful in learning more discriminant and general
EEG emotion representation. In summary, from the results
of Table 2, in the unsupervised mode, it is observed that
GMSS achieves an acceptable results without labels, making
it more relevant to practical applications.

To better understand the confusion matrix of GMSS in
recognizing different emotions, the unsupervised confusion
matrices of all the experiments are displayed in Fig. 6. There
are two observations:

(1) For the subject-dependent experiment shown in Fig.
6(1), it is observed that happy is the easiest emotion
recognized by SEED dataset. This is also observed in
the results of the SEED-IV dataset. For MPED, which
contains seven emotions, GMSS shows its superiority
when identifying funny, neutral, fear, and anger. In
addition, we can find joy is most easily confused with
neutral. This may be because joy is more difficult to
induce than other emotions.

(2) From the results of the subject-independent task
shown in Fig. 6(2), for SEED, it is obvious that the
accuracy of the happy emotion is much higher than
neutral and sad, which is similar to the observa-
tion in Fig. 6(1). With SEED-IV, we can notice that
neutral emotion achieves the highestaccuracy since
other emotions such as neutral lead to confusion. For
MPED, funny, neutral, and sad emotions are much
easier to recognize. It should be noted that, in the
cross-subject task, the focus is on the sad emotion,
which is difficult to identify from our observation.

4.4.2 Supervised Mode
In this section, a joint-training strategy is adopted. Based on
the self-supervised training approaches, ground-truth emo-
tion labels are used to train the feature extractor simultane-
ously. To evaluate the advantages of GMSS, the experiments
conducted were the same as those of other methods, includ-
ing linear support vector machine (SVM) [62], dynamical
graph convolutional neural network (DGCNN) [24], regu-
larized graph neural network (RGNN) [20], domain adver-
sarial neural networks (DANN) [37], bi-hemisphere domain
adversarial neural network (BiDANN) [18], attention-long
short-term memory (A-LSTM) [63], and bi-hemispheric dis-
crepancy model for EEG emotion recognition (BiHDM) [25].
All these methods are representative of previous studies
on emotion recognition. Their results are directly quoted or
reproduced from the literature to ensure a convincing com-
parison with the proposed method, and are summarized in
Table 3.
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(a) SEED (b) SEED-IV

(c) MPED

(1) Subject-dependent experimental results

(d) SEED (e) SEED-IV

(f) MPED

(2) Subject-independent experimental results

Fig. 7. Confusion matrices in supervised mode. (a)-(c) and (d)-(f) are the
subject-dependent and subject-independent results on SEED, SEED-IV
and MPED datasets, respectively.

For the subject-dependent experiments, in Table 3, it is
observed that GMSS attains the best performance on three
public EEG emotional datasets compared with all aforemen-
tioned methods above. In particular, the results on SEED
and SEED-IV, with GMSS are 2.24% and 7% higher than
those of the most advanced method RGNN. Meanwhile, it
is also observed that GMSS achieves a performance very
close to BiHDM on MPED, that is, 40.16% vs. 40.34%. This is
because BiHDM is trained not only on the labeled training
data but also on the unlabeled testing data. However, the
GMSS is trained only on the training data. For a fair compar-
ison, the domain discriminator of BiHDM is ablated and the
experiments are conducted on the same input data as GMSS,
which is denoted as BiHDM w/o DA. The experimental
results show that GMSS improves the classification accuracy
by 1.61% compared with BiHDM w/o DA. Furthermore,
GMSS outperforms the BiHDM by 3.36% and 12.02% on
SEED and SEED-IV datasets, respectively. These results ver-
ify that GMSS has a better discrimination capability under
subject-dependent experiments. Additionally, our GMSS has
a considerable running speed. On the SEED dataset of
subject-dependent experiments, the average training time
and average testing time for one epoch are 3762.7ms and
331.39ms respectively. Subject-independent experiment are
also performed. It is observed that GMSS achieves the
SOTA performance on SEED and MPED, which is 1.12%
and 0.22% higher than the previous best method BiHDM,
respectively. Moreover, GMSS achieves a performance close
to that of RGNN on SEED-IV, that is, 73.48% vs. 73.84%,
respectively. However, while RGNN removes its node-wise
domain adversarial training component (NodeDAT), that is,
training with the labeled training data as well as without the
unlabeled testing data, denoted as RGNN w/o DA, the ac-
curacy of RGNN w/o DA is 1.83% lower than that of GMSS.
Furthermore, GMSS outperforms RGNN by 1.22% on the
SEED dataset. In addition, compared with these advanced
methods training without the unlabeled testing data, that is,
BiHDM w/o DA and RGNN w/o DA, GMSS is 4.6%, 1.83%,
and 1.06% higher, respectively. This indicates that our model
can extract more general data representations for different
subjects. Besides, compared with all baselines on all datasets
and both experimental protocols, GMSS achieves the lowest
standard deviation in accuracy, indicating the excellent dis-
crimination and generalization capability of our model. We
argue that the main reason can be attributed to the multi-
task framework and self-supervised learning tasks.

Similar to the unsupervised mode, the confusion matri-
ces of all experiments are also applied in the supervised
mode to better understand the confusion of GMSS in recog-
nizing different emotions as shown in Fig. 7. There are two
observations:

(1) For the results of subject-dependent EEG emotion
recognition experiment in Fig. 7(1), the classification
accuracy for the three emotions is approximately 90%
for the SEED dataset. In particular, for happy, the
accuracy is above 95%. The happy and neutral emo-
tions are easier to recognize than the sad emotion.
For SEED-IV, which contains four emotions, we can
notice that the accuracy of all emotions is above 80%.
For MPED, which is a complex dataset that consists
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of seven types of emotions, it is observed that funny
and neutral emotions are much easier to recognize
than other emotions. Moreover, for negative emo-
tions, fear and anger are easier to recognize than sad
and disgust.

(2) From the results of the subject-independent EEG
emotion recognition experiment, for SEED, the
happy emotion is much easier to be recognize than
neutral and sad emotions. For SEED-IV, neutral and
fear emotions are much easier to recognize. For
MPED, which is a hard seven classification task, only
funny, neutral and fear achieve acceptable results,
which suggests that researchers should pay attention
to joy, sad, disgust and anger in cross-subject emotion
recognition.

4.5 Discussion

In this section, the representations of the visualization and
ablation studies are presented.

4.5.1 Representation Visualization

To verify the discriminating ability of GMSS, the fea-
tures obtained by GMSS on the MPED dataset are visual-
ized. Fig. 8 shows the representation visualization of the
subject-dependent experiment in supervised mode using t-
distributed stochastic neighbor embedding (t-SNE) [66] on
the MPED dataset. As shown in Fig. 8(1), it is difficult to
separate the different classes from the original EEG data.
However, for the learned EEG representation in Fig. 8(2), for
the same emotion clusters, there are clear borders between
different emotions, which verify that GMSS can discrimi-
nate features for EEG emotion recognition. Moreover, it is
observed that the funny is more distinguishable than other
emotions. This may be because funny induced more easily.
In addition, comparing with Fig. 8(1) and Fig. 8(2), it is
observed that GMSS has the potential to clarify the borders
of various emotions and brings the same emotions closer
together in feature space.

4.5.2 Ablation study

To assess the contribution of each essential pretext task in
our model, experiments are conducted with the ablated
GMSS models in both unsupervised and supervised modes.
The ablation research verifies the influence of each pretext
task and the combination of multiple tasks on the perfor-
mance of EEG emotion recognition. In Table 4, the results
are presented for the subject-dependent experiments in both
unsupervised and supervised modes. In the unsupervised
mode, GMSS-S, -F, and -C denote that the only spatial jigsaw
puzzle task, frequency jigsaw puzzle task, and contrastive
learning task are taken into consideration in the ablation
model. Furthermore, GMSS-SF, -SC, -FC denote the spatial
and frequency jigsaw puzzle tasks, spatial jigsaw puzzle
and contrastive learning tasks, frequency jigsaw puzzle and
contrastive learning tasks respectively taken into considera-
tion by the ablation model, simultaneously. Similarly, in the
supervised mode, GMSS-F, -C, -SF, -SC, and -FC represent
the same ablation methods but are trained on the ground-
truth emotion labels instead.

In the case of one self-supervised pretext task, GMSS-S
achieves the best performance on four out of six results. This
indicates that the spatial jigsaw puzzle task is extremely
helpful in improving the discrimination of EEG emotional
signals. Moreover, GMSS-F achieves the best performance
on two out of six results, which implies that the frequency
jigsaw puzzle task is helpful as well. The above results
demonstrate that only one jigsaw puzzle task could improve
the ability to distinguish EEG emotion signals. In the case
of two tasks, GMSS-SF achieves the best performance on
all datasets except MPED in the supervised mode, which is
slightly lower than that of GMSS-SC. This further proves
the effectiveness of the jigsaw puzzle task. In addition,
compared with the corresponding results of only one task,
the combination of the two tasks improve the accuracy
of emotion recognition. This indicates that the three self-
supervised tasks that were proposed are relevant and can
promote model learning and more discriminative emo-
tional representation. Furthermore, we can see that GMSS
adopts all pretext tasks, achieving the best performance.
This proves the effectiveness of our graph-based multi-task
self-supervised learning framework.

4.5.3 Parameter analysis - Chebyshev filter size

As a hyper-parameter, Chebyshv filter size K , namely, K-
order neighbor, will impact the performance of EEG emo-
tion recognition. Thus, in this section, we conduct additional
experiment to analyze the results of different Chebyshv
filter size K on SEED dataset. Here we set K = 1, 2, ..., 10
separately. And the results are shown in Fig. 9. It is obvious
that GMSS achieves the best performance when K = 2 .
When K is greater than 2, the performance of the model
has a relatively noticeable downward trend. When K is
greater than 4, it tends to be stable gradually. We attribute
the decline to the influence of over-smoothing.

5 CONCLUSION

In this paper, a graph-based multi-task self-supervised
learning model is proposed for EEG emotion recognition.
Our model is inspired by the multi-task learning theory and
self-supervised learning theory, which combines different
self-supervised tasks to improve model generalization and
the ability to recognize EEG emotional signals. Several self-
supervised tasks assist in improving the resilience of the
model to emotion noise labels. The spatial pattern of EEG
emotion signals is studied through the spatial jigsaw puz-
zle task. To reveal the intrinsic frequency bands for EEG
emotion recognition, the frequency jigsaw puzzle task is
employed, and the feature space is further standardized
by the contrastive learning tasks. The experimental results
validate the effectiveness of the proposed model. In future
work, multi-task self-supervised learning will be further in-
vestigated to explore how to further improve EEG emotion
recognition.
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