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Learning Person-specific Cognition from Facial
Reactions for Automatic Personality Recognition

Siyang Song, Zilong Shao, Shashank Jaiswal, Linlin Shen, Michel Valstar and Hatice Gunes

Abstract—This paper proposes to recognise the true (self-reported) personality traits from the target subject’s cognition simulated
from facial reactions. This approach builds on the following two findings in cognitive science: (i) human cognition partially determines
expressed behaviour and is directly linked to true personality traits; and (ii) in dyadic interactions, individuals’ nonverbal behaviours are
influenced by their conversational partner’s behaviours. In this context, we hypothesise that during a dyadic interaction, a target
subject’s facial reactions are driven by two main factors: their internal (person-specific) cognitive process, and the externalised
nonverbal behaviours of their conversational partner. Consequently, we propose to represent the target subject’s (defined as the
listener) person-specific cognition in the form of a person-specific CNN architecture that has unique architectural parameters and
depth, which takes audio-visual non-verbal cues displayed by the conversational partner (defined as the speaker) as input, and is able
to reproduce the target subject’s facial reactions. Each person-specific CNN is explored by the Neural Architecture Search (NAS) and a
novel adaptive loss function, which is then represented as a graph representation for recognising the target subject’s true personality.
Experimental results not only show that the produced graph representations are well associated with target subjects’ personality traits
in both human-human and human-machine interaction scenarios, and outperform the existing approaches with significant advantages,
but also demonstrate that the proposed novel strategies help in learning more reliable personality representations.

Index Terms—True personality recognition, Dyadic interaction, Person-specific cognition simulation, Facial reaction generation,
End-to-end graph representation learning, Multi-dimensional edge feature

✦

1 INTRODUCTION

Understanding human personality can benefit a wide range
of applications such as (mental) health condition analysis
[1], [2], candidate screening for recruitment [3], as well as
personalised, adaptive human-agent interactions (e.g., [4]).
Recent advances in machine learning (ML) have enabled
the development of non-invasive automatic personality trait
analysers that recognise subjects’ personality traits from
their audio-visual non-verbal behaviours [5], [6], [7], [8], [9],
[10] as there is solid psychological and biological evidence
[11], [12], [13], [14] claiming that nonverbal behaviours
are reliable predictors of personality. In most of these ap-
proaches, ML models are trained with the personality labels
provided by the external observers (annotators). Therefore,
these ML models play the role of an external artificial
observer that observes the target subjects’ nonverbal distal
cues, i.e., audio signals (e.g., delta-mel-cepstral, speech du-
ration, pitch, and pause rate, etc.) [8], [15], [16], [17], visual
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cues (e.g., facial actions and gestures) [18], [19], [20], observ-
able inter-personal cues [8], [21], [22] etc., and output the
external observer’s perception of the target subjects’ person-
ality. However, people externalize their personality through
distal cues (e.g., energy), which undergo a perception bias
based on what the observer actually perceives, and become
proximal cues (e.g., loudness). As a result, the aforemen-
tioned approaches can be treated as Automatic Personality
Perception (APP) solutions (inference from proximal cues)
[23].

In some scenarios, the goal is to infer true personality
from machine detectable distal cues, i.e., Automatic Per-
sonality Recognition (APR) [23]. While APP approaches
predict apparent personality (perception) based on proximal
behavioural cues, APR aims to recognise the true personal-
ity that impacts the generation of distal behavioural cues.
Thus, APP models that were trained as external observers
to provide personality perceptions may not be reliable for
recognising true personality traits (Problem 1). Moreover,
the majority of these APP solutions [8], [19], [20], [24],
[25] recognise personality traits from single frames or thin
slices of behaviour, independently, by re-using clip-level
personality labels as the frame/thin slice-level labels to train
ML models that can provide a personality prediction for
each frame/thin slice. This is problematic as people with
different personality traits may express very similar non-
verbal audio-visual behaviours in a single frame or a thin
slice. As a result, such strategies may lead to the same
input pattern being paired with multiple labels during the
training, making them theoretically impossible to learn a
good hypothesis (Problem 2). Although recent approaches
[5], [6], [26] address this issue by modelling personality
using an entire clip, (i.e., recognising personality traits at the
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(a) Neural Architecture Searching (NAS) for a person-specific CNN to simulate the target subject’s (listener’s) cognition.

(b) Recognition of the target subject’s (listener) personality based on the graph representation that summarises the architecture
and parameters of the target subject’s person-specific CNN model.

Fig. 1. The pipeline of the proposed approach. (a) Our approach starts with searching for a person-specific processor (multi-modal CNN) architecture
(unique topology, weights and depth) that can reproduce the target listener’s facial reactions according to the speaker’s audio-visual non-verbal
signals (Sec. 3.1); (b) Then, we parameterize the person-specific processor as a graph representation to represent the listener’s cognition and feed
it to a graph neural network for the target listener’s personality recognition (Sec. 3.2). It should be noted that we individually search for a person-
specific processor with a unique architecture and parameters for each subject as the person-specific cognition/personality representation.

clip-level), they only select a set of key frames to represent
an entire clip. This may ignore the short-term behaviours
displayed by the discarded frames (Problem 3), which may
contain crucial cues for personality recognition.

In this paper, we propose a novel audio-visual automatic
true personality recognition framework that addresses the
problems highlighted above. It is built on the definition that
true personality influences the cognitive process of individ-
ual’s distal cues externalization [23] (e.g., facial reactions).
In particular, recent works [27], [28] show that in dyadic
and group interactions, subjects’ nonverbal behaviours (e.g.,
facial reactions) are influenced by, and therefore can be
predicted from, the behaviours of their conversational part-
ner(s). Therefore, this paper assumes that during a dyadic
interaction, the target subject’s (listener) facial reactions are
driven by two main factors: (i) the target subject’s internal
(person-specific) cognition, and (ii) the externalised nonver-
bal behaviours of the conversational partner (the speaker).
Therefore, we propose to learn a person-specific CNN for
each subject, which reproduces the subject’s facial reaction
in response to the conversational partner. Consequently, the
explored person-specific CNN can represent the target sub-
ject’s cognitive process during the facial reaction generation,
which is well associated with the subject’s true personality
(addressing Problem 1). More importantly, each person-
specific CNN is explored using the behaviours contained in

all available frames of the target video (addressing Problem
3) and thus its architecture and parameters contain the
clip-level information, which is then encoded as a graph
representing the target subject’s personality. This allows
the training of the GNN-based personality model to be
implemented by pairing the clip-level representation with
the clip-level personality labels (avoiding Problem 2). The
pipeline of the proposed approach is illustrated in Fig. 1. The
main contributions of this paper are summarised as follows:

• We propose to use the simulated person-specific cog-
nition of the target subject as the source descriptor to
recognise the subject’s true personality traits. To the
best of our knowledge, this is the first audio-visual
approach that uses person-specific CNN architecture
and weights to represent the target subject’s cogni-
tion, and recognizes the true (self-reported) person-
ality traits from the simulated cognition.

• We propose a novel audio-visual non-invasive hu-
man person-specific cognition simulation strategy
which automatically searches for an optimised multi-
modal person-specific CNN for each subject to re-
produce the subject’s facial reactions. The explored
person-specific CNN has a unique combination of
layers (operations), weights and depth, and plays
the role of the target subject’s person-specific cog-
nitive process for generating the unique and person-
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specific facial reactions.
• We propose a novel graph encoding strategy to pa-

rameterize the unique architecture and parameters
of an explored CNN into an graph representation,
where each CNN edge that contains a set of op-
erations (convolution, pooling, etc.) is treated as a
vertex, while the existence of edges between vertices
in the graph are decided by the CNN’s architecture.

• We propose a novel transformer-based feature learn-
ing strategy that deep learns a task-specific multi-
dimensional edge feature for each pair of adjacent
vertices in the graph representation. To the best of
our knowledge, this is the first approach that deep
learns multi-dimensional edge features for graphs to
represent convolution neural network architectures.

• We conduct a set of experiments under both human-
human and human-machine dyadic interaction set-
tings, which not only validate the superior perfor-
mance of the proposed approach in recognising true
personality traits but also systematically demonstrate
the influence of the various internal (methodological)
and external (subject demographic) factors on the
proposed approach.

Compared with our earlier conference version [29], the
extended journal version has following additional contribu-
tions and novelties:

Methodologies: Firstly, we introduce a depth searching
strategy, allowing each person-specific CNN to not only
have unique architectural parameters but also a unique
depth. In addition to aligning all person-specific CNNs
as graph representations with the same topology as the
conference version, we further propose to encode CNNs
of variable depths as heterogeneous graph representations
that have different typologies. Secondly, we propose a novel
end-to-end vertex feature learning strategy to encode task-
specific vertex features from corresponding OPs and LWs,
replacing the hand-crafted vertex feature encoding strategy
introduced in the conference version. Finally, we propose
a novel transformer-based multi-dimensional edge feature
learning strategy which employs attention operations to
learn salient task-specific relationship cues between vertices.

Experiments: Firstly, we have conducted additional ab-
lation studies for different demographic groups. Secondly,
we have added an experiment that compares the proposed
approach (i.e., using the weights and architectural param-
eters of the explored person-specific CNN as the person-
specific cognition representation), with the system that uses
the personalized weights of the standard CNN architecture
(ResNet) as the person-specific cognition representation.
Thirdly, we have conducted additional ablation studies for
evaluating the new methodological contributions described
above. Finally, we have conducted all experiments on an
additional self-reported personality dataset that was col-
lected under human-machine interaction scenarios.

Presentations: Firstly, we have added a detailed
overview with a set of formulations to explain the full
pipeline of the proposed approach at the beginning of
the Sec. 3. Secondly, we have added texts and figures
to explain the new methodological contributions and new
experimental results described above. Thirdly, we addition-

ally provide the pseudocode of the VFE and EFE in the
supplementary material. Finally, we provide the detailed
settings of all reproduced baselines in the supplementary
material.

2 RELATED WORK

This section first reviews previous audio-visual automatic
personality analysis approaches in Sec.2.1. Then, it sum-
marizes biological and psychological studies which found
that personality can be reflected by human cognition, pro-
viding the theoretical basis for our work, i.e., recognising
true personality traits from the simulated human cognitive
processes (Sec. 2.2).

2.1 Audio-visual automatic personality analysis

Early audio-visual automatic personality analysis ap-
proaches usually extract hand-crafted features to describe
audio-visual human non-verbal behaviours or interpersonal
relationship between subjects, including low-level features
such as histogram of oriented gradients (HOG) [30], Local
Phase Quantization (LPQ) [31] and mid-level cues such as
statistics of mid-level behaviour attributes [8], [32], facial at-
tributes (gazes, head motions, etc.) [33], human posture and
gesture cues while speaking [34], co-occurrent patterns of
behaviours [35], body skeleton activity [21], Quantised Local
Zernike Moments (QLZM) [9], visual focus of attention [21],
etc. These hand-crafted features are then fed to traditional
machine learning models such as support vector machine
regressor (SVR) or logistic regression to generate apparent
personality predictions.

Due to recent advances in deep learning, most existing
approaches employ Convolution Neural Networks (CNNs)
to learn task-specific deep features from each frame or a
thin video slice. For example, Ventura et al. [7] propose a
Descriptor Aggregation Network (DAN) to extract a frame-
level feature at multiple spatial resolutions, and use such
multi-level visual features to infer personality at the frame-
level. To learn both personality-related audio and visual
cues, two-stream bi-modal networks are proposed in [20]
and [19], which firstly learn frame-level audio-visual fea-
tures and then combine them at the the fully connected layer
to provide frame-level personality prediction. The video-
level prediction is then obtained by averaging predictions
of all frames. Principi et al. [18] propose a multi-modal
CNN to jointly learn audio and visual information from
every image sequence (thin video slice) and audio segment.
The extracted features are combined with attribute-specific
models to predict personality traits.

Since personality trait models focus on evaluating the
aspects of personality that are relatively stable over a long
period of time for the target subject [36] (usually much
longer than the duration of a single audio-visual clip), the
frame/thin slice-level behaviours may not be reliable in
reflecting personality traits [36]. Consequently, approaches
that model personality traits based on clip-level/long-term
behaviours also have been investigated. One popular so-
lution is to summarise frame/thin slice-level features of
an entire audio-visual clip into a global statistical de-
scriptor to infer personality [34], [37], e.g., averaging all
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frame/thin slice-level vectors or using a histogram to repre-
sent frame/thin slice-level feature distributions. To consider
important dynamic cues, Li et al. [5] first divide the video
into 32 slices, and then randomly select a face image and a
face-background image from each of them, which are then
stacked as the clip-level stream. Subsequently, the video-
level prediction is made by these selected frames. Beyan et
al. [26] propose to generate multiple dynamic facial images
[38], [39], [40] to represent each video segment and then
choose a set of dynamic facial images that have the highest
spatio-temporal saliency as the key frames to construct the
video-level representation.

In addition, multiple audio-visual personality comput-
ing datasets [1], [41], [42], [43], [44], [45], [46], [47], [48],
[49] have been proposed and recorded in the past decades,
where a large part of them [41], [42], [43], [44] are labelled
with apparent personality traits (i.e., external human ob-
servers annotate personality traits for each clip according
to their impressions). These datasets are either recorded
under lab conditions (i.e., participants are asked to conduct
a set of tasks) [43], [44] or video blogs collected from public
websites [41], [42]. Several datasets provided self-reported
big-five personality traits annotations [1], [45], [46], [47],
[48], where the NoXI and UDIVA datasets [46], [47] were
recorded under human-human dyadic interaction scenarios,
while the VHQ dataset [1] was recorded under three human-
robot dyadic interaction scenarios. In addition, the MHHRI
dataset [48] was collected for personality computing under
both human-human and human-robot interaction scenarios.

In summary, while modelling personality traits at the
frame/segment-level is problematic, the recent clip-level
representations usually failed to utilise the full scale of the
available information in the data, as they select a subset or
key frames to represent an entire video. To avoid these prob-
lems, Song et al. [10] propose a domain adaption approach
to learn a set of intermediate convolution layers from all
available data as the person-specific representation for the
target subject, which achieved a comparable performance
to the state-of-the-art method [5]. However, similar to the
approaches described above, it still directly infers apparent
personality based on the subjects’ observable behaviours.
In other words, all the aforementioned studies focused on
automatic personality perception analysis.

2.2 The relationship between personality and human
cognition

According to previous biological studies [11], [12], person-
ality traits (e.g., Extraversion, Conscientiousness, and Neu-
roticism) are well associated with human brain structures
[50] and activities such as brain local volumes [51] and gray
and white matter [52], which are key factors in deciding
and controlling human cognitive processes. For example,
Kumari et al. [14] investigated brain fMRI activity based on
the “n-back” task, and found that brain responses during
cognitive activities are related to Extraversion and Neuroti-
cism traits. Previous psychological studies also frequently
claimed that people’s personality is well associated with
their cognitive processes in various daily activities such as
risk taking [53], creativity [13], [54], and music learning
[13]. An exploratory factor analysis was conducted by [13],

Fig. 2. The difference between the proposed approach (depicted in
orange) and existing approaches (depicted in blue). While existing ap-
proaches attempt to directly using the target subject’s external non-
verbal behavioural data to predict personality perception, our approach
learns to recognise true personality by modelling the target subject’s
internal person-specific cognition.

whose results show that creativity and primary cognitive
processes are correlated with the Extraversion and psy-
choticism (Neuroticism) traits. Importantly, the relationship
between human cognition and personality are relatively
stable, as a longitudinal study conducted by Schaie et al.
[55] showed that some of the personality-cognition relations
could last for over 35 years. This finding gives us the
inspiration that human cognition can be a reliable and stable
source for recognising personality.

As reviewed in Sec. 2.1, the main difference between
our approach and the existing approaches (illustrated in
Fig. 2), is the fact that the existing approaches attempt
to achieve automatic personality perception directly from
observable non-verbal behaviours of the target subjects,
where the ML model acts as an external observer. Instead,
our approach draws inspiration from the aforementioned
works on the interrelationship between personality and
human cognition, and learns to recognise true personality
by simulating and modelling target subjects’ person-specific
cognitive processes.

3 METHODOLOGY

The proposed approach recognises each subject’s true per-
sonality traits based on three steps: (i) person-specific cog-
nition (CNN) simulation (Sec. 3.1); (ii) person-specific graph
representation generation (Sec. 3.2); and (iii) personality
recognition based on the produced person-specific graph
representation (Sec. 3.3).

Person-specific cognition (CNN) simulation: our ap-
proach starts with simulating and modelling each target
subject’s (listener) cognition by individually searching for
an optimal person-specific multi-modal CNN HL. The ex-
plored person-specific CNN is expected to accurately re-
produce the listener’s facial reactions FL in response to the
conversational partner’s (the speaker) audio AS and facial
behaviours FS , i.e., the signals that the subject received (ex-
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plained in Fig. 1(a)) in a dyadic interaction. Mathematically
speaking, the HL is achieved by:

HL = NAS(FL, AS , FS) (1)

where NAS denotes the DARTs-based neural architecture
searching algorithm. Here, the HL is defined by its depth
DCNN

L , operation parameters (OPs) OL and layers’ weights
(LWs) WL of operations:

HL = {DCNN
L ,OL,WL} (2)

In summary, we individually search for a person-specific
CNN for each listener by considering the listener’s facial
reaction as well as the corresponding speaker’s audio and
facial behaviours. Specifically, in this stage, our goal is to
adjust the person-specific CNN to fit the provided listener-
speaker dyadic interaction data, where we search and vali-
date the person-specific CNN on the same data. Representa-
tive loss curves for the search process are illustrated in Fig.
9.

Person-specific graph representation generation: In this
paper, we hypothesize that the well explored CNN HL

represents the person-specific cognition of the target listener,
and thus HL is well associated with the listener’s true
personality. However, it is not possible to directly feed the
explored CNN to a ML predictor for personality recognition,
as it can not be directly processed by any existing ML
model. Since each CNN network can be well described
by a graph, where a set of layers that contain parameters
can be treated as vertices and their connection relationship
can be treated as edges, we parameterize the HL into a
learnable graph representation GL(V,E) as the correspond-
ing listener’s person-specific cognition representation for
personality recognition:

GL(V,E) =GE(HL)

=GE(DCNN
L ,OL,WL)

(3)

where GE denotes the proposed graph encoding strategy
(explained in Fig. 1(b)); V and E represent the nodes and
edges of the graph representation GL.

Personality recognition: Finally, the produced graph
representation GL is fed to a GNN model to recognise the
target listener’s true personality as:

PL = GNN(GL) (4)

where PL represents the predicted five personality traits of
the target listener.

3.1 Simulating person-specific cognition

This section explains how we search for a person-specific
multi-modal CNN that represents the target listener’s cog-
nition. Specifically, we introduce the input and target of the
CNN (Sec. 3.1.1), the CNN settings that allows each person-
specific CNN to accurately simulate the cognition of the
target listener (Sec. 3.1.2), the loss function for searching
and training person-specific CNNs (Sec. 3.1.3), and the
architectural parameters’ optimization strategy (Sec. 3.1.4).
The complexity analysis of the person-specific searching is
provided in the supplementary material.

Fig. 3. Using person-specific CNN to simulate human cognition.

3.1.1 Input and target

Previous findings [27], [28] suggest that during a dyadic
interaction, the listener’s facial reactions are driven by two
main factors: (i) listener’s person-specific cognition, and (ii)
the externalised nonverbal behaviours of the conversational
partner (the speaker). Based on this, the person-specific
CNN model HL that represents the cognition of the listener
is explored to output facial reactions FL of the listener
when given audio signal AS and facial behaviours FS of
the speaker as the input. This can be formulated as:

FL = HL(AS , FS) (5)

Once HL is obtained, it takes on the role of the corre-
sponding listener’s cognitive processor in generating facial
reactions during the provided dyadic interaction. Conse-
quently, the learnt HL is sufficiently informative for mod-
eling the listener’s true personality traits not only because
the true personality relates to the listener’s cognition but
also because true personality is a key factor in governing
how non-verbal behaviours are generated and displayed by
humans [23]. In this paper, we use the speaker and listener’s
facial landmark sequences to represent the input and target
facial movements, respectively. In this paper, we empirically
set the sequence length as 80 frames (around 3 seconds).
This is because that this duration is not only enough to
contain a complete facial behaviour/reaction that consists
of multiple facial expressions [56], but also not too long to
contain several reactions in response to multiple stimulus.
The aligned facial landmarks are obtained for each frame
using OpenFace 2.0 [57], which are then transformed based
on a pre-defined mean face shape in order to keep only facial
behaviours without the identity information (as suggested
by [58]). Also, we use 64 bin log-mel spectra as the audio
representation, where each audio frame is computed by a
40 ms hanning window with stride size of 40 ms. This way,
the number of audio frames for each video is the same as
the number of video frames.
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3.1.2 Multi-modal cognitive processor model
Basic topology: The basic topology of each person-specific
CNN is inspired by the Model Human Processor (MHP) [59]
(visualized in Fig. 3), which is set to have a visual encoder
and an audio encoder that simulate the human perceptual
processor, an audio-visual decoder that simulates the human
motor processor and a fusion module that partially simulates
the human cognitive processor, i.e., jointly processing audio-
visual cues at multiple levels. Since during each person-
specific CNN’s optimisation, it takes audio-visual sequences
of the speaker, and outputs facial reaction sequence of
the listener, we also employ a Long-Short-Term-Memory
network (LSTM) to process the latent feature sequence
generated from the two encoders, which aims to simulate
the human working memory module of the MHP. The basic
topology of each person-specific CNN is also illustrated in
Fig. 1(a)).

Model settings for person-specific cognition simula-
tion: We follow the similar settings of the DARTs [60] to
represent each module as a directed acyclic sub-graph that
is made up of several cells. Each cell contains a set of nodes
that represent latent features as well as a set of CNN edges,
where each edge contains a set of operations defined by
OPs and LWs. Specifically, in the proposed person-specific
CNNs, a node Nj represents a set of feature maps generated
from its adjacent parent nodes Ni, Ni+1, · · ·Nj−1 (i < j),
where a pair of adjacent nodes (Ni and Nj) are connected
by a CNN edge Oi,j which consists of a set of pre-defined
operations oki,j (e.g., convolution, pooling, etc.):

Oi,j = {oki,j |k = 1, 2, · · · ,K} (6)

where each oki,j contains a set of layer weights (LWs) wk
i,j

(e.g., kernel weights of a convolution layer). In particular,
for those operations that do not have learnable LWs (e.g.,
pooling, identity mapping, etc), we define their LWs as
oki,j = ∅. As a result, the Eqa. 6 can be re-written as:

Oi,j = {oki,j(wk
i,j)|k = 1, 2, · · · ,K} (7)

During the propagation, the feature maps in the node Nj

are produced from all of its adjacent parent nodes Ni (i < j
and textadj(i, j) = 1) via all operations of corresponding
CNN edges Oi,j , which can be formulated as:

Nj =

i<j∑
(Oi,j(Ni)× adj(i, j)) (8)

where adj(i, j) denotes the connectivity between Ni and
Nj (i.e., 0 denote Ni and Nj are not connected while 1
denoting they are connected). Here, each operation oki,j in
Oi,j is assigned to have a operation parameter (OP) αk

i,j

to represent its importance. This way, when feeding feature
maps contained in the node Ni to a CNN edge Oi,j , the
output can be represented as:

Oi,j(Ni) =
K∑

k=1

(αk
i,j × oki,j(w

k
i,j(Ni))) (9)

This process is also illustrated in Fig. 4(c). To simulate
uncertain and complex human cognitive processes of facial
reactions, we set the nth (n > 2) fusion cell to take four
inputs: the outputs of the nth visual cell CVisual

n and nth

audio cell CAudio
n , the output of the (n − 1)th and (n − 2)th

fusion cells (CFusion
n−1 , CFusion

n−2 ), which can be formulated as:

CFusion
n = ∥{CFusion

n−1 , CFusion
n−2 , CAudio

n , CVisual
n } (10)

where ∥ is the concatenation operator. Consequently, the
input audio and visual signals can be combined and jointly
processed at multiple levels (illustrated in Fig. 1(a)). Sec-
ondly, in each cell, we set each node to connect to all of its
previous nodes to represent all possible information flow,
allowing the extracted features (nodes) to be potentially
influenced by the information of multiple previous states
(parent nodes) during the CNN propagation (illustrated in
Fig. 4(b)). Thirdly, we set each CNN edge to have a set of
unique OPs and LWs rather than setting all cells to share
the same set of OPs [60], [61]. Finally, since depth is also a
key factor that impacts a CNN’s cognitive process, we also
search for a unique number of cells for the person-specific
CNN of each target listener (illustrated in Fig. 1(a)). This
way, the person-specific CNN HL that represents the target
listener’s cognition can be defined as:

HL ={DCNN
L ,OL,WL}

={(OAudio
L ,OVideo

L ,OFusion
L ,ODecoder

L ),

(WAudio
L ,WVideo

L ,WFusion
L ,WDecoder

L ),

(DAVF
L ,DDecoder

L )}

(11)

where DAVF
L denotes the depth of the audio, visual and

fusion modules, i.e., these three modules are set to have the
same number of cells. In summary, compared with training
a person-specific CNN with a fixed architecture for each
subject [10], which only represents the person-specific cog-
nition of the subject using a set of unique LWs, the person-
specific CNN explored by our approach allows the subject’s
cognition to be represented by not only a set of unique LWs
but also unique OPs and depth (i.e., the architecture of the
CNN). In other words, the complex human cognition would
theoretically be better represented by the CNN explored by
our approach (evaluated in Sec. 4.4).

Employed operations (search space): In this paper, we
pre-define υ = 5 operations that have layer weights (LWs),
and κ = 5 operations that do not have LWs for each edge
Oi,j . Here, all OPs and LWs of the target listener’s person-
specific CNN are defined as αL and WL, respectively.
The details of the person-specific CNN settings (e.g., cell,
nodes and operations) are provided in Table. 1. As the first
work that searches for a person-specific CNNs to represent
each listener’s person-specific cognition as their personality
representation, there is no previous study suggesting the
optimal operations and search space. Since the main goal of
this paper is to validate the concept that the personalized
architecture and weights of the explored person-specific
CNN can reflect the corresponding listener’s self-reported
personality traits, we found that the standard deep learn-
ing operations (convolution, pooling, etc) that have been
frequently used in previous deep learning models (e.g.,
classification [62], segmentation [63], etc.) can already allow
most explored person-specific CNNs to accurately repro-
duce their target listeners’ facial reactions. Consequently, we
decided to define the search space based on these standard
deep learning operations. Although more operations can be
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Operation Name Size Num of LWs
Max Pooling 1× 3 0

Average Pooling 1× 3 0
Separable Convolution 1× 3 3× Cin × Cout
Separable Convolution 1× 5 5× Cin × Cout

Dilated Convolution 1× 3 3× Cin × Cout
Dilated Convolution 1× 5 5× Cin × Cout

Transposed Convolution 1× 3 3× Cin × Cout
Up-Sampling (Linear) N.A. 0

Up-Sampling (Nearest) N.A. 0
Identity Mapping N.A. 0

TABLE 1
The operations used in this paper. Cin and Cout denote the numbers of

input and output feature maps, respectively.

employed in the search space, this would further increase
the computational cost of the searching process. In future
work, we will propose a more efficient person-specific CNN
searching strategy, and specifically investigate the optimal
searching space for representing personality-related person-
specific cognition.

3.1.3 Adaptive loss function
To supervise the searching process of each person-specific
CNN (as described by Eq. 5) we first highlight some impor-
tant aspects of human psychology and behaviour pattern.
Firstly, facial reactions of similar emotions or intentions can
be displayed by different facial spatio-temporal patterns,
which is partially caused by the differences in listeners’
facial identities, responding times and personalities. While
differences in facial identities can be partially addressed by
projecting faces of different subjects to a mean face, we
consider that there is always a time delay for a listener
to generate a facial reaction in response to speaker’s be-
haviours. This is because the execution of the corresponding
cognitive processes takes some time [59]. Importantly, the
duration of the time delay may vary not only for different
listeners but also for the same listener depending upon other
external factors.

In light of this, we introduce an adaptive factor τ to
model this uncertainty. Let us define an audio-facial input
AS(t1, t2) and FS(t1, t2) that represent the speaker’s audio-
facial non-verbal behaviours expressed from time t1 to t2.
We propose the following adaptive loss (A-loss) function
to measure the similarity between the predicted listener’s
facial reaction and the ground-truth:

LA−loss(t1, t2, τ)

= LA−loss(F
p
L(t1, t2), F

g
L(t1 + τ, t2 + τ))

=
t2∑

i=t1

68∑
j=1

min(L⋆(x
p
i,j , x

g
i+τ,j) + L⋆(y

p
i,j , y

g
i+τ,j), ε)

(12)

where F p
L(t1, t2) denotes the predicted landmarks of the lis-

tener’s facial reaction corresponding to the input AS(t1, t2)
and FS(t1, t2); F

g
L(t1 + τ, t2 + τ) are the listener’s real facial

reaction landmarks induced by AS(t1, t2) and FS(t1, t2),
where τ represents the time delay; (xp

i,j , y
p
i,j) denotes the

predicted coordinates of the jth facial landmark of the ith
frame and (xg

i+τ,j , y
g
i+τ,j) is the corresponding ground-truth

(a) Illustration of the fusion module and the depth search. We
initially set each module to contain Mreg linear stacked cells
(Mreg = 3 in the figure), and then gradually mask out each cell
from the end of the module. If masking out the m+ 1th cell
leads to the best performance in facial reaction generation, the
final optimal depth for the corresponding module is m.

(b) The details of nodes’ connections. Each node in a cell is influenced
by the information coming from all its parent nodes, and each cell
takes the outputs from previous two cells.

(c) A CNN edge example in explored person-specific CNNs.

Fig. 4. The details of the explored person-specific multi-modal CNN.
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Fig. 5. Visualization of person-specific CNNs explored on the NoXI
dataset, where the initial CNN architectures for all subjects are the same
(Epoch 0). After the searching, we can see that the explored CNN for
each subject is unique and person-specific (Epoch 300).

coordinate. Specifically, the ε is a constant value employed
to avoid extremely large loss values caused by outliers
(e.g. incorrectly detected face regions) which can lead to a
misguided CNN search. L⋆ represents the similarity mea-
surement between the prediction and ground-truth. In this
paper, L⋆ is defined as the Mean Square Error (MSE).

To achieve the proposed adaptive loss (i.e., computing a
τ at each time), in practice we use a sliding time-window to
compare the prediction of listener’s facial reactions with a
set of ground-truth candidates (the duration of the ground-
truth candidates is longer than the time-window, as illus-
trated in the last section of Fig. 1(a)). Specifically, we set
R ground-truth candidates, i.e., F g

L(t1 + r, t2 + r), r =
1, 2, · · ·R, and only choose r = τ that allows the loss
LA−loss(t1, t2, τ) to have the lowest value:

τ = argminLA−loss(t1, t2, τ) (13)

As a result, the delay period can be automatically adapted
for each listener at each training iteration.

3.1.4 Person-specific CNN optimization
To search for an optimal multi-modal CNN (described in
Sec. 3.1.2) for each listener, we conduct a single-level opti-
mization based on the continuous relaxation algorithm [60].
It adjusts all OPs, LWs as well as depths of the person-
specific CNN at the same time during the optimization.
In comparison to the widely-used bi-level optimization
strategy [60] which separately optimizes OPs in the vali-
dation set and LWs in the training set, i.e., freezing one of
them while optimizing the other, the proposed single-level
optimization strategy allows the OPs, LWs and depths to
be simultaneously optimized. This aims to replicate how
the human cognition operates with all cognitive processes
jointly activated during reaction generation - there is no
evidence suggesting that some parts of the human cognitive
processors are frozen during the reaction generation. In
addition, this strategy allows the OPs, LWs and depths
to be optimized using the full audio-facial frames instead
of a sub-segment of it, i.e., the explored CNN is a clip-
level representation without ignoring any frames. The pseu-
docode of the proposed single-level OPs, LWs and depths
optimization is provided in Algorithm 1. Representative

Algorithm 1 Single-level optimization
Require: A multi-modal CNN that is parametrized by OPs,

LWs and depths of an audio encoder, a visual encoder,
a fusion module and a decoder, which are denoted as
At=0

V,A,F,D, Wt=0
V,A,F,D and Dt=0

AVF,D.
Ensure: An optimal person-specific multi-modal CNN that

can reproduce the target subject’s facial reactions, which
is parametrized by OPs AOptimal

V,A,F,D , LWs WOptimal
V,A,F,D and

depths DOptimal
AVF,D .

1: repeat
2: Updating OPs At

V,A,F,D (t > 1) on the
training set by descending ∇ALA−loss(Wt−1

V,A,F,D −
ηA∇WLA−loss(Wt−1

V,A,F,D,A
t−1
V,A,F,D,D

t−1
AVF,D),A

t−1
V,A,F,D,D

t−1
AVF,D).

3: Updating LWs Wt
V,A,F,D on the training set by de-

scending ∇WLA−loss(At
V,A,F,D,W

t−1
V,A,F,D,D

t−1
AVF,D).

4: Choosing the optimal depths Dt
AVF,D to achieve the

best training loss LA−loss(At
V,A,F,D,Wt

V,A,F,D,Dt
AVF,D)

5: until Convergence
6: AOptimal

V,A,F,D = AConvergence
V,A,F,D ; WOptimal

V,A,F,D = WConvergence
V,A,F,D and

DOptimal
AVF,D = DConvergence

AVF,D

examples of person-specific CNNs’ optimization processes
are visualized in Fig. 5.

3.2 Graph representation of the person-specific CNN

Let’s recall that the main hypothesis of this paper is that if
a CNN can reproduce the target subject’s facial reactions,
it represents the person-specific cognition of the subject,
which is well associated with the subject’s true person-
ality. Consequently, we search for a person-specific CNN
for each subject. Since the explored CNN is a directed
acyclic graph, we encode each explored CNN as a graph
G(V,E), and treated it as the personality representation for
the corresponding subject. This process is formulated in
Eqa. 3, where each graph representation G is made up of
a set of vertices V and edges E. Specifically, we represent
each CNN edge Oi,j as a vertex Vi,j in the corresponding
graph representation G(V,E). Meanwhile, the edge pres-
ence Ai,j,m between Vi,j and Vj,m in G(V,E) is decided by
the relationship between their corresponding CNN edges
Oi,j and Oj,m. If Ai,j,m = 1, the edge feature Ei,j,m in
G(V,E) is obtained by considering both vertex features Vi,j

and Vj,m. These can be formulated as:

Vi,j = VFE(Oi,j)

Ei,j,m, Ai,j,m = EFE(Vi,j , Vj,m, Oi,j , Oj,m)
(14)

where VFE denotes the proposed vertex feature encoding
strategy described in Sec. 3.2.1, and EFE denotes the pro-
posed edge feature encoding strategy described in Sec. 3.2.2.
We additional provide the pseudocode of the VFE and EFE
in the supplementary material.

3.2.1 Vertex feature encoding

Given a CNN edge Oi,j , we categorize all its operations into
two parts: υ operations owi,j that have LWs (e.g., convolution)
and κ operations oni,j that do not have LWs (e.g., pooling).
Then, we propose a vertex feature encoding (VFE) strategy
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to achieve its corresponding vertex Vi,j for the graph repre-
sentation as:

• Step 1 LWs alignment: we first notice that the num-
ber of LWs are different (ranging from hundreds to
tens of thousands in our study) in each CNN edge
because they have different number of input and
output feature maps. Consequently, we follow the
idea of [64] to select a fixed number of most repre-
sentative weights from each operation oki,j , which are
denoted as Sωk

i,j . For examples we choose weights of
five kernels with the top-5 highest L1 values (sum of
absolute weights) from each convolution operation.
This way, the LWs representation LWi,j of the CNN
edge Oi,j (having K operations) is denoted as:

LWi,j = [Sω1
i,j , Sω

2
i,j , · · · , SωK

i,j ] (15)

where the LWi,j would have a fixed dimension for
all CNN edges.

• Step 2 Fusion of OPs and LWs: Since each OP αk
i,j

reflects the importance of the operation oki,j (as well
as its LWs ωk

i,j), we use OPs to weight corresponding
LWs. For operations that have LWs, their original
OPs αw

i,j are projected to a OP-LW weighting vec-
tor OP-LWi,j that has the same dimension as LWs
representation LWi,j :

OP-LWi,j = VEN(αw
i,j)

= VEN([αw1
i,j , α

w2
i,j , · · · , α

wυ
i,j ])

(16)

where VEN is a Multi-Layer Perceptron (MLP) that
has two hidden layers. Then, the OPs and LWs for
operations that have LWs are combined by comput-
ing the dot product between the weighting vector
OP-LWi,j and the LWs representation LWi,j , which
can be denoted as:

V w
i,j = ⟨OP-LWi,j ,LWi,j⟩ (17)

• Step 3 Vertex feature generation: Finally, we con-
catenate the obtained V w

i,j with OPs αn
i,j of κ opera-

tions that do not have LWs as the final vertex feature:

Vi,j = [αn
i,j , V

w
i,j ] (18)

Since the dimension of both αn
i,j and V w

i,j are fixed,
all vertex features would have the same dimension.

This process is illustrated in Fig. 1(b) and depicted in purple.

3.2.2 Edge feature encoding
For a graph representation G(V,E), we define a pair of
vertices Vi,j and Vj,m are connected (i.e., the edge Ei,j,m

exists (Ai,j,m = 1)) if their corresponding CNN edges Oi,j

and Oj,m are connected to the same node Nj in the CNN
(illustrated in Fig.1(b)). While most existing approaches only
use a single binary value (0 or 1) to define the relationship
between a pair of vertices in graphs, this single-value binary
edge feature usually fail to describe all task-related relation-
ship cues, as sometimes the relationship between vertices
can be described by multiple attributes. On the contrary, we
aim to produce a person-specific graph representation that
not only encodes parameters (contained in vertex features)
and the architecture (encoded as the graph topology) of

the person-specific CNN, but also the underlying relation-
ship between CNN edges, which may provide additional
personality-related cues.

To this end, we propose a novel multi-dimensional edge
feature encoding strategy that represents the relationship
(edge) between each pair of connected vertices as a multi-
dimensional vector. In particular, we propose to produce the
edge feature Ei,j,m directly from the obtained vertices Vi,j

and Vj,m:
Ei,j,m = ERN(Vi,j , Vj,m) (19)

where ERN is an attention-based edge relationship network.
It takes a pair of vertices’ feature Vi,j and Vj,m as the input,
and outputs an edge feature Ei,j,m that contains the task-
specific relationship feature that are related to both vertex
features Vi,j and Vj,m. The detailed process of the ERN is
illustrated in Fig. 6.

It should be noted that both ERN and VEN are jointly
trained with the personality recognition model in an end-to-
end manner. This way, they learn to generate personality-
related vertex and edge features (personality-related fea-
tures) from the explored person-specific CNN’s parameters
and architecture.

3.3 Personality recognition model
In this paper, each subject’s personality traits are recog-
nised from the graph representation of the subject’s person-
specific CNN. We formulate the personality recognition as
a multi-task graph regression problem (jointly recogniz-
ing 5 traits). Particularly, we employ the state-of-the-art
residual gated graph convolution neural network (resid-
ual GatedGCN) [65] provided by [66] as the personality
recognition model to process the produced graph repre-
sentations, as it is the state-of-the-art GNN model which
can process heterogeneous graphs and graphs containing
multi-dimensional edge features. We empirically employ a
network that consists of six GatedGCN layers (the detailed
settings are provided in supplementary material). Then, two
fully connected (FC) layers are attached to the last Gat-
edGCN layer to concatenate all produced vertices features,
where a ReLU activation and a dropout (0.3) are followed by
each FC layer. The size of the output layer is set to 5 to jointly
recognise the five personality traits of Extraversion (Ext),
Agreeableness (Agr), Openness (Ope), Conscientiousness
(Con), and Neuroticism (Neu).

4 EXPERIMENTS

This paper evaluates the proposed approach on a human-
human dyadic interaction dataset and a human-machine
dyadic interaction dataset, which are described in Sec. 4.1.
We then present the implementation details in Sec. 4.2
followed by evaluation metrics in Sec. 4.3. We compare
the personality recognition performance achieved by the
proposed approach to other existing personality recognition
approaches that directly infer personality from subjects’ ex-
ternal behaviours in Sec.4.4, showing the advantages of the
proposed novel strategy which recognises personality traits
from the simulated human cognition. Finally, we experi-
ment the influence of different CNN searching and graph
representation encoding settings on personality recognition
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Fig. 6. Illustration of the ERN. Step 1: Learning a pair of 1D representations F conv
i,j and F conv

j,m from a pair of connected vertex features Vi,j and Vj,m;
Step 2: generating cross-vertex attention maps Across

i,j and Across
j,m , where Across

i,j emphasizes a part of F conv
i,j ’s information that is correlated with F conv

j,m
while Across

j,m highlighting a part of F conv
j,m ’s information that is correlated with F conv

i,j ; Step 3: Generating weighted features F cross
i,j and F cross

j,m ; Step 4:
Concatenating F cross

i,j and F cross
j,m , and producing self-attention maps; and Step 5: Generating the final edge feature E(i, j,m). In this figure, the K,

Q, V depicted in purple represent ’key’, ’query’ and ’value’ of the attention operation.

in Sec. 4.5, where we also specifically compare the person-
specific CNNs that are explored using NAS with person-
specific CNNs that have a fixed architecture. Additionally,
we conduct a set of experiments to systematically evaluate
the sensitivity of our approach for different demographic
groups (provided in supplementary material.

4.1 Datasets
In this paper, we evaluate our approach in both human-
human and human-machine dyadic interaction scenarios.
While many existing datasets [41], [42], [43], [44] are built
for personality perception prediction study, some publicly
available datasets [1], [46], [47], [48], [67] also can be used for
audio-visual true personality recognition studies. However,
most of these available datasets are not suitable for our
study as our models assume dyadic interaction.

Human-human interaction: The NoXi dataset [46] is a
multi-lingual human-human dyadic interaction dataset that
was designed to generate spontaneous interactions with
emphasis on adaptive behaviours in unexpected situations.
It consists of 84 sessions in which one participant acts
as an Expert and the other acts as a Novice interacting
on a chosen topic of expertise via video conferences. The
participants were allowed to continue the conversation until
it reached a natural end. During the interaction, participants
can interrupt each other for either changing the topic or
inducing a mild debate whenever possible. This dataset
contains 84 pairs of audio-visual clips (168 clips in total
from 89 participants) with participants’ ages ranging from
21 to 50 years old. The average and standard deviation
of clips’ duration are 18m6s and 6m28s, respectively. All
participants provided self-assessments of their Big-Five Per-
sonality Traits using the Saucier’s Mini-Markers [68].

Human-machine interaction: We conducted the human-
machine experiments on the Virtual Human Questionnaire

Fig. 7. Examples of a virtual human display (Fig. (a)) and automatically
detected (aligned) faces (Fig. (b)) in VHQ dataset.

(VHQ) database [1]. The VHQ database consists of 165
videos collected from 55 participants, where each partici-
pant completed 3 questionnaire interview sessions. During
each session, participants were asked to answer a set of
questions verbally based on one of three questionnaires:
BFI-10 [69], PHQ-9 [70] or GAD-7 [71]. In this database,
55 videos (corresponding to 55 subjects) were recorded
under the human-machine dyadic interaction mode. More
specifically, a virtual human agent interviewer (Fig. 7) was
projected directly in front of the participant and ask ques-
tions, which was implemented using the ARIA-VALUSPA
Platform [72]. The self-reported labels of the Big-Five per-
sonality traits were obtained by asking participants to fill
the BFI-44 questionnaire online.
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4.2 Implementation details

Persons-specific CNN settings: For subjects in the NoXI
dataset, their multi-modal person-specific CNNs have 6
cells (a pre-defined convolution cells, 3 down-sampling
cells and 2 regular cells) for each encoder and 5 cells (2
regular cells and 3 up-sampling cells) for each decoder. The
employed LSTMs have 3 hidden layers. During the neural
architecture searching, the input speaker’s audio-visual sig-
nal lasts for 80 frames and the listener’s candidate ground-
truth consists of 105 frames and the delay factor r ranges
from 0 to 25 frames, i.e., selecting 80 consecutive frames as
the final reaction. Since the audio data in the VHQ dataset
is very noisy, we only search for a single-modal person-
specific CNN for each subject, which takes the virtual hu-
man’s facial landmarks as the input and aims to reproduce
the target subject’s facial reactions. We noticed that the
virtual human only spoke a set of pre-defined sentences
during the interaction. Thus, we also categorized all sen-
tences into 4 classes: depression-related questions, anxiety-
related questions, personality-related questions, and other
sentences (e.g., virtual human asks the subject to repeat the
answer.), and then encoded each as a one-hot vector (e.g.,
1000, 0100, 0010, and 0001). Consequently, the multi-modal
CNNs explored in the VHQ dataset are implemented by
concatenating the deep-learned virtual human’s face feature
with the proposed sentence categorical feature at the last FC
layer of the encoder.

Neural Architecture Search: In this paper, all person-
specific CNNs for each dataset have the same initial archi-
tecture and parameters, where OPs and LWs are initialized
with the Xavier strategy [73]. Meanwhile, we used the same
training strategies to obtain all person-specific CNNs in each
dataset. In particular, during each person-specific CNN’s
searching, we fed facial landmark sequences to each CNN
based on their time stamps in the corresponding video,
i.e. from the beginning of the video to the video’s end.
This not only ensures that the OPs and LWs of the CNN
always converge (during searching) to the same set of values
for a particular video, but also ensures that the difference
between individually explored person-specific CNNs is only
influenced by person-specific reactions rather than the ini-
tialization of weights or the order in which the frames are
used for searching. During the searching, the batch size was
set to 60 audio-visual clips, while 2 Adam optimizers were
independently used to jointly adjust OPs and LWs, with the
learning rate of 0.05 and 0.001, respectively.

Personality model training details: In this paper, we
conduct a 12-fold subject-independent cross-validation on
the NoXI dataset. For each fold, 154 videos were used for
training and hyperparameter optimisation and 14 videos
were used for testing (each subject appeared in either train-
ing or test set, not both). Due to the limited number of
data, we conduct a leave-one-subject-out cross-validation on
the VHQ dataset. For each fold, 154 videos were used for
training and hyperparameter optimisation, and the remain-
ing video was used for testing. For both NoXI and VHQ
datasets, we report the accuracy on the test sets averaged
over all folds. In this paper, all experiments were conducted
on the PyTorch platform using Nvidia V100 GPUs.

4.3 Evaluation metrics
Two common metrics are used to evaluate the personality
recognition performance: the Pearson Correlation Coeffi-
cient (PCC) and the mean accuracy measurement (ACC),
which has been adopted in relevant challenge events (e.g.,
the ChaLearn challenge [41].

4.4 Comparison to existing approaches
To compare the proposed approach with other video-based
automatic personality analysis solutions, we reproduced
four existing personality computing approaches that have
been reported on ChaLearn dataset [41], which are DCC
[20], NJU-LAMDA [19], CR-Net [5], and PALs [10] as well as
spectral representation [74], [75]. The detailed reproduction
settings are provided in the supplementary material.

Table 2 and Table 3 compare the variations of the pro-
posed models to the existing state-of-the-art audio-visual
personality analysis approaches (automatic personality per-
ception (APP) solutions) on the NoXi and the VHQ datasets.
Table 4 compares the results achieved by our best systems
(the graph representations of multi-modal CNNs that are
learned using adaptive loss, independent parameter settings
and the graph representations are constructed using end-
to-end vertex and edge feature learning strategy) and the
results achieved by other methods under both interaction
scenarios with highlighted statistical significance. It can
be observed that for both datasets, the predictions pro-
duced by the graph representations of the explored multi-
modal CNNs are positively correlated with all self-reported
personality traits. Specifically, these graph representations
achieved PCC> 0.37 for Con, Ext, and Neu traits on the
NoXI dataset, which shows significant advantages over the
other listed methods. Meanwhile, the graph representations
of the explored multi-modal model (A-MModal (M)) also
achieved the best average ACC result and the second best
PCC result in recognizing the self-reported personality traits
under human-computer interaction scenarios, i.e., it gener-
ated the best PCC results between predictions and ground-
truth of the Neu trait with PCC of 0.363, showing more
than 8% relative improvements over the second best method
[10]. In addition, we also train a CRNet-based baseline
(M-CRNet) that takes the audio-visual signal of both the
listener and speaker, to predict the listener’s personality.
While the proposed approaches and the M-CRNet both
using the listener and speaker’s data to predict the listener’s
true personality traits, the results demonstrate that using
the representation of the simulated person-specific cognition
still provide significant advantages over directly extracting
features from external behaviours, in recognizing all five
true personality traits.

It also can be observed from Table 5 that the ex-
plored person-specific CNNs can accurately predict the
corresponding target subjects’ facial reactions, which are
evidenced by the promising PCC results (more than 0.75
for all systems) and RMSE results of the facial reaction
(facial landmarks) generation. This indicates that the simu-
lated person-specific cognition can reproduce similar facial
reactions for the majority frames of the target subject’s
video. In other words, the explored person-specific CNN
can accurately represent the target subject’s cognition over
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time (a video’s duration). On the contrary, these person-
specific CNNs have poor performance in reproducing other
subjects’ facial reactions with the PCC between the repro-
duced reaction landmarks and the ground-truth being less
than 0.1, which means each person-specific CNN can not
reflect other subjects’ cognition for facial reactions (i.e., the
simulated cognition of the target subject is different from
others’ cognition). As a result, we assume the proposed
approach can partially encode the target subject’s person-
specific cognitive process that is stable over time but differ-
ent from other subjects.

Discussion: In summary, the results presented above
indicate that despite CNNs and humans having different
cognitive mechanisms, if a CNN can simulate a subject’s
cognitive process for generating facial reactions, this CNN’s
architectural parameters are positively associated with the
subject’s self-reported personality traits. Compared to ex-
isting solutions that directly predict personality traits from
the listener’s non-verbal behaviours, the proposed approach
that recognises self-reported personality traits from the
simulated cognition seems a more reliable solution. It is
clear that the performance in recognising Neu and Ext
traits are better than the other traits, which is consistent
with what has been frequently claimed by previous studies
[14], [50], i.e., Ext and Neu traits are well associated with
human cognition. We also observed that the approaches
which predict personality using video-level features (e.g.,
CR-Net, PALs, Spectral and the proposed approach) have
clear advantages over the approaches that infer personality
from a single frame or a thin slice (DCC and NJU-LAMDA),
demonstrating that long-term information is more reliable
for modelling self-reported personality traits. It should
be noted that the advantage of our approach in human-
machine interaction scenarios is not as clear as the human-
human interaction scenarios. This can be explained by the
fact that the virtual human used in the VHQ dataset only has
limited non-verbal facial behaviours, they are not as rich as
real human speakers in the NoXI dataset. Thus, the listeners’
facial reactions in human-machine interaction scenarios may
be less correlated with the non-verbal behaviours expressed
by the virtual human.

4.5 Ablation studies
In this section, we explicitly investigate the sensitivity of the
proposed approach to different NAS settings (i.e., modal-
ity, parameter sharing strategy, loss function and topology
alignment) and graph representation learning settings. The
statistical significance testing results achieved by the best
system and the second best system in terms of each ablation
study, as well as the detailed settings for each ’second best
system’ are provided in supplementary material.

We first demonstrate the importance of: (i) applying
NAS to obtain unique architecture and parameters for
each person-specific CNN; and (ii) encoding person-specific
CNNs as graph representations in Fig. 8. Specifically, the
system ’NAS+MLP’ is obtained by simply concatenating
all OPs and LWs of the person-specific CNN as a vector,
whose dimension is reduced by CFS [76]. Meanwhile, the
system ’Unet+MLP’ is achieved using the same strategy
as the ’NAS+MLP’ system without NAS, i.e., all person-
specific Unets of the system ’Unet+MLP’ have the same

Methods Ope Con Ext Agr Neu Avg.

ACC

DCC [20] 0.755 0.787 0.772 0.736 0.791 0.768
NJU-LAMDA [19] 0.741 0.826 0.827 0.753 0.789 0.787

Spectral [75] 0.868 0.909 0.903 0.898 0.910 0.898
PALs [10] 0.845 0.819 0.916 0.837 0.911 0.866

CR-Net [5] 0.892 0.916 0.924 0.888 0.913 0.907
M-CRNet 0.898 0.905 0.913 0.902 0.907 0.905

Ours (A-MModal (S)) 0.871 0.911 0.915 0.903 0.916 0.903
Ours (MModal (M)) 0.902 0.919 0.927 0.923 0.926 0.919

Ours (A-MModal (M)) 0.895 0.925 0.928 0.920 0.931 0.920

PCC

DCC [20] -0.153 -0.078 0.037 -0.024 0.121 0.008
NJU-LAMDA [19] -0.110 0.118 0.115 -0.067 0.032 0.017

Spectral [75] 0.135 0.246 0.265 0.192 0.277 0.223
PALs [10] 0.129 0.091 0.270 0.106 0.264 0.172

CR-Net [5] 0.181 0.271 0.301 0.177 0.325 0.251
M-CRNet 0.176 0.273 0.275 0.201 0.318 0.249

Ours (A-MModal (S)) 0.161 0.322 0.333 0.239 0.358 0.283
Ours (MModal (M)) 0.196 0.354 0.403 0.281 0.450 0.337

Ours (A-MModal (M)) 0.189 0.376 0.420 0.289 0.481 0.351

TABLE 2
Personality recognition results on the NoXi dataset. MModal denotes
the graph representations of the explored multi-modal (audio-visual)
CNNs. (M) and (S) represent the multi-level and single-level fusion,

respectively. A- represents that the CNNs were trained with adaptive
loss. M-CRNet consists of two CR-Net models that input audio, face
frames, original frames of the listener and speaker, respectively, and

aims to predict the listener’s personality. For all our systems, the graph
representations were obtained using OP-LW (VEN) vertices features

and end-to-end learned multi-dimensional edge features while
GatedGCN was employed as the personality recognition model.

Methods Ope Con Ext Agr Neu Avg.

ACC

DCC [20] 0.835 0.837 0.840 0.838 0.840 0.838
NJU-LAMDA [19] 0.842 0.838 0.839 0.841 0.841 0.840

Spectral [75] 0.838 0.842 0.843 0.846 0.846 0.843
PALs [10] 0.843 0.843 0.843 0.846 0.845 0.844

CR-Net [5] 0.845 0.842 0.840 0.844 0.845 0.843
M-CRNet 0.851 0.830 0.833 0.841 0.828 0.837

Ours (A-SModal (S)) 0.839 0.839 0.844 0.848 0.846 0.843
Ours (MModal (M)) 0.842 0.838 0.841 0.847 0.845 0.843

Ours (A-MModal (M)) 0.840 0.842 0.842 0.847 0.848 0.844

PCC

DCC [20] -0.020 0.098 0.133 -0.072 0.185 0.065
NJU-LAMDA [19] 0.077 0.155 0.118 0.112 0.234 0.139

Spectral [75] -0.039 0.167 0.221 0.158 0.256 0.153
PALs [10] 0.135 0.187 0.279 0.132 0.336 0.214

CR-Net [5] 0.138 0.191 0.166 0.143 0.280 0.184
M-CRNet 0.141 0.183 0.150 0.145 0.239 0.172

Ours (A-SModal) -0.021 0.127 0.267 0.193 0.319 0.177
Ours (MModal) 0.088 0.136 0.192 0.191 0.358 0.193

Ours (A-MModal) 0.063 0.172 0.211 0.189 0.363 0.200

TABLE 3
Personality recognition results on the VHQ dataset. MModal denotes
the graph representations built on the face and sentence categorical
features extracted from the speaker (please check Sec. 4.2). The rest

of the settings are the same as in Table 2.

and fixed architecture. Each person-specific Unet consists
of a audio encoder, a visual encoder, a fusion module and
decoder, and each module is made up of a set of ResNet
blocks. Firstly, predictions of all three NAS-based models
achieved positive correlations across all traits under both in-
teraction scenarios, demonstrating that the explored person-
specific CNNs are indeed positively associated with target
subjects’ personality traits. Then, it can be observed from
the figure that it is superior to encode each person-specific
CNN to a graph representation than simply concatenating
all OPs and LWs of the person-specific CNN as a vector.
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Traits Ope Con Ext Agr Neu Avg.

NoXI

Spectrum (BP) [75] +(***) +(***) +(***) +(***) +(***) +(***)
DCC [19] +(***) +(***) +(***) +(***) +(***) +(***)

NJU-LAMDA [20] +(***) +(***) +(***) +(***) +(***) +(***)
PALs [10] +(***) +(***) +(***) +(***) +(***) +(***)

CR-Net [5] +(***) +(***) +(***) +(***) +(***) +(***)
M-CRNet +(***) +(***) +(***) +(***) +(***) +(***)

VHQ

Spectrum (BP) [75] +(***) - - +(**) +(***) +(***)
DCC [19] +(***) +(***) +(***) +(***) +(***) +(***)

NJU-LAMDA [20] +(***) +(*) +(***) +(***) +(***) +(***)
PALs [75] +(***) - +(***) +(***) +(*) -

CR-Net [5] +(***) +(*) +(***) +(***) +(***) +(***)
M-CRNet +(***) +(***) +(***) +(***) +(***) +(***)

TABLE 4
Statistical significance testing results in terms of PCC achieved by our

best system and the five reproduced systems on the NoXI and the
VHQ dataset, where + / - denotes that there is / there is no statistically
significant difference between our approach and the other approach

(The significance level of ∗ P < 0.05, ∗∗ P < 0.01, ∗ ∗ ∗ P < 0.001). To
conduct the T-Test, we used the 12-fold results on the NoXI dataset.

For VHQ dataset, we conducted 10 times leave-one-subject-out
cross-validation for all approaches and the used these 10 results to

compute the P-values.

Cognitive model PCC MSE (×10−5)
Audio-to-face 0.769 2.882
Face-to-face 0.770 2.894

PS-Multi-to-face (S) 0.781 2.390
IP-Multi-to-face (S) 0.775 2.503

A-IP-Multi-to-face (S) 0.781 2.260
PS-Multi-to-face (M) 0.794 2.362
IP-Multi-to-face (M) 0.798 2.245

A-IP-Multi-to-face (M) 0.802 2.331
A-IP-Dep-Multi-to-face (M) 0.649 7.190

TABLE 5
Facial reactions prediction results on the NoXI dataset. PS- and IP-
denote the parameter sharing and independent parameter strategy,

respectively; Multi- refers to the multi-modal audio and face features of
the speaker were used as the input; A- represents that the CNNs were

explored with the adaptive loss; Dep- denotes that the depth is
considered as a variable during the CNN search.

This validates that the proposed graph representation is a
superior way to summarise architectures and parameters of
the CNN. Finally, person-specific CNNs explored by NAS
(NAS+MLP) generated better results than these of Unet-
based person-specific CNNs (Unet+MLP), which shows that
the CNNs explored by NAS can better simulate personality-
related cognition for each subject. This is also evidenced
by the better facial reaction generation performance dis-
played in Table 5 and Table 6. We conclude these results as
the person-specific CNNs explored by NAS have not only
unique weights but also unique architectures, which would
theoretically have better capability to fit complex human
cognition. In addition, we provide the example neural archi-
tecture searching loss curves in Fig. 9, showing that despite
the limited number of frames in each pair of speaker and
listener’s videos, the person-specific CNN can still be well
explored to fit to the person-specific facial reactions of the
given video, i.e., training losses are well converged.

4.5.1 Person-specific CNN settings
We first show the personality recognition performance
achieved by different person-specific CNN settings in Fig.
10(a) and Fig. 10(b). Our best settings for CNN topol-

Cognitive model PCC MSE (×10−5)
Face-to-face 0.596 6.632

PS-Multi-to-face 0.588 6.550
IP-Multi-to-face 0.602 6.279

A-IP-Multi-to-face 0.612 6.098
A-IP-Dep-Multi-to-face 0.619 6.177

TABLE 6
Facial reactions prediction results on the VHQ dataset. The Multi- in
this table refers to the face and sentence categorical features of the

speaker were used as the input.

(a) Results on the NoXI dataset.

(b) Results on the VHQ dataset.

Fig. 8. The results achieved by our best system and several baselines.

ogy, parameter sharing strategy, loss function and topology
alignment are: multi-modal, independent parameters (IP),
adaptive loss, and block distillation, respectively.

Modalities: Firstly, it can be observed from the results
on the NoXI dataset that predictions generated by all set-
tings are positively correlated with the self-reported values
across all five traits. In general, the multi-modal system
achieved better results than single-modal systems for both
personality recognition and facial reaction generation tasks.
This demonstrates that both non-verbal audio and facial
behaviours of the speaker contribute to the listener’s facial
reactions, where each of them contain some unique aspects
in forming reactions. In other words, the person-specific
cognition triggered by each modality provides unique and
useful clues for personality recognition. Meanwhile, as we
can see from the results on the VHQ dataset, even simply
adding the encoded virtual human sentence categorical
feature (explained in Sec. 4.2) can improve the recognition
performance of Ope, Con and Neu traits. In comparison
to the real human speaker, the facial behaviours of the
virtual human may not be the key factor to trigger the
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Fig. 9. The training loss curves of four subjects’ person-specific CNNs.

listener’s facial reactions, and thus the explored person-
specific CNNs may not learn good hypotheses of the listen-
ers’ cognitive processes. However, the sentence categorical
feature provides the context information which provides a
controlled condition for a subject’s reaction as well as strong
supervision for the search of person-specific CNNs. Thus,
adding sentence categorical feature as the extra modality
improves the recognition of most traits.

Parameter sharing strategies: For the results achieved
on both datasets, it is clear that graph representations of
persons-specific CNNs explored by the independent pa-
rameter (IP) strategy have clear advantages over the re-
sults achieved by the widely-used parameter sharing (PS)
strategy [60], [61] over all five traits. These results validate
our assumption that human cognition consists of a set of
cognitive processes, each of which undertakes a unique
function and can be different from others. Therefore, each
part of the explored CNN should also have its own weights
to better simulate a unique cognitive process/function.

Loss function settings: As we can see from the results on
the NoXI dataset, despite most of our systems trained with
standard MSE loss already achieved good performance in
recognising Con, Ext and Neu traits, models trained using
the proposed adaptive loss provided further improvements.
Meanwhile, the system that used the adaptive loss achieved
the similar results in recognising Ope and Agr traits with
no significant differences. Specifically, the use of adaptive
loss still brought more than 5.8% average improvement for
Con, Ext and Neu traits. It can be observed from the results
of human-machine interactions, the graph representations
of person-specific CNNs trained with adaptive loss better
recognised all five traits. Meanwhile, the systems that used
the adaptive loss generated better facial reaction results.
Since Neu and Ext traits can be better reflected by human
cognition [14], [50], we hypothesize that the proposed adap-
tive loss can partially address the uncertainty of subjects’
responding time, allowing the explored CNNs to better
simulate target subjects’ facial reaction-related cognition,
which are well associated with Con, Ext and Neu traits.

(a) Personality recognition results on the NoXI dataset.

(b) Personality recognition results on the VHQ dataset.

Fig. 10. The results of different person-specific CNN settings. The defini-
tion of MModal, S, M, PS-, IP-, A- can be found in the captions of Table.
2, Table. 3, Table. 5 and Table. 6.

Depth settings: We also evaluate the influence of depth
settings on person-specific cognition simulation and person-
ality recognition. It can be found from Table 5 and Table 6
that the person-specific CNNs with their unique depths do
not show clear advantages in reproducing listeners’ facial
reactions. These results suggest that even CNNs that were
searched using the same depth have a comparable or even
better capability to represent the target subjects’ cognition.
Moreover, as we can see from Fig. 10(a) and Fig. 10(b), the
personality recognition results achieved by the heteroge-
neous graph representations of person-specific CNNs that
have various depths are not as good as the isomorphic graph
representations of person-specific CNNs that have the same
depth. This may indicate that the differences in typologies
can not reflect the differences of personality. In addition,
the typologies of heterogeneous graph representations are
varied a lot, which leads the training process of the corre-
sponding GCNs to become more difficult.

4.5.2 Graph representation
In this section, we demonstrate the advantages of the pro-
posed end-to-end vertex feature and edge feature learning
strategy for constructing graph representations in Fig. 11.
Our best settings for vertex feature, LWs representation
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and edge feature are: vertex feature learned by the strategy
proposed in Sec. 3.2.1 (denoted as OP-LW (VEN)) and edge
features learned by ERNs.

Vertex feature settings: We first compare the proposed
deep-learned vertex feature (OP-LW (VEN)) to four hand-
crafted vertex features: 1. the OP feature: a vector that
concatenates all OPs of a CNN edge; 2. the LW represen-
tation; 3. OP-LW (C) feature: a vector that concatenates all
OPs and the LW representation of a CNN edge; 4. OP-LW
(W) feature: a vector obtained by concatenating OPs that
do not have LWs and a weighted vector that produced by
multiplying LWs with their corresponding OPs. It can be
seen that graph representations of the LW and OP-LW (C)
vertex features have a similar capability for recognising true
personality traits, both of which outperformed the graph
representations that only use OPs as the vertex feature.
This can be explained by the fact that the OP vertex fea-
ture ignores all LWs which are crucial in deciding CNNs’
generalization capabilities. Then, we can conclude that the
personality-related cues reside in both OPs and their LWs.
Meanwhile, the OP-LW (C) feature does not show a clear
advantage over the LWs feature, whose performance is
also not comparable to the OP-LW (W) and OP-LW (VEN)
features, demonstrating that simply concatenating OPs and
LWs is not a proper way to combine their clues. In other
words, the best recognition results of all five traits are
achieved either by OP-LW (VEN) feature or OP-LW (W)
vertex feature. As a result, we concluded that using each
OP to weight corresponding LWs is a more superior way to
combine OPs and LWs. Moreover, the OP-LW (VEN) setting
shows significant advantages over the OP-LW (W) on Ope
and Con traits under human-human interaction and Ope,
Con. Ext, and Neu traits under human-machine interaction.
Thus, we assume that the OP-LW (VEN) setting allows a
better weighting vector to be learned to construct the each
vertex, which not only considers the original OPs but also
task-specific information.

Edge feature settings: We also compare the proposed
end-to-end learned multi-dimensional edge features to the
widely-used binary adjacency edge feature (0 or 1). It
can be seen that the graph representations equipped with
the proposed deep-learned multi-dimensional edge features
outperformed the graph representations that only use a
binary adjacency matrix to define the connectivity between
vertices, with more than 3.4% and 10% average improve-
ments under human-human and human-machine interac-
tion scenarios, respectively. More importantly, the improve-
ments brought by these edge features are significant for
some traits (Con, Neu in the human-human interaction
setting and Con, Agr, Neu in the human-machine inter-
action setting) as well as the average performance (please
check the supplementary material). Such results validate the
usefulness of the proposed end-to-end multi-dimensional
edge feature learning strategy, which can better describe the
relationship between adjacent vertices with multiple task-
specific relationship clues, particularly for the Con and Neu
trait. In other words, the task-specific multi-dimensional
edge features lead the produced graph representations to
have superior message passing mechanism when they are
processed by GNNs, resulting in more discrminative latent
personality representations.

(a) Personality recognition results on the NoXI dataset.

(b) Personality recognition results on the VHQ dataset.

Fig. 11. The results of different vertex and edge feature learning settings.
The definition of settings can be found in Sec. 4.5.2.

5 CONCLUSIONS AND FUTURE WORK

This paper proposes the first work which recognises true
personality traits from the graph representation of an auto-
matically explored person-specific CNN’s architecture and
parameters, where each CNN simulates the cognition of
each target subject in terms of person-specific facial re-
actions. Our approach is evaluated on datasets of differ-
ent nature (i.e., they are recorded under human-human
vs. human-machine dyadic interaction scenarios), and the
achieved results suggest the following conclusions: (i). the
graph representations of person-specific CNNs are posi-
tively associated with the target subjects’ self-reported per-
sonality traits, showing that the CNNs explored by our
approach may have their own personalities, which are
similar to their corresponding subjects; (ii). the proposed
approach has clear advantages over most existing APP
approaches which predict personality directly from non-
verbal behaviours the target subject, demonstrating that it
is reliable to recognise self-reported (true) personality from
the simulated cognition of subjects; (iii). we found that the
graph representations learned by the proposed approach
are particularly informative for recognising Ext and Neu
traits under both interaction scenarios; (iv). the proposed
approach performed better personality recognition and fa-
cial reaction prediction under the human-human interaction
scenario than the human-machine scenario, indicating that
nonverbal behaviours expressed by human speakers are
more powerful to trigger the listeners’ personality-related
facial reactions; (v). many human demographic attributes
(e.g., age, gender, education level, and interpersonal rela-
tionship) can influence the performance of the proposed
approach, where the gender and age are the most influential
factors. This is caused by the fact that the facial reactions
of a similar intention or emotion can be varied due to the
these factors; and (vi). among several technical settings, the
proposed adaptive loss function, independent parameters
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strategy and end-to-end vertices/edges feature learning
strategies have largely enhanced the personality recognition
performance.

The main limitation of this work is that searching for a
unique CNN architecture for each subject takes a relatively
long time, i.e., the training and inference duration of the pro-
posed approach are expected to be longer than most existing
approaches. Therefore, it may not be suitable for fast person-
ality assessment requirements. Another limitation is that we
only used audio-visual modalities but ignored other human
signals such as psychological signals (EEG, heart rates, skin
temperature, etc.) and verbal information, which contribute
important information to one’s communication and reac-
tions. As a result, a potential future direction is to accelerate
the person-specific cognition simulation algorithm so that
it does not require searching for a person-specific CNN for
each person from scratch. Then, additional modalities (e.g.,
verbal signal, psychological signals, etc.) might enable the
CNNs to be more similar to the target subjects’ cognition
in a dyadic interaction, where dialogue response genera-
tion can be utilised to predict listeners’ verbal responses.
All these modalities can in principle be combined via the
proposed fusion module, i.e., combining them at multiple
levels, as each is influenced by the others. There remain of
course some modality-specific issues to resolve, so while it’s
definitely possible there is also substantial future research
to be done in this area. Meanwhile, from the application
perspective, this work opens up a new avenue of research
for predicting and recognizing socio-emotional phenomena
(personality, affect, engagement, etc.) from the simulations
of person-specific cognitive processes that will have further
implications for relevant fields including neuroscience, and
cognitive, behavioural and emotion sciences. Another future
work will focus on extending and evaluating our approach
to analyze mental health or other human internal states
with domain-specific loss functions under clinical settings,
i.e. representing them with CNN parameters, or creating
data-driven robot coaches that can express personalized
behaviours during dyadic interactions [77], [78].
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