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Abstract—Multimodal Emotion Recognition in Conversation
(ERC) plays an influential role in the field of human-computer
interaction and conversational robotics since it can motivate ma-
chines to provide empathetic services. Multimodal data modeling
is an up-and-coming research area in recent years, which is
inspired by human capability to integrate multiple senses. Several
graph-based approaches claim to capture interactive information
between modalities, but the heterogeneity of multimodal data
makes these methods prohibit optimal solutions. In this work,
we introduce a multimodal fusion approach named Graph
and Attention based Two-stage Multi-source Information Fusion
(GA2MIF) for emotion detection in conversation. Our proposed
method circumvents the problem of taking heterogeneous graph
as input to the model while eliminating complex redundant
connections in the construction of graph. GA2MIF focuses on
contextual modeling and cross-modal modeling through leverag-
ing Multi-head Directed Graph ATtention networks (MDGATs)
and Multi-head Pairwise Cross-modal ATtention networks (MP-
CATs), respectively. Extensive experiments on two public datasets
(i.e., IEMOCAP and MELD) demonstrate that the proposed
GA2MIF has the capacity to validly capture intra-modal long-
range contextual information and inter-modal complementary
information, as well as outperforms the prevalent State-Of-The-
Art (SOTA) models by a remarkable margin.

Index Terms—Emotion recognition in conversation, cross-
modal interactions, multimodal fusion, graph neural networks,
multi-head attention mechanism.

I. INTRODUCTION

IN recent years, human-computer interaction and intelligent
robotics technologies are transforming science fiction into

reality. However, there are numerous challenges to make
machines interact with people in a natural manner. The ability
to make machines empathize like humans, i.e., to recognize
the emotional states of others and respond correspondingly,
is particularly crucial in the field of social robotics [1]. In
addition, empathy can enhance the interaction between human
and computer to provide superior artificial intelligence services
to others. Accurately recognizing the emotional states of others
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is a prerequisite for generating empathic responses, which
is also a core research thrust in the field of cognition and
behavior. Thus, emotion recognition plays an instrumental role
in numerous domains and has attracted extensive attention
from research scholars.

Emotion Recognition in Conversation (ERC), also called
conversational emotion detection, aims to detect emotional
state of a speaker based on the signals that he or she expresses
(e.g., the signals include text, audio, or facial expressions).
ERC has potential applications in many fields, such as: (a)
Disease Diagnosis [2], assisting the doctor in diagnosing
disease by identifying the emotional state of the patient when
talking to a psychologist. (b) Opinion Mining [3], improving
the public’s trust in government departments or institutions by
analyzing online public opinion and measuring the public’s
experience of policies or services. (c) Conversation Generation
[4], enhancing significantly the usability of dialogue systems
and the satisfaction of customers through injecting emotions
into the given model. (d) Recommender System [5], inferring
the user’s potential preferences by identifying his or her
emotional states during historical chats with customer service.
ERC systems can provide customized services to users and
enhance the quality of empathetic interactions with users.

Most of existing ERC models mainly employ text-modal
data as input. DialogueGCN [6] constructs the conversation as
a graph to extract long-distance contextual information, where
each utterance is related to surrounding utterances. HiGRU
[7] adopts lower-level and upper-level Gated Recurrent Units
(GRUs) to tackle dilemmas in utterance-level conversational
emotion recognition. COSMIC [8] leverages different elements
of external commonsense knowledge such as mental states,
events, and causal relations to detect utterance-level emotion
in conversation. DialogueCRN [9] attempts to understand
conversational context by exploring cognitive factors, which
analogous to the unique cognitive thinking of human. Several
efforts on modeling based on data from acoustic modalities
are also available. Gat et al. [10] introduce a gradient-based
adversary learning model that is effective in both speaker-
independent and speaker-dependent situations for speech emo-
tion recognition task. Jalal et al. [11] propose a speech
emotion recognition approach based on both Long Short-Term
Memory (LSTM) network and Convolutional Neural Network
(CNN) to explore the impact of acoustic cues on recognition
results. These techniques, anyway, only accept unimodal signal
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sources as inputs, which may limit the performance of the
model. For instance, the model will have trouble properly
recognizing emotion if the signal and emotional state of
current modality do not match.
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You're the only one I know that 

still loves his parents.

No, it's all right. There's nothing 

wrong in that, you know.

It's really lovely here. The air is 

sweet.

No. I'm not sorry. It's-

Well, for one thing, your mother so 

much has told me to go.

Well-

What?

Well, you've been embarrassed 

ever since I came.

Yeah. I know. It went out of style, 

didn't it?

You're not sorry you came?

Fig. 1. An example of a multimodal conversation scenario, in which the
conversational contents are from textual, acoustic and visual modalities. These
emotions are the labels of the utterance in the training set; while in the test
set, these emotions are the results that are recognized by the model.

Humans are capable of multi-sensory integration, i.e., they
can perceive surroundings from multiple senses. Intuitively,
multimodal data from different sources can enhance the
performance of machine learning models. Fig. 1 shows a
multimodal conversation scene, where the conversational con-
tents are derived from text, acoustic and visual modalities.
Multimodal ERC is a burgeoning field of research and has
recently been gaining momentum. There are, however, just a
few multi-modality based conversational emotion recognition
models. BC-LSTM [12] proposes a multimodal model based
on a two-directional LSTM for extracting the contextual
information of the current utterance. CMN [13] conducts
temporal sequence modeling on utterance histories by GRUs
and employs attention networks to select the most useful
historical utterances. DialogueRNN [14] is a Recurrent Neural
Network (RNN) based ERC framework that considers the
characteristic of speaker for each utterance to provide more
reliable contextual information. Nevertheless, these methods
only concatenate multimodal features in a direct manner,
which results in the inter-modal information not being able
to interact. Hu et al. [15] propose a graph-based multimodal
ERC model called MMGCN that claims to effectively not
only exploit multimodal dependencies, but also model inter-
and intra-speaker dependencies. Experimental results show
that MMGCN achieves excellent performance on two pub-
lic benchmark datasets. Although Graph Neural Networks
(GNNs) show excellent performance in homogeneous graphs,
they usually obtain suboptimal or even worse results in het-
erogeneous networks. MMGCN constructs a large graph by
treating utterances from different modalities as nodes of the

same type, which contradicts the premise that the input to
GNN is a homogeneous graph. MMGCN, moreover, simply
connects all utterances in each modality to build a complete
graph, which undoubtedly brings too much noise (i.e., useless
connections) to the model.

In order to address the above-mentioned problems, we
propose a Graph and Attention based Two-stage Multi-source
Information Fusion (GA2MIF) approach for conversational
emotion recognition. The proposed GA2MIF is a new mul-
timodal fusion framework whose network structure mainly
consists of graph attention networks and multi-head attention
networks. First, we adopt three Multi-head Directed Graph
ATtention networks (MDGATs) to extract intra-modal local
and long-range contextual information for each modality; then,
we leverage three Multi-head Pairwise Cross-modal ATtention
networks (MPCATs) to model cross-modal interactions in
pairs and extract inter-modal complementary information. Our
contributions are mainly as follows:

1) In this paper, we propose a novel multimodal ERC
method named Graph and Attention based Two-stage
Multi-source Information Fusion (GA2MIF), which
mainly consists of MDGATs and MPCATs. Our
GA2MIF not only avoids the use of heterogeneous
graph as input to the graph model, but also captures
the interaction information between modalities through
multi-head attention mechanisms.

2) MDGATs construct three graphs as inputs by treating the
utterance of each modality as nodes and the connection
of current utterance with a certain range of contextual
utterances as edges, thus modeling intra-modal context.
This strategy enables the usage of context windows
to construct graph instead of fully connected graph,
thereby eliminating complex redundant connections.
MPCATs model cross-modal interactions by computing
the outputs of three modalities of MDGATs with multi-
head pairwise attention. Experiments demonstrate that
MDGATs can effectively capture intra-modal local and
long-range contextual information; MPCATs can effec-
tively capture inter-modal complementary information.

3) We conduct extensive experiments on two public ERC
datasets (i.e., IEMOCAP and MELD) and the results
show that GA2MIF achieves optimal performance with
the accuracy of 69.75% and 61.65%.

II. RELATED WORKS

A. Emotion Recognition

Emotion recognition is an interdisciplinary realm that has
attracted active research and attention in the areas of emotion
understanding systems, opinion mining, and emotion gener-
ation. Broadly speaking, existing works in this field can be
divided into two categories based on data sources: unimodal-
based emotion recognition and multimodal-based emotion
recognition.

1) Unimodal-Based Emotion Recognition: Unimodal emo-
tion recognition is to judge emotional state of object by
encoding input data from single modality, which can be
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divided into primarily three types: text-based methods, audio-
based methods and vision-based methods.

Text-based Methods have been the most prevalent unimodal
emotion recognition since the development of natural language
processing. DialogueGCN [6] models self- and inter-speaker
dependencies between speakers to promote context under-
standing for utterance-level sentiment analysis in conversa-
tions. Ishiwatari et al. [16] not only models the dependency of
the speaker, but also models the sequential information through
relational position encoding. Aiming to model conversational
data, DialogXL [17] replaces self-attention in XLNet with
conversation-aware self-attention to extract the information of
intra- and inter-speaker dependencies. DAG-ERC [18] designs
a directed acyclic graph neural network to recognize emo-
tion in conversation, where nodes represent utterances and
edges represent connections between utterances. HiGRU [7]
takes advantage of the lower-level GRU to learn individual
utterance embeddings and the upper-level GRU to capture
contexts of utterances. COSMIC [8] takes different elements
of commonsense into account and makes use of them to
learn interactions between speakers. DialogueCRN [9] designs
multi-turn reasoning modules to perceive and combine clues,
which can sufficiently extract speaker-level and situation-level
context information. Audio-based Methods, often referred to
as Speech Emotion Recognition (SER), estimate a speaker’s
emotional state by means of analyzing his/her speech. Gat
et al. [10] introduce a general framework for normalizing
the features of speakers while addressing the problem of
small dataset settings. Jalal et al. [11] argue that smaller
acoustic contexts are crucial in expressing emotion and pro-
pose a bidirectional LSTM- and CNN- based SER approach.
Guo et al. [19] propose a spectro-temporal-channel attention
module that offers different weights for frequency, time and
channel-wise features to capture more expressive information.
Vision-based Methods focus on emotion recognition based
on facial expression, which is an essential field in affective
computing. Jeong et al. [20] propose a fast facial emotion
recognition method for recognizing a driver’s emotion in real-
time. Wang et al. [21] leverage stationary wavelet entropy to
extract features and employ the Jaya algorithm to train facial
emotion recognition model. Khaireddin et al. [22] fine-tune
the hyperparameters of VGGNet architecture to achieve the
highest single-network classification accuracy on the FER2013
dataset.

2) Multimodal-Based Emotion Recognition: Unimodal in-
formation is insufficient and is easily affected by external
factors, such as blocked facial expressions and disturbed voice.
In view of complementarity between different modalities,
research on multimodal emotion recognition has received
increasing attention [23]. MFN [24] makes use of a new neural
structure based on multi-view sequence learning to consider
both view-specific interactions and cross-view interactions.
BC-LSTM [12] proposes a multimodal fusion method that
captures contextual information of the utterance through a
LSTM network. CMN [13] fuses audio, visual and textual
features, and it leverages a GRU to model contextual in-
formation about historical conversations. ICON [25] models
contextual information through GRU-based memory networks

and considers the influence of both self-speaker and inter-
speaker. ConGCN [26] symbolizes the entire conversational
corpus as a heterogeneous graph in which each node presents
a speaker or an utterance, where each conversation includes
textual and acoustic features. DialogueRNN [14] tracks the
states of speakers throughout the conversation by utilizing
multiple RNNs for multimodal emotion classification. Rela-
tional Tensor Network [27] considers relations and interactions
of the context segment in a video and shows excellent per-
formance. GME-LSTM(A) [28] fuses multimodal information
at word-level and proposes a model suitable for complex
speech structure with gating mechanism to select word-level
fusion. MMGCN [15] constructs a big graph, which not only
captures intra- and inter-speaker dependencies, but also models
multimodal information.

B. Machine Learning Methods

A great number of machine learning applications have made
a surge of achievements in recent years relying on Graph Neu-
ral Networks (GNNs) and Multi-Head Attention mechanism.
In this work, GNNs and multi-head attention mechanism are
implemented for intra-modal contextual modeling and inter-
modal complementary modeling, respectively.

1) Graph Neural Networks: Graph is a general data rep-
resentation method describing complex relationship between
entities in real scenarios, and has been applied broadly in
the industry. However, deep learning has been incapable of
effectively adapting to graph structured data. To this end,
Graph Neural Networks (GNNs) are proposed to address
the above-mentioned challenges. GNNs have been widely
applied in numerous fields, including Computer Vision [29],
Recommender System [30], Chemistry [31], Natural Language
Processing [32]. Given a graph G = (V,E), according to
Message Passing Neural Network (MPNN) [31], and the
information for the l-th layer G is updated as follows:

x(l+1)
v = UPDAT(x(l)v ,PASS({x(l)u |u ∈ N (v)})),

XG = READOUT({x(L)
v }, v ∈ V ),

(1)

where l = 0, 1, · · · , L, and L is the number of layers; x
(l)
v

is the l-th layer representation of node v, and x
(0)
v is initial

input of node v; N (v) denotes the neighboring set of node v,
and u is a neighborhood of node v; PASS and UPDAT are
the parameterized message passing function and state updating
function, and READOUT is the readout function.

The widely used GNN models include 1stChebNet [33],
GraphSAGE [34] and GAT [35]. GAT supposes that con-
tributions of neighboring nodes to current node are neither
identical as GraphSage, nor predefined as 1stChebNet. GAT
introduces attention mechanism to calculate the importance of
neighboring nodes, which is defined as:

x(l+1)
v = δ

 ∑
u∈N (v)

µ(l+1)
vu W(l+1)x(l)u

 , (2)

where x
(l+1)
v is the (l + 1)-th layer representation of current

node v; u are neighboring node of v; δ is nonlinear activation
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function, and W(l+1) denotes the trainable parameter. The
attention weight µ(l+1)

vu indicates the importance of u to v:

µ(l+1)
vu =

exp(σ(aT [W(l+1)x
(l)
v ||W(l+1)x

(l)
u ]))∑

w∈N (v) exp(σ(a
T [W(l+1)x

(l)
v ||W(l+1)x

(l)
w ]))

,

(3)
where σ is the LeakyReLU function, and u, w are neighbors of
v; both a and W(l+1) are the learnable parameters. In addition,
multi-head GAT is executed to increase the expressiveness of
the model [35].

2) Multi-Head Attention Mechanism: Multi-Head Attention
mechanism is first proposed in Transformer [36] architecture,
which is inspired by attention model [37]. Transformer is a
new type of neural network that has been widely adopted in
various fields, such as Natural Language Processing [36], [38],
Computer Vision [39], [40], and Speech Processing [41], [42].
Devlin et al. [38] propose a language representation model
named BERT, which received enthusiastic attention once it
was proposed due to its excellent performance. ViT [39] im-
plements direct application of a standard Transformer to image
classification tasks, and is a classic application that adapts
Transformer to the field of computer vision. Dong et al. [42]
extend Transformer to Automatic Speech Recognition (ASR),
and proposed model is named Speech-Transformer. Speech-
Transformer can achieve a reduced training cost compared to
the majority of recurrence-based models.

Given packed feature representation query Q, key K, value
V, the scaled dot-product attention is computed as:

Att(Q,K,V) = softmax(
Q ·K⊤
√
dk

) ·V, (4)

where dk denotes the dimensions of K or V; softmax(Q·K⊤
√
dk

)
is called attention matrix; softmax denotes the softmax func-
tion, which is employed in a row-wise manner. Multi-Head
Attention can be a mechanism that can enhance the stability
and performance of the vanilla single attention. Specifically,
different heads employ different query, key and value matrices.
Multi-head attention can be formalized as follows:

MA(Q,K,V) = Wma[head0 ∥ · · · ∥ headh],

s.t. headi = Att(WQ,iQ,WK,iK,WV,iV),
(5)

where MA, Att are the multi-head attention and single at-
tention function, and ∥ denotes the concatenation operation;
WQ,i, WK,i, WV,i are the learnable parameters, which can
project Q, K, V into different representation subspaces, re-
spectively; Wma is also the trainable parameter.

III. METHODOLOGY

In this section, we introduce overall framework of the pro-
posed method in detail. Our proposed framework is exhibited
in Fig. 2, which consists of unimodal pre-encoding, two-stage
multi-source information fusion, and classification.

A. Problem Definitions
Before presenting overall framework of the proposed ap-

proach, several definitions covering the objective task, intra-
modal contextual information, and inter-modal complementary
information will be given.

Objective Task: A conversation consists of m utterances
u1, u2, · · · , um, and each utterance ui corresponds to an
emotion label yi. Different emotion labels are available for
different datasets, e.g., Happy, Sad, Neutral, Angry, Excited
and Frustrated for the IEMOCAP dataset. There are more than
two participants in a conversation, so ui and uj may be spoken
by the same speaker or by different speakers. Each utterance
ui has three modal expressions ut

i, u
a
i , uv

i in multimodal ERC,
which corresponds to textual, acoustic and visual modalities,
respectively. Given an utterance ui, the task of ERC is to take
ui as input and detect the corresponding emotional state yi.

Intra-modal Contextual Information: In a modality, the j-
th utterance uj before the utterance ui (j < i) is its context.
Meanwhile, the context of ui also includes the k-th utterance
uk (k > i) after it. Here, the information carried by uj and
uk are contextual information of ui. Especially, if j = i − ϵ
or k = i + ϵ and ϵ is a small integer, then uj or uk is local
contextual utterance of ui. Conversely, if ϵ is a large integer,
then uj or uk is long-range contextual utterance. Commonly,
recurrence-based methods have difficulty catching long-range
contextual information.

Inter-modal Complementary Information: In multiple
modalities, the utterance ui can be represented as ut

i, u
a
i , and

uv
i . The information carried by ua

i can be regarded as the
complementary information of ut

i. Similarly, uv
i can be also

regarded as the complementary information of ut
i, and the rest

may be deduced by analogy.

B. Unimodal Pre-Encoding
To rigorously demonstrate the superiority of our model over

MMGCN, we employ the identical unimodal encoding method
as Hu et al. [15]. Specifically, we adopt a Bi-directional LSTM
(BiLSTM) network to extract the contextual information of
textual modality; unlike textual modality, we adopt the fully
connected networks to encode acoustic and visual modalities.
The unimodal pre-encoding processes for three modalities can
be formalized as:

oδi = Wδ
ou

δ
i + bδo, δ ∈ {a, v},

oti, o
t
h,i = BiLSTM(uti, o

t
h,i−1, o

t
h,i+1),

(6)

where uti, u
a
i , and uvi are the inputs of unimodal pre-encoding;

t, a, and v denote textual, acoustic and visual modalities; oti,
oai , and ovi are the outputs of unimodal pre-encoding; oth,i
contains the i-th cell state and hidden state; Wδ

o and bδo are
the trainable parameters.

C. Two-Stage Multi-Source Information Fusion
To adequately capture intra-modal contextual information

and inter-modal complementary information, we present a
Graph and Attention based Two-stage Multi-source Informa-
tion Fusion (GA2MIF) technique. First, we model the intra-
modal contexts using three Multi-head Directed Graph AT-
tention networks (MDGATs) that fully capture the contextual
information of textual, acoustic and visual modalities. Then,
three Multi-head Pairwise Cross-modal ATtention network
(MPCATs) are utilized for cross-modal modeling, which allow
for inter-modal feature interactions and thus capture comple-
mentary information about inter-modality.
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Fig. 2. The overall framework of the proposed approach. Here, two-stage multi-source information fusion mainly involves the creation of directed graph,
graph-based contextual modeling, and attention-based cross-modal modeling.

1) Characteristics of the Speaker: Different speakers ex-
hibit distinct self-characteristics in a conversation, such as
various personalities, timbres, and expressions. Therefore, we
believe that the speaker’s information is of importance for
emotion recognition. In order to extract self-characteristics of
speakers, we first encode the speaker to obtain embedding
vector, i.e., speaker embedding; and then we add speaker
embedding to the corresponding utterance. This process can
be expressed as follows:

Se = EMB(S, n),

Xτ = Oτ + λSe,
(7)

where EMB represents Embedding function; S is the set
of speakers, n is the number of speakers, and Se denotes
speaker embedding; Xτ denotes feature matrix adding speaker
embeddings, τ ∈ {t, a, v}, and Oτ is feature matrix from uni-
modal pre-encoding phase, oτi ∈ Oτ ; λ is trade-off parameter
of speaker embedding.

2) Creation of Directed Graph: As shown in Fig. 2, we
create three directed graphs Gt, Ga and Gv for a conversation.
Gt, Ga and Gv can be represented as Gτ = (V τ , Eτ ,Wτ )
(τ ∈ {t, a, v}), where V τ denotes the set of nodes, Eτ denotes
the set of edges, i.e., the set of connections between nodes,
and Wτ denotes the set of edge weights. Specifically, in
multimodal ERC, our graph is created as follows.

Nodes: In a conversation, each utterance ui is represented
as three nodes vti , v

a
i , and vvi . Here, t, a, v denote textual,

acoustic, and visual modalities; vti ∈ V t, vai ∈ V a, vvi ∈ V v .
Given m utterances, we create 3×m nodes, i.e., |V τ | = 3×m,
and m is the number of utterances in current conversation.

Edges: Assuming that only unimodality is considered, we
connect utterance node vi in the conversation with its past
J (future K) contextual utterance nodes vi−J , vi−J+1, · · · ,
vi−1 (vi+1, vi+2, · · · , vi+K). Here, J , K are defined as the

window size of past and future contexts. Based on this, we
construct edges using the above-mentioned strategy in the
textual, acoustic and visual modalities respectively.

Edge Weights: The edge weight can distinguish the impor-
tance of different neighboring nodes and is an important ele-
ment in graph neural networks. Veličković et al. [35] propose
Graph ATtention network (GAT) that claim to learn the edge
weights of the graph. The attention scores are calculated as
follows:

µτ
ij =

exp
(
σ
(
(aτ )

⊤
[Wτ

ewx
τ
i ∥Wτ

ewx
τ
j ]
))

∑
vτ
k∈N (vτ

i )
exp

(
σ
(
(aτ )

⊤
[Wτ

ewx
τ
i ∥Wτ

ewx
τ
k]
)) , (8)

where xτ
i ∈ Xτ denotes feature vector of node vτi in the graph,

and Xτ is feature matrix of V τ , τ ∈ {t, a, v}; both xτ
j and vτk

are neighbor node of vτi , and vτj , vτk ∈ {vτi−J , · · · , vτi−1, vτi+1,
· · · , vτi+K}; µτ

ij is weight of the edge between node vτi and vτj ,
and also attention coefficient of GNN; ∥ denotes concatenation
operation; σ represents non-linear activation function, e.g,
LeakyReLU; aτ and Wτ

ew are the learnable parameters. We
set the window size of context to get neighbors instead of
taking all nodes in the conversation as neighbors, which not
only improves computational efficiency but also increases the
stability of the model (since the window size of context for
each node vτi is fixed in each experiment).

In the standard GAT scoring function, however, Wτ
ew and

aτ are applied consecutively. This way can be converted into a
linear layer, limiting the expressiveness of attention function.
In order to address the above dilemma, we employ an attention
module based on GATv2 to set edge weights referring to the
idea of Brody et al. [43]. Specifically, our edge weights are
calculated as follows:

µτ
ij =

exp
(
(aτ )⊤σ

(
Wτ

ew[x
τ
i ∥xτ

j ]
))∑

vτ
k∈N (vτ

i )
exp ((aτ )⊤σ (Wτ

ew[x
τ
i ∥xτ

k]))
, (9)
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Fig. 3. The illustration of MDGAT and MPCAT, where MGAT and MPA de-
note multi-head graph attention and multi-head pairwise attention (consisting
of two multi-head attentions), respectively.

3) Graph-Based Contextual Modeling: Graph Neural Net-
works (GNNs) have been proved to have excellent relational
modeling capabilities. We employ three Multi-head Directed
Graph ATtention networks (MDGATs) to model the contextual
dependencies of utterances in the conversation. To alleviate
the over-smoothing problem [44] of GNNs, we connect the
previous layer input to the next layer input. Specifically, the
input of the prior layer GNN and its output are first added
together; then taking the obtained result as the input of the
next layer GNN (see Fig. 3a). Our designed MDGATs can be
formalized as:

Xτ,l+1 = NM(Xτ,l +MGAT(Xτ,l, Eτ )), (10)

where l = 0, 1, · · · , L, and L is the number of layers of
MDGATs; Xτ,l is the l-th layer feature matrix, Xτ,0 = Xτ ,
and Eτ is edge set; NM and MGAT are the normalization
layer and multi-head graph attention layer, respectively. Here,
MGAT can be computed as:

MGAT(Xτ,l, Eτ ) = Wl
mg[head

l
0 ∥ · · · ∥ headlh],

s.t. headli = GAT(Xτ,l, Eτ ),
(11)

where ∥ is concatenation operation, and Wl
mg is the trainable

parameter. We describe the process of a single GAT according
to MPNN [31], i.e., GAT is divided into two phases: message
passing and state updating.

Message Passing: The purpose of message passing is to
aggregate the information of neighboring nodes. With the
help of the calculation of edge weights in Equation 9, we
distinguish the importance of different nodes when aggregating
contextual information. For multimodal ERC, our passing
function is defined as follows:

xτ,l+1
ps,i =

∑
vτ
j ∈N (vτ

i )

µτ,l+1
ij Wτ,l+1

ps xτ,lj , (12)

where µτ,l+1
ij is the (l + 1)-th layer attention coefficient, as

well as the (l+1)-th layer edge weight between node vτi and
vτj ; vτj is neighboring node of vτi , and i ̸= j; xτ,lj ∈ Xτ,l

is the l-th layer feature vector of vτj , and xτ,l+1
ps,i denotes the

(l + 1)-th layer output of message passing; Wτ,l+1
ps denotes

the learnable parameter. xτ,0j is initial input feature vector of
vτj , i.e., xτ,0j = xτ

j , Xτ,0 = Xτ , xτ,0j ∈ Xτ,0, xτ
j ∈ Xτ .

State Updating: In state updating phase, the updating func-
tion combines the (l+ 1)-th layer output (xτ,l+1

ps,i ) of message
passing with the l-th layer vector representation (xτ,li ) of node
vτi to obtain the (l+1)-th layer vector representation (xτ,l+1

i )
of vτi . Here, τ ∈ {t, a, v}, l = 0, 1, · · · , L, and L is the
number of layers of MDGATs. We adopt a variety of updating
functions, and xτ,l+1

i can be computed as follows.
• Sum Updating first applies the linear transformation to

each of two vector representations, and then sums ob-
tained results:

xτ,l+1
sum,i = Wτ,l+1

sum0x
τ,l+1
ps,i +Wτ,l+1

sum1x
τ,l
i , (13)

where xτ,l+1
sum,i is the l-th layer output of state updating, as

well as the (l + 1)-th layer vector representation of vi;
Wτ,l+1

sum0 and Wτ,l+1
sum1 are the trainable parameters.

• Concat Updating applies the concatenation operation to
the two vector representations, followed by the linear
transformation:

xτ,l+1
cat,i = Wτ,l+1

cat [xτ,l+1
ps,i ∥ xτ,li ], (14)

where ∥ is the concatenation operation, and Wτ,l+1
cat is the

learnable parameter.
• Sum-Product Updating is our elaborate updating function.

We compute in Sum-Product not only the sum of two vec-
tors, but also their element-wise product, thus considering
two types of feature interactions between xτ,lps,i and xτ,li :

xτ,l+1
sump,i =

Wτ,l+1
sump[(x

τ,l+1
ps,i + xτ,li ) ∥ (xτ,l+1

ps,i ⊙ xτ,li )],
(15)

where ⊙ denotes element-wise product, and Wτ,l+1
sump is

the learnable parameter. We hope that Sum-Product Up-
dating function can update more messages from similar
contextual neighbors to current node vτi .

4) Attention-Based Cross-Modal Modeling: In this part, we
introduce three Multi-head Pairwise Cross-modal ATtention
networks (MPCATs) for cross-modal feature interaction and
thus capture intra-modal complementary information. The
structure of MPCAT can be seen in Fig. 3b. We can observe
that the proposed MPCAT mainly consist of two multi-head
attention layers (MA denotes the multi-head attention layer)
and one feedforward layer (FF denotes the feedforward layer),
where the input of each MPCAT contains the feature matrices
of two modalities. Note that the inputs of MPCATs are based
on the outputs of MDGATs. In the following, we describe the
process of MPCATs in detail.

Firstly, we treat acoustic feature matrix A as query Q of
multi-head attention layer, and textual feature matrix T as key
K and value V of multi-head attention layer; after the attention
calculation, we obtain textual-acoustic interaction matrix T a.
Similarly, in order to obtain textual-visual interaction matrix
T v , we apply visual feature matrix V and textual feature
matrix T to another multi-head attention layer; where query
Q is replaced by visual feature matrix V , and key K and
value V are replaced by textual feature matrix T . Secondly,
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we add T a and T v together; and the obtained result is input
to the residual connection layer and normalization layer in
turn to get textual feature matrix T av that are interacted by
acoustic and visual modalities; where the residual connection
and normalization layer are to ensure the stability of T av .
Finally, with reference to network structure of Transformer
[36], T av is sequentially applied to the feedforward layer,
residual connection layer and normalization layer; where the
residual connection and normalization layer to enhance the
expressiveness of T av . After all above-mentioned steps, a new
textual feature matrix (T av)′ encoded by MPCAT is acquired,
which carries the information of acoustic and visual modality.
We repeat above operation K times (K is the number of layers
of MPCATs), then we get final output of MPCATs.

The k-th layer feature matrix T av,k (k = 0, 1, · · · ,K) can
be formulated as:

T av,k = NM(T k +MPA(Ak,Vk, T k)),

s.t. MPA(Ak,Vk, T k) =

DP(MA(Ak, T k, T k) +MA(Vk, T k, T k)),

(16)

where T k, Ak, and Vk are the k-th layer feature matri-
ces of textual, acoustic, and visual modalities, respectively;
MA(Ak, T k, T k) = T a,k, MA(Vk, T k, T k) = T v,k; NM,
DP, and MA denote the normalization, dropout and multi-
head attention layers, respectively; MPA includes a dropout
layer and two multi-head attention layers (i.e., two MA). MA
can be represented as:

MA(Ak, T k, T k) = Wk
ma[head

k
0 ∥ · · · ∥ headkh],

s.t. headki = Att(Wk
Q,iAk,Wk

K,iT k,Wk
V,iT k),

(17)

where headki is the output of the i-th single attention layer,
Att denotes the single attention layer; Wk

ma, Wk
Q,i, W

k
K,i, and

WV,i are the trainable parameters.
The above-mentioned feature matrix (T av,k)′ is the output

of the k-th layer MPCAT, as well as the input of the (k+1)-th
layer MPCAT, i.e., (T av,k)′ = T k+1, which can be computed
as follows:

T k+1 = NM(T av,k + FF(T av,k)),

s.t. FF(T av,k) =

DP(Wk
1(DP(ρ(Wk

0T av,k + bk0))) + bk1),

(18)

where NM, FF, and DP is the normalization, feedforward and
dropout layers, respectively; ρ denotes non-linear activation
function, e.g., Relu; Wk

0 , Wk
1 , bk0 , and bk1 are the learnable

parameters.
Likewise, we can follow the processing of (T av,k)′ to obtain

the k-th layer acoustic feature matrix (Atv,k)′, a.k.a., Ak+1,
and visual feature matrix (Vta,k)′, a.k.a., Vk+1. Ak+1 and
Vk+1 are encoded by two MPCATs. Ak+1 and Vk+1 are
formulated as follows:

Atv,k = NM(Ak +MPA(T k,Vk,Ak)),

Ak+1 = NM(Atv,k + FF(Atv,k)),
(19)

Vta,k = NM(Vk +MPA(T k,Ak,Vk)),

Vk+1 = NM(Vta,k + FF(Vta,k)),
(20)

where Atv,k is the k-th layer acoustic feature matrix that are
interacted by textual and visual modalities; similarly, Vta,k

is the k-th layer visual feature matrix that are interacted by
textual and acoustic modalities.

After T , A, V are encoded by the k-th layer MPCATs,
we obtain three new feature matrices: T k+1, Ak+1, Vk+1,
which corresponding to textual, acoustic and visual modalities,
respectively. Here, T 0 = Xt,L, A0 = Xa,L, V0 = Xv,L,
and L denotes the number of layers of MDGATs. These
new feature matrices are results of the k-th layer cross-modal
feature interactions. It is worth noting that T k+1, Ak+1, and
Vk+1 are not only the outputs of the k-th layer MPCATs but
also the inputs of the (k + 1)-th layer MPCATs.

D. Multimodal Emotion Classification

After the K layers MPCATs encoding, we obtain the last
layer feature matrices T (K), A(K), V(K). We concatenate
T (K), A(K), V(K) to obtain final feature matrix Z containing
the information about three modalities. The concatenation
operation can be formalized as follows:

Z = Wu[T (K) ∥ A(K) ∥ V(K)], (21)

where ∥ is the concatenation operation; Wu is the learnable
parameter. Then Z is used as the input of multimodal classi-
fication module to predict emotional states of utterances. The
emotion prediction can be formalized as follows:

hi = ReLU(Wczi + bc),

pi = Softmax(W′
chi + b′c),

ŷi = argmax
q

(pi[q]),
(22)

where zi ∈ Z is the feature vector of the i-th utterance ui;
pi denotes the probability distribution of predicted emotion
label of ui, and ŷi denotes the predicted emotion; ReLU and
Softmax denote the activation function and softmax function,
respectively; Wc, W′

c, bc, and b′c are the trainable parameters.

E. Training Objective

Finally, we adopt cross-entropy with L2-regularization as
objective function to train the proposed GA2MIF, which can
be represented as follows:

L = − 1∑N−1
t=0 n(t)

N−1∑
i=0

n(i)−1∑
j=0

yij log pij + η|Wl|, (23)

where n(i) is the number of utterances of the i-th conversation,
and N is the number of all conversations in training set;
pij denotes the probability distribution of predicted emotion
label of the j-th utterance in the i-th conversation, and yij
denotes the ground truth label of the j-th utterance in the i-th
conversation; η is the L2-regularizer weight, and Wl is the set
of all learnable parameters.
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TABLE I
THE STATISTICS OF TWO DATASETS WE USED. HERE, #CONVERSATIONS, #UTTERANCES, AND #CLASSES DENOTE THE NUMBER OF CONVERSATIONS,

UTTERANCES, AND CLASSES ON THE DATASETS, RESPECTIVELY; #UTTERANCES PER CONVERSATION, #SPEAKERS PER CONVERSATION DENOTE THE
NUMBER OF UTTERANCES AND SPEAKERS IN EACH CONVERSATION, Avg. INDICATES THE CORRESPONDING AVERAGE NUMBER

Dataset #Conversations #Utterances #Classes #Utterances per conversation #Speakers per conversationtrain valid test train valid test train valid test
IEMOCAP 120 31 5810 1623 6 48.39 (Avg.) 52.32 (Avg.) 2

MELD 1039 114 280 9989 1109 2610 7 9.6 (Avg.) 9.7 (Avg.) 9.3 (Avg.) 3 or more

IV. EXPERIMENTAL SETTINGS

A. Dataset Descriptions

We conduct experiments for the multimodal ERC task on
the two extensively adopted datasets: Interactive Emotional
Dyadic Motion Capture (IEMOCAP) [45] and Multimodal
Emotion Lines Dataset (MELD) [46]. For the purpose of
comparison, we follow the methods of Hu et al. [15]: the
textual features are extracted by adopting TextCNN [47];
the acoustic features are extracted through using OpenSmile
toolkit [48]; and the visual features are extracted by employing
DenseNet [49]. The statistics of two datasets are shown in
TABLE I.

IEMOCAP dataset is a dyadic multimodal ERC dataset and
contains audio-video-text data of impromptu performances or
scripted scenes of about ten participants. Each video includes a
single conversation, and each conversation consists of multiple
utterances. There are in total 151 conversations and 7433
utterances on the IEMOCAP dataset, and each utterance
corresponds to an emotional label. In IEMOCAP dataset, there
are six emotion labels in total, including Happy, Sad, Neutral,
Angry Excited, and Frustrated. MELD dataset is a multi-party
and multimodal conversational emotion recognition dataset
collected from the TV show Friends. There are seven emotion
categories containing Neutral, Surprise, Fear, Sadness, Joy,
Disgust, and Angry. MELD includes the information of textual,
acoustic and visual modalities with more than 1400 dialogues
and 13000 utterances. Unlike the two-person conversation
scenario on the IEMOCAP dataset, the MELD dataset has
three or more participants in each conversation.

B. Comparison Models

In order to perform comprehensive evaluations of the pro-
posed GA2MIF, we compare it to baseline models. These
baselines include unimodal ERC model and multimodal ERC
model, which are described as follows.

MFN [24] performs multi-views information fusion and
unifies the features of different modalities, but it does not
consider either context-aware dependencies or speaker-aware
dependencies. BC-LSTM [12] employs textual, visual and
acoustic modalities for multimodal ERC task, and adopts
an utterance level LSTM to capture multimodal information.
CMN [13] leverages multimodal information by directly con-
catenating the features from three modalities, and uses GRU
for contextual modeling. ICON [25] models the contextual
knowledge of self- and inter-speaker influences through a
GRU-based multi-hop memory network. DialogueRNN [14]
recognizes current emotion by tracking the contextual infor-
mation of utterance and taking the characteristic of speaker

into account. DialogueGCN [6] is a graph-based model that
regards the current conversation as a graph, where nodes
represent utterances in that conversation. DialogueGCN can
effectively capture long-range contextual information. In order
to implement multimodal setting, we directly concatenate
features of three modalities. DialogueCRN [9] is designed
with multi-turn reasoning modules to extract and integrate
affective cues and can sufficiently understand the contextual
information from a cognitive perspective. We implement multi-
modal setting for DialogueCRN through directly concatenating
features of three modalities. MMGCN [15] is a multimodal
ERC model that simultaneously captures both intra-modal con-
textual information and inter-modal interactive information.

C. Implementation Details
All of our experiments are run on NVIDIA GeForce RTX

3080 Ti. All models are implemented via the PyTorch toolkit,
as well as the maximum epoch is set to 100. The optimizer
used for all models is AdamW, the L2 regularization factor
is 0.00001, and the dropout rate is 0.1. Norm is replaced by
the layer normalization in GA2MIF. The settings of partial
hyperparameters are shown in TABLE II. For IEMOCAP
dataset, the number of layers of MDGATs is 3, and that of
MPCATs is 4; the trade-off parameter of speaker embedding
λ is 1.6; the learning rate is 0.00001; the batch size is 8. For
MELD dataset, the number of layers of MDGATs is 2, and that
of MPCATs is 2; the trade-off parameter of speaker embedding
λ is 0.6; the learning rate is 0.00001; the batch size is 32.
For a more rigorous comparison with the optimal baseline
MMGCN, our ratios of the training, validation, and test sets
are aligned with those of MMGCN. Referring to previous
works [6], [15], we evaluate the performance of GA2MIF with
weighted-average F1 score and average accuracy.

TABLE II
DESCRIPTION OF THE PARTIAL HYPERPARAMETERS

Dataset Number of layers Trade-off
parameter λ Learning rate Batch sizeMDGATs MPCATs

IEMOCAP 3 4 1.6 1e-05 8
MELD 2 2 0.6 1e-05 32

V. COMPARISON AND ANALYSIS

To illustrate the validity of our model, we conduct extensive
experiments in this section. First of all, we intuitively compare
the experimental results of our model with those of baseline
models. Then, we discuss the effect of different settings on
proposed GA2MIF; All experimental results are reported with
the help of tables and figures. Finally, we provide two case
studies in the last part of this section.
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TABLE III
OVERALL RESULTS OF ALL MODELS ON BOTH IEMOCAP AND MELD DATASETS. EVALUATION METRICS CONTAIN Acc, F1, AND wa-F1, WHICH

DENOTE ACCURACY SCORE (%), F1 SCORE (%), AND WEIGHTED-AVERAGE F1 SCORE (%). BEST PERFORMANCE IN BOLD

Model
IEMOCAP MELD

Happy Sad Neutral Angry Excited Frustrated Acc wa-F1 Neutral Surprise Sadness Joy Anger Acc wa-F1F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
MFN 47.19 72.49 55.38 63.04 64.52 61.91 60.14 60.32 76.28 48.29 23.27 52.23 41.32 59.93 57.29

BC-LSTM 32.63 70.34 51.14 63.44 67.91 61.06 59.58 59.10 75.66 48.47 22.06 52.10 44.39 59.62 56.80
CMN 30.38 62.41 52.39 59.83 60.25 60.69 56.56 56.13 - - - - - - -
ICON 29.91 64.57 57.38 63.04 63.42 60.81 59.09 58.54 - - - - - - -

DialogueRNN 33.18 78.80 59.21 65.28 71.86 58.91 63.40 62.75 76.79 47.69 20.41 50.92 45.52 60.31 57.66
DialogueGCN 47.10 80.88 58.71 66.08 70.97 61.21 65.54 65.04 75.97 46.05 19.60 51.20 40.83 58.62 56.36
DialogueCRN 51.59 74.54 62.38 67.25 73.96 59.97 65.31 65.34 76.13 46.55 11.43 49.47 44.92 59.66 56.76

MMGCN 45.45 77.53 61.99 66.67 72.04 64.12 65.56 65.71 75.16 48.45 25.71 54.41 45.45 59.31 57.82
GA2MIF 46.15 84.50 68.38 70.29 75.99 66.49 69.75 70.00 76.92 49.08 27.18 51.87 48.52 61.65 58.94

(a) Confusion matrix of MMGCN (b) Confusion matrix of GA2MIF

Fig. 4. Comparison of confusion matrices between MMGCN and GA2MIF. Hap, Sad, Neu, Ang, Exc, Fru denote Happy, Sad, Neutral, Angry, Excited, and
Frustrated, respectively.

A. Comparison With Baseline Models

TABLE III reports the experimental results of GA2MIF
with other baseline models. It can be visualized from TA-
BLE III that our GA2MIF achieves optimal accuracy scores
and weighted-average F1 scores on both IEMOCAP and
MELD datasets. For the IEMOCAP dataset, the accuracy and
F1 score of GA2MIF are 69.75% and 70.00%, which are
4.19% and 4.29% higher than those of the strongest baseline
model, i.e., MMGCN. For the MELD dataset, likewise, the
accuracy and F1 score of our GA2MIF respectively increase
by 2.34% and 1.12% in comparison with those of MMGCN.
We can conclude from above results that the improvements
of GA2MIF on the MELD dataset are not as significant as
that on the IEMOCAP dataset. After carefully comparing
the differences between IEMOCAP and MELD, we notice
that two neighboring utterances on the MELD dataset may
not be consecutive sentences in real conversation scenarios.
Therefore, GA2MIF is identical to most models on the MELD
dataset, and it is challenging to take advantage of model itself
in the absence of a powerful feature extractor.

We report F1 score corresponding to each emotion label

in detail in TABLE III. Our GA2MIF obtain the highest F1
scores on the IEMOCAP dataset for most emotion labels
except for Happy. We can observe that the results of GA2MIF
show remarkably significant improvement relative to those of
baseline models for Sad and Neutral. Fig. 4 depicts confusion
matrix of GA2MIF and MMGCN on the IEMOCAP dataset.
Fig. 4b indicates that our GA2MIF recognizes Sad better than
other emotion labels, with an accuracy score of 81.22%. By
comparing Fig. 4a and Fig. 4b, we can conclude that the
accuracy scores of GA2MIF are higher than those of MMGCN
except for Frustrated.

B. Impact of Different Trade-Off Parameters

Fig. 5 shows the influence of different trade-off parameters
of speaker embedding on the results. Fig. 5a shows results
on the IEMOCAP dataset, while the results on the MELD
dataset are shown in Fig. 5b. We find from Fig. 5a that the
performance of GA2MIF gradually increases as the trade-
off parameter increases. This phenomenon suggests that the
characteristic of speaker plays an essential role in emotion
recognition task. It is noteworthy that the performance of
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Fig. 5. The performance of our model with different trade-off parameters of speaker embedding. Acc and wa-F1 denote the accuracy and weighted-average
F1 score, respectively; λ indicates the trade-off parameter of speaker embedding.
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Fig. 6. The accuracy and weighted-average F1 scores of our GA2MIF with different window sizes in directed graph.

GA2MIF starts to decrease when increasing to a certain
threshold (i.e., λ = 1.6). As shown in Fig. 5b, the performance
variation of GA2MIF on the MELD dataset is generally
consistent with trend on the IEMOCAP dataset. In other
words, the values of accuracy score and weighted-average F1
score increase with the increasing of trade-off parameter λ
within a certain margin (i.e., λ < 0.6).

C. Impact of Different Window Sizes in Directed Graph

In this part, we discuss the effect of different window sizes
on the performance of GA2MIF. Fig. 6 shows the results
of GA2MIF corresponding to different window sizes on the
IEMOCAP dataset. As shown in Fig. 6a, we set various win-
dow sizes (i.e., (2, 2), (4, 4), · · · , (30, 30)) for GA2MIF on the
IEMOCAP dataset, each of which is a combination of J and
K. As we expected, the accuracy score and weighted-average
F1 score increase with the increasing of the window size

within a certain margin. When the window size increases to a
certain threshold, i.e., (16, 16), the performance of GA2MIF
gradually starts to decrease. In the same way, we set different
window sizes (i.e., (1, 1), (2, 2), · · · , (10, 10)) on the MELD
dataset, and obtain conclusions that are similar to those on the
IEMOCAP dataset. On the MELD dataset, however, the effect
of window sizes on the performance of GA2MIF is relatively
slight. The results on the MELD dataset are shown in Fig. 6b.

D. Impact of Different Updating Functions

We design a novel updating function, Sum-Product, for
MDGATs in Section III-C3. TABLE IV shows the results of
proposed GA2MIF adopting Sum, Concat and Sum-Product
functions. From the experimental results, we can observe
that Sum-Product we designed has a slight improvement over
the other two updating functions. In our future work, we
hope to apply Sum-Product to feature interaction-sensitive
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Fig. 7. Effect of different number of network layers on the performance of GA2MIF. (a) The dark (or light) blue line denotes the effect of different layers in
MDGATs (or MPCATs) on accuracy scores. (b) The dark (or light) orange line denotes the effect of different layers in MDGATs (or MPCATs) on weighted-
average F1 scores.

TABLE IV
THE PERFORMANCE OF GA2MIF UNDER VARIOUS UPDATING

FUNCTIONS IN MDGATS. THE UPDATING FUNCTIONS INCLUDE Sum,
Concat, AND Sum-Product, RESPECTIVELY

Updating Function
IEMOCAP MELD

Acc wa-F1 Acc wa-F1
Sum 68.94 68.98 61.19 58.70

Concat 68.91 68.95 61.19 58.68
Sum-Product 69.75 70.00 61.65 58.94

tasks, such as knowledge graph-based emotion recognition,
sentiment analysis-based recommendation systems.

E. Impact of Different Number of Network Layers

Our GA2MIF mainly consists of two sub-networks, namely
MDGATs and MPCATs. We depict the effect of different
number of layers in MDGATs or MPCATs on the perfor-
mance of GA2MIF in Fig. 7. The discussions and analyses
in this subsection are based on the experimental results of the
IEMOCAP dataset. Fig. 7a illustrates the effect of different
number of network layers on the accuracy scores. Notably,
before discussing how the performance is affected by the
number of layers in current sub-network, we fix the number
of layers in the other sub-network. As shown by the dark blue
line in Fig. 7a, we first set the number of layers in MPCATs
to 4 and then plot the variation curve of accuracy score
under different number of layers in MDGATs; conversely,
the number of layers in MDGATs is first limited to 3, and
then the change of accuracy score under different number
of layers in MPCATs is recorded by the light blue line in
Fig. 7a. It can be found that with the increase of layers in
MDGATs, the accuracy score of GA2MIF rises first and then
falls. The effect of different number of layers in MPCATs
on accuracy score also follows this pattern, i.e., the accuracy
score increases first and then decreases as the number of layers
in MPCATs increases. The difference is that the number of

layers in MDGATs is more sensitive to the performance of
GA2MIF than that in MPCATs. Similarly, Fig. 7b shows the
effect of different number of network layers on the weighted-
average F1 scores. We can draw the analogous conclusion from
Fig. 7b as Fig. 7a. As shown in Fig. 7, it is noteworthy that
the performance of GA2MIF shows a significant degradation
when we do not use either MDGATs (i.e., MDGATs with 0
layers) or MPCATs (i.e., MPCATs with 0 layers). Therefore,
MDGATs and MPCATs can contribute to the performance of
our model.

F. Performance under Different Modality Settings

TABLE V
THE PERFORMANCE OF GA2MIF UNDER DIFFERENT MODALITY

SETTINGS. a, v, t INDICATE ACOUSTIC, VISUAL, AND TEXTUAL
MODALITIES, RESPECTIVELY

Modality Setting
IEMOCAP MELD

Acc wa-F1 Acc wa-F1
a + v 59.70 59.85 48.12 43.34
a + t 67.47 67.49 60.04 57.11
v + t 64.26 64.39 60.00 57.22

a + v + t 69.75 70.00 61.65 58.94

In this subsection, we conduct experiments with two- and
three-modality settings on two public datasets. Note that the
proposed GA2MIF requires at least two modalities. These
modality settings include the acoustic-visual setting, acoustic-
textual setting, visual-textual setting, and acoustic-visual-
textual setting. As shown in TABLE V, we report accuracy
and weighted-average F1 scores of all modality settings. It
can be seen from TABLE V that the experimental results of
three-modality setting outperform those of all two-modality
settings. Among the two-modality settings, our model achieves
the best results under the acoustic-textual setting and the
worst performance under the acoustic-visual setting. On the
IEMOCAP dataset, the accuracy and F1 scores reach 67.47%
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and 67.49%, respectively, under the acoustic-textual setting,
which are 7.77% and 7.64% higher than those under the
visual-textual setting. Moreover, the results of GA2MIF under
the acoustic-textual setting are higher than those of MMGCN
under three-modality setting, which fully demonstrates the
effectiveness of the proposed GA2MIF.

G. Case Studies

In the ERC task, several utterances with non-Neutral emo-
tion labels such as “Yes. On this, I would. [Sad]”, “I do.
[Angry]”, “Actually, now that you mention it, no. I don’t.
[Excited]”, are difficult to be detected correctly by existing
models. Most of existing text-modal ERC models tend to
directly recognize these utterances as Neutral. The above-
mentioned scenario is shown in Fig. 8. Intuitively, multimodal
ERC models such as MMGCN can compensate the inade-
quacies of text-modal models by acoustic or visual modality.
However, MMGCN treats utterances of all modalities as nodes
of the same type, which clearly violates the assumption that the
input of GNNs is a homogeneous graph and thus cannot effec-
tively utilize multimodal information. Our GA2MIF inputs the
information of each modality into MDGATs separately, and
then employs MPCATs for inter-modal information interac-
tion. Furthermore, our approach eliminates complex redundant
connections by employing context window to connect edges
instead of constructing fully connected graph, which allows
for more efficient selection of useful contextual information.
Experiments show that the proposed GA2MIF can detect
emotional states more accurately relative to MMGCN.

I have been a good son for too long. A good sucker.

I'm through with it. [Sad]

Yes. On this, I would. [Sad]

Well, you help me stay here. [Sad]

All right. But don t think like that. Because what the hell did we

work for, Chris? I mean, this whole thing, it s all for you. [Sad]

I know that, mom. Just, you help me stay here. [Angry]

u1

u2

u3

u5

u4

Prediction of
[Baseline] [GA2MIF] 

[Neutral] [Sad]

[Neutral] [Sad]

Fig. 8. Example of emotion recognition in conversation on the IEMOCAP
dataset. The proposed GA2MIF can correctly recognize non-Neutral emotions.

Fig. 9. The probability of predicting ground-truth emotion Sad as other
emotions by MMGCN and GA2MIF.

Like most baseline methods, the proposed GA2MIF has
challenges in distinguishing similar emotions, e.g., Happy
vs Excited, Sad vs Frustrated. Fortunately, our GA2MIF
alleviates the problem of similar emotions to a certain extent.
The probability of predicting ground-truth emotion Sad as
other emotions by MMGCN and GA2MIF is shown in Fig. 9.
We can derive from Fig. 9 that our GA2MIF identifies Sad
as Frustrated on the IEMOCAP dataset with a probability of
7.76%, while MMGCN with a probability of 15.51%. Thus,
the proposed GA2MIF achieves a more outstanding result with
a 7.75% reduction relative to MMGCN.

VI. SUMMARY AND PROSPECT

We propose a novel multimodal conversational emotion
recognition model, i.e., Graph and Attention based Two-stage
Multi-source Information Fusion (GA2MIF), in this paper.
The proposed GA2MIF is mainly inspired by graph atten-
tion network and multi-head attention mechanism. Multi-head
Directed Graph ATtention networks (MDGATs) and Multi-
head Pairwise Cross-modal ATtention networks (MPCATs)
are designed to model intra-modal contexts and inter-modal
interactions, respectively. The collaboration of MDGATs and
MPCATs can effectively address the challenge of MMGCN in
handling the heterogeneous graph, as well as, the complex
redundant connections are eliminated through the context
window. In addition, we design a new update function, Sum-
Product, for MDGATs (arguably, Graph Neural Networks). We
have demonstrated the effectiveness of GA2MIF on two ex-
tensively used datasets and achieved an impressive weighted-
average F1 score of 70.00% on the IEMOCAP dataset, which
overwhelmingly outperforms all baseline models. Not only
that, we also discuss and analyze the effect of different settings
on the performance of GA2MIF.

In future work, we will continue to promote multimodal
learning, and focus on how to enhance the expressiveness of
acoustic and visual modalities. Furthermore, we hope to apply
our model to more multimodal fusion scenarios, as well as
tackle the notorious problems of similar-emotion and emotion-
shifting in conversational emotion recognition.
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[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[39] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[40] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[41] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li, “Developing real-
time streaming transformer transducer for speech recognition on large-
scale dataset,” in ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2021, pp. 5904–5908.

[42] L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2018, pp. 5884–5888.

[43] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” in International Conference on Learning Representations,
2022.

[44] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in Thirty-Second AAAI
conference on artificial intelligence, 2018.

[45] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N.
Chang, S. Lee, and S. S. Narayanan, “Iemocap: Interactive emotional
dyadic motion capture database,” Language resources and evaluation,
vol. 42, no. 4, pp. 335–359, 2008.

[46] S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihal-
cea, “Meld: A multimodal multi-party dataset for emotion recognition
in conversations,” arXiv preprint arXiv:1810.02508, 2018.

[47] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing. Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1746–1751. [Online].
Available: https://aclanthology.org/D14-1181

[48] B. Schuller, A. Batliner, S. Steidl, and D. Seppi, “Recognizing realistic
emotions and affect in speech: State of the art and lessons learnt from
the first challenge,” Speech communication, vol. 53, no. 9-10, pp. 1062–
1087, 2011.

[49] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

https://aclanthology.org/D14-1181

	Introduction
	Related Works
	Emotion Recognition
	Unimodal-Based Emotion Recognition
	Multimodal-Based Emotion Recognition

	Machine Learning Methods
	Graph Neural Networks
	Multi-Head Attention Mechanism


	Methodology
	Problem Definitions
	Unimodal Pre-Encoding
	Two-Stage Multi-Source Information Fusion
	Characteristics of the Speaker
	Creation of Directed Graph
	Graph-Based Contextual Modeling
	Attention-Based Cross-Modal Modeling

	Multimodal Emotion Classification
	Training Objective

	Experimental Settings
	Dataset Descriptions
	Comparison Models
	Implementation Details

	Comparison and Analysis
	Comparison With Baseline Models
	Impact of Different Trade-Off Parameters
	Impact of Different Window Sizes in Directed Graph
	Impact of Different Updating Functions
	Impact of Different Number of Network Layers
	Performance under Different Modality Settings
	Case Studies

	Summary and Prospect
	References

