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Abstract—Recently, wearable emotion recognition based on peripheral physiological signals has drawn massive attention due to its
less invasive nature and its applicability in real-life scenarios. However, how to effectively fuse multimodal data remains a challenging
problem. Moreover, traditional fully-supervised based approaches suffer from overfitting given limited labeled data. To address the
above issues, we propose a novel self-supervised learning (SSL) framework for wearable emotion recognition, where efficient
multimodal fusion is realized with temporal convolution-based modality-specific encoders and a transformer-based shared encoder,
capturing both intra-modal and inter-modal correlations. Extensive unlabeled data is automatically assigned labels by five signal
transforms, and the proposed SSL model is pre-trained with signal transformation recognition as a pretext task, allowing the extraction
of generalized multimodal representations for emotion-related downstream tasks. For evaluation, the proposed SSL model was first
pre-trained on a large-scale self-collected physiological dataset and the resulting encoder was subsequently frozen or fine-tuned on
three public supervised emotion recognition datasets. Ultimately, our SSL-based method achieved state-of-the-art results in various
emotion classification tasks. Meanwhile, the proposed model was proved to be more accurate and robust compared to fully-supervised

methods on low data regimes.

Index Terms—Emotion Recognition, Self-supervised Learning, Transformers, Physiological Signals, Multimodal Fusion

1 INTRODUCTION

MOTIONS are sets of complex physiological, cognitive

and behavioral responses that are triggered by internal
or external stimuli. Emotion recognition is an emerging field
of research which attempts to empower computers with the
ability to infer human emotions. In recent years, it has been
employed in several practical scenarios such as automated
driver assistance [1], health care [2], social communication
[3], etc, the majority of which are based on physical or
physiological indicators of the human body. In contrast to
physical signals such as facial expressions [4] and speech [5],
physiological responses under certain emotional states are
involuntary and therefore provide more objective decisions
for identification systems [6]. The physiological modalities
primarily consist of Electroencephalography (EEG) signals
and a series of peripheral signals. However, the acquisition
of EEG data is challenging for implementation in real-life
scenarios. With the advance of non-invasive technologies,
emotion recognition methods based on multiple peripheral
signals captured by smartphones/wearable watches have
attracted some attention. Most recent researches focus on
deep neural networks, which can automatically extract com-
plex patterns from multimodal signals. However, given that
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most of them are trained in a supervised manner, it is chal-
lenging to obtain generalizable models using limited labeled
data, especially in daily life, where standard protocols for
obtaining accurate emotion labels are not yet well defined.
Besides, each specific supervised task requires training the
deep model from scratch and its knowledge transfer ability
on other tasks is not satisfactory [7]. Self-supervised learning
(SSL), as an emerging learning paradigm, eliminates the
need for extensive manual labeling and has demonstrated
comparable or even superior performance to supervised
learning methods in areas of computer vision (CV), natural
language processing (NLP). Several SSL-based efforts [8]],
[9], [10] have been done for emotion recognition using EEG
signal, but they are not suitable for practical scenes. Only
one work [11] targeted low-frequency wearable peripheral
signals, but they ignored the correlation between multi-
modal signals. In this paper, we propose a self-supervised
multimodal representation learning approach for wearable
emotion recognition based on peripheral physiological sig-
nals. The first stage is model pre-training with the pretext
objective of signal transformation classification, where a
large amount of unlabeled multimodal data are automat-
ically assigned labels through a series of transformations.
Considering the heterogeneity of multimodal signals, tem-
poral convolution-based modality-specific encoders are first
employed separately on the transformed unimodal data to
extract low-level features, followed by a transformer-based
shared encoder deployed to aggregate unimodal features,
enabling the modeling of complementary and collaborative
properties between multimodal signals. Finally, modality-
specific signal transformation recognition is performed to
learn effective multimodal representations for downstream
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Fig. 1: Overview of our self-supervised multimodal representation learning framework. The proposed SSL model is first
pre-trained with signal transform recognition as the pretext task to learn generalized multimodal representation. The
encoder part of the resulting pre-trained model is then served as a feature extractor for downstream tasks which is frozen
or fine-tuned on the labeled samples to predict emotion classes.

tasks that are robust to perturbations in magnitude or
temporal domains. The second stage is supervised emotion
recognition, where the SSL pre-trained encoder part is re-
tained as a feature extractor to obtain generalized multi-
modal representations for classification. The overview of the
proposed approach is illustrated in Fig.|1| To validate the ef-
fectiveness of our method and the knowledge transferability
across different datasets, we pre-trained the proposed model
on a large-scale unsupervised emotion dataset PRESAGE
collected in unrestricted real-life scenarios and evaluated its
performance on three public emotion recognition datasets.
Overall, our contributions can be summarized as follows:

o We proposed a novel self-supervised learning (SSL)
framework to learn generalized representations from a
large number of unlabeled samples to cope with the
overfitting problem on small-scale physiological data.

o We adopted an intermediate fusion strategy based on
temporal convolution and transformer, capable of mod-
eling both the heterogeneity and cross-modal correla-
tion of physiological signals to effectively fuse multi-
modal data.

e We outperformed state-of-the-art supervised or self-
supervised learning-based approaches in various
emotion-related classification tasks involving mental
stress, affective states, arousal, and valence. Moreover,
our model was proven to be more accurate and stable
on limited labeled data than fully-supervised models.
In addition, multiple ablation studies have been per-
formed to investigate the effectiveness of our method.

2 RELATED WORK

2.1 Fully-supervised deep emotion recognition method
based on peripheral physiological signals

Deep learning-based methods have recently gained exten-
sive attention due to their automatic abstract representation
learning properties and have been shown to outperform
machine learning methods in several studies [12], [13]], [14],
[15]. For example, Huynh et al. [13] employed a neural ar-
chitecture search, aiming to obtain the optimal architecture
for emotion recognition among 10,000 manually designed
deep neural networks for multimodal physiological signals.
Lai et al. [14] proposed a residual temporal convolution-
based deep neural network to capture the effective features
of multimodal signals, resulting in state-of-the-art results for
stress detection and emotion recognition tasks. The above
results of deep learning-based approaches are encourag-
ing for wearable emotion recognition. However, training
a sufficiently accurate and generalizable model commonly
depends on a large amount of labeled data, which is chal-
lenging for physiological data, as the annotation is time-
consuming, expensive, and requires the intervention of do-
main experts.

2.2 Self-supervised learning (SSL) for limited labelled
data

To solve the overfitting problem introduced by the lim-
ited available data for supervised deep learning models,
one common solution is data augmentation, ie., apply-
ing different transformations on the original samples to
obtain more abundant data. However, performing data
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augmentation could not introduce inter-subject variability
during training [11]. Alternatively, a technique that does
not require the intervention of labeled data is unsuper-
vised representation learning, where a typical model is
an autoencoder, which extracts meaningful representations
through the compression and reconstruction of the unla-
beled data. Several studies have explored the feasibility
of this technique for emotion recognition. In [16]], stacked
convolutional autoencoders were applied independently
on unlabelled ECG and EDA data to obtain generalized
latent representations for arousal classification, achieving
better performance than the fully supervised approaches.
Though this method effectively modeled the heterogeneity
of multimodal signals, i.e. using different models to extract
valid unimodal features, however, it neglected the collabora-
tive and complementary nature of multimodality. Different
from the previous approach, Zhang et al. [15] presented a
correlation-based emotion recognition algorithm (CorrNet),
where intra-modal features are first obtained with sepa-
rate convolutional autoencoders, followed by covariance
and cross-covariance computation between each pair of
modalities to obtain inter-modal features. However, these
unsupervised learning methods based on autoencoders did
not introduce supervised signals in pre-training, thus may
resulting in unsatisfactory performance.

Recently, a compelling branch in the field of unsuper-
vised representation learning is self-supervised learning
(SSL), which can effectively address the de-generalization
issue posed by insufficient labeled data. Unlike unsuper-
vised learning which does not involve any labelled data,
SSL is designed with a series of pretext tasks that introduce
self-supervision to unlabelled data, enabling more effective
representation learning for downstream tasks. Each unsu-
pervised sample is automatically labeled through inherent
dependencies and associations between the data without
human intervention [17]. The SSL model pre-trained on
pseudo-labeled data is considered as powerful feature ex-
tractor for a variety of downstream tasks. In the domains
of computer vision and natural language processing, SSL-
based work such as SimCLR [18]], Word2Vec [19], and BERT
[20] have exhibited competitive and even superior perfor-
mance on a range of tasks. However, few studies have
investigated the performance of SSL models on peripheral
physiological signal data. Sarkar et Etemad [7]] introduced a
self-supervised representation learning framework for ECG-
based emotion recognition, where the IDCNN-based multi-
task deep neural network is pre-trained with the objective
of identifying the signal transformation types applied to
unlabeled data. Their study indicated that the pretext task
based on transformation recognition can enable the model to
better cope with potential variation factors in the data. How-
ever, not all time steps of a signal sequence are associated
with the target event (i.e., a specific emotion). Thus, how to
filter out irrelevant information during SSL for downstream
tasks is an unsolved problem. Exploiting the synchrony
of multimodal emotional responses is a potential solution.
More specifically, multimodal physiological signals exhibit
correlated or consistent temporal changes when emotions
are elicited. In this way, modeling the correlation of multi-
modal signals in SSL can facilitate the capture of emotion-
related components in unlabeled data. For multimodal emo-
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tion recognition, Dissanayake et al. [11] proposed a self-
supervised contrastive learning approach, which aims to
approximate the positive pairs while pushing the negative
pairs away from each other. However, their SSL model is
obtained by pretraining each modality independently, and
thus again ignores the cross-modal correlations. Therefore,
more effective multimodal fusion strategies need to be de-
veloped for SSL-based wearable emotion recognition.

2.3 Multimodal data fusion for emotion recognition

Multimodal data fusion strategies can be generally catego-
rized into: early fusion, intermediate fusion, and late fusion.
Most existing approaches for multimodal emotion recog-
nition are based on early fusion, where multimodal data
are combined as a whole before performing a learning task.
Joint representations can be extracted directly from concate-
nated vectors with deep models such as 1IDCNN [21] and
Bi-LSTM [22]], which allow for encoding inter-modal corre-
lations. However, since unimodal features are not learned
explicitly (i.e., the heterogeneity of the multimodal signal
is ignored), this fusion strategy is not effective in capturing
intra-modal correlations. Late fusion-based approaches [14],
[23] integrate the decisions of multiple independent learning
models to predict emotion categories. Thus, in contrast to
early fusion, this fusion approach ignores the connections
and interactions between modalities.

Different from the previous fusion approaches, interme-
diate fusion enables both intra- and inter-modal correlation,
where independent feature extractors are first applied to
different modalities and the obtained unimodal features are
then aggregated in an additional fusion module to further
learn the joint representation. A variety of options exist
for this fusion module. For example, Shu and Wang [24]
adopt ed the restricted Boltzmann machine (RBM) model to
learn the joint probability distribution of multimodal low-
level features to encode cross-modal information exchanges.
Zhang et al. [25] modeled the associations between multi-
modal features by introducing a regularization term to the
objective function. More recently, the transformers have also
gained popularity in intermediate fusion-based approaches
[26], [27], [28] for video, audio and text. Regarding studies
on emotion recognition, Wu et al. [26] proposed a multi-
modal Recursive Intermediate Layer Aggregation (RILA)
model, which was applied between layers of unimodal
deep transformers to capture interactions across modalities
through the integration of multimodal intermediate repre-
sentations. In this work, the transformers were employed to
provide valid intermediate features. At the same time, they
have also proved to be effective in merging multimodal data
[27], [28]. The attention mechanism can capture advanced
patterns shared across modalities, thus exhibiting advan-
tages over naive fusion strategies such as concatenation. In
terms of practicality, multimodal emotion recognition based
on the video, audio and text may not be well suited to
real-life scenarios, as it requires considerable computational
resources for long-term video stream analysis. In contrast,
wearable physiological signals can consistently predict emo-
tions in a low-cost and objective way. However, the validity
of transformer-based models has not been well established
for wearable emotion recognition. Meanwhile, video, audio
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Fig. 2: The original signal and the disturbed signals after applying five transformations. For each modality, the raw signal
data and the transformed signal data are stacked and fed into the proposed SSL model for multimodal representation

learning.

and text-based approaches cannot be directly migrated to
physiological data due to differences in data structures. In
addition, they are susceptible to overfitting problems as they
generally have a relatively deep architecture and follow a
fully-supervised setup.

3 PROPOSED METHOD
3.1 Overview

Our goal is to employ unlabeled data for capturing generic
representations of multimodal physiological signals in order
to address the de-generalization problem introduced by a
limited number of labeled samples. Hence, we propose a
self-supervised learning (SSL) scheme using signal trans-
formation recognition as a pretext objective. An illustration
of the proposed approach is shown in Fig. [1} In our work,
three modalities measured by different sensors are consid-
ered: electrodermal activity (EDA), blood volume pressure
(BVP) and skin temperature (TEMP). More formally, let
T, € RV*! represent a 1D time-domain signal from one
of the M different modalities (in our work, M = 3), where
N is the signal length. Given a set of n transform functions
T = {T;(-),j € {1,...,n}}, the altered multimodal signal
dataset can be generated by applying each transforma-
tion to individual modality. Based on this, one can easily
build a pseudo-labeled dataset £ = {(Tj(x%,),vy%),y" €
{1,...,n},me {1,...,M},i € [1,|L]]} for unlabelled sam-
ples through self-supervision enabled by signal transforma-
tions. Then, the proposed model consisting of a multimodal
encoder E' and modality-specific classifiers C' is pre-trained
to predict the type of transformation applied to samples in
L. Ultimately, only the encoder part E of the optimal model
obtained after pre-training is retained and is expected to
produce generalized multimodal representations in a vari-
ety of supervised downstream tasks. Details of the proposed
SSL framework are as follows.

3.2 Self-supervised learning of multimodal physiologi-
cal signals

3.2.1 Pretext Task: signal transformation recognition

Signal transformation recognition was adopted as the pre-
text task in SSL, which proved to be effective in learning
generalized representations for downstream tasks such as
action recognition [29] and emotion recognition [7]. The

random transformations used in the previous SSL methods
are one of the common data augmentation techniques for
time series, which can generally be classified into two cat-
egories: magnitude domain transformations and time do-
main transformations. The former interferes with the signal
values while preserving the time step order, whereas the
latter mainly affects the time scale. Previous evaluations of
SSL models based on individual transformation recognition
[7], [29] have indicated that Noise addition and Scaling ranked
highly for magnitude domain transformations, while Per-
mutation and Time-warping performed outstandingly well
among time domain transformations. Meanwhile, according
to the review of time series augmentation strategies [30],
[31], though most of the suggested transformations have
been adopted in previous SSL-based work, two transfor-
mations have not been thoroughly evaluated: Magnitude-
warping and Cropping. Ultimately, we selected the five
transformations: Permutation, Time-warping, Noise addition,
Magnitude-warping and Cropping for the pretext task. The
reason why Scaling was omitted is that Magnitude-warping
can be seen as a special variant of Scalingﬂ

The above signal transformations are performed on all
three modalities and the resulting transformed signal data
is fed into the proposed SSL model as input along with the
original multimodal signal data. Fig. 2] shows the effect of
these deformations on a sample of the EDA signal. Details
of each transformation are described in subsequent para-
graphs. Here, for simplicity, we write the above-mentioned
1D signal x,,, uniformly as x(t), where t represents the time
step.
Magnitude domain transformations:

o Gaussian noise addition: The original signal z(t) is
disturbed by white Gaussian noise z(¢), which can
be extracted from a zero-mean normal distribution
N(0,0?%). By assigning a preferred signal-to-noise ratio
(SNR), the variance o2 (i.e., the average power of the
noise) of the distribution N can be derived from the
following formula 10FP=ig=SNE)/10  yhere P4 is the
average power of the signal. In the end, the noised
signal is calculated as x(t) + z(t).

o Magnitude-warping: The magnitudes of the original
signal are altered by a random smooth curve formed by

1. Scaling multiplies time series values by a random scalar whereas
Magnitude-warping distorts the signal values by a smooth curve.
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cubic spline interpolation function ¢(-). In the end, the
transformed signal can be calculated as x(t) - ¢(x(t)).

Time domain transformations:

o Permutation: The original signal is split into n non-
overlapping segments z(t) = {z1,z2,...,2,}, which
are then temporally disrupted and eventually recom-
bined together to form the permuted signal z(t) =
{Zp1,Tp2, ..., Tpn }, where {pl,p2,...,pn} is a shuffled
version of the original order.

e Time-warping: The original signal is divided into n
non-overlapping segments z(t) = {1, z2, ..., £, }, half
of which are randomly selected to be stretched by a
linear interpolation function F(x;, k), where k is the
stretch factor, and the remaining half of the segments
are squeezed by the function F'(z;,1/k), where 1/k is
the squeeze factor. The time-warped signal can be con-
catenated from the transformed segments and finally
resized to the original length.

o Cropping: The original signal is divided into n non-

overlapping segments z(t) = {x1,2,...,2,}, one of
which is randomly selected and resampled to the origi-
nal length.

By identifying the signal transform types, our model is
expected to learn a more robust and generalized repre-
sentation against disturbances in the magnitude or time
domains. For example, Magnitude-warping and Gaussian
noise addition can simulate different types of real-world
noise, such as measurement errors, signal artefacts caused
by the subject’s body movements, etc. For time-domain
transformations, Permutation perturbs the order of time
steps to prompt the model for capturing time-domain de-
pendencies between data points, Time-warping simulates
duration variations in emotional responses by stretching
or squeezing time steps, and Cropping allows the model
to be more robust to changes in the temporal location of
emotional events.

3.2.2 Self-supervised multimodal representation learning
network architecture

The proposed SSL multimodal deep neural network con-
sists of two key elements, namely the encoder E and the
modality-specific transformation classifiers C'. The encoder
E can be further subdivided into temporal convolution-
based modality-specific encoders F,, and transformer-based
shared encoder E, where E;,, models the heterogeneity of
multimodal signals and E activates cross-modal informa-
tion exchange. Ultimately, the multimodal features obtained
from the encoder are used as input to C for identifying
transformation types for each modality. The implementa-
tion of these key components is described in the following
paragraphs.

Modality-specific encoder: Considering the heterogeneity
of the multimodal signals, separate encoders are first em-
ployed for each modality, with a temporal convolution-
based network acting as the backbone to capture low-level
intra-modal correlation information. The temporal convolu-
tional network (TCN) [32], in a nutshell, is a combination of
dilated causal convolution and residual connections, with
parallel computational capability and robust gradients at
optimization, thus demonstrating better performance than

5

traditional recurrent networks, such as LSTM and GRU.
One basic TCN consists of several residual blocks. The most
central components of each block are two dilated causal
convolution layers. The causality can be easily achieved
when the output at the current moment ¢ depends only
on the elements of the past historical moments up to t in
the previous layer. Meanwhile, the dilation operation injects
holes in the standard convolution map, thereby increasing
the reception field. More formally, given the transformed 1D
signal of modality m: a, = Tj(z,,) € RV*! with N time
steps, and a filter f of size k, the dilated convolution on time
step t can be defined as

k—1

F(t)=) f@i) al,(t—d-i) )

=0

where d is the dilation factor. Following each convolutional
layer is a weight normalization layer for the convolution
filter, a rectified linear unit (ReLU) layer and a dropout
layer for regularization. In the end, a residual connection
is created between the input and output of the block, where
a 1 x 1 convolution is introduced to eliminate the mismatch
in channel numbers between the input and output. Fig.3 il-
lustrates the detailed structure of the TCN-based backbone.
The dilated causal convolution layers in two residual blocks
are equipped with 16 filters with a kernel size of 6, where
the dilation factors are 1 and 2, respectively. Zero-padding
of 5 and 10 are also introduced to ensure that the input
and output sequences are of the same length. Subsequently,
a modality-specific projection head (i.e., a linear fully con-
nected layer with 128 units) and a layer normalization are
then applied to map the low-level features to a higher
dimensional embedding space. Finally, the output of the
modality-specific encoder L, is:

Zm = LayerNorm(MLP(TCN(z.,)))) € RV*4 (2)

where d is the embedding dimension.

Shared encoder: As mentioned in Section encoding
of the coordination and interaction between multimodal
signals is essential in order to learn generic representa-
tions related to the downstream emotion recognition tasks.
This can be done through the transformer in which each
modality identifies components of other modalities that are
highly correlated with itself through the attention mech-
anism for better signal transformation classification. To
achieve this, the low-level features z,, of each modality
are first stacked to form a multimodal embedding z,, it =
[21, .. o zy) € RMNXd The scaled dot-product at-
tention proposed in [33] is then applied to calculate the
dependencies between different modalities:

s Zmy -

T

Attn(Q, K, V) = softmaz( Qj{&

where @), K, V represent queries, keys and values, respec-
tively. More intuitively, the attention layer acts as a weighted
sum of values V, where the attention weight associated
with each value is generated by the compatibility of the
query with its corresponding key. For our shared encoder
E;, queries, keys and values are derived through a linear

W ®)
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mapping of multimodal features 2,,,t;, and the resulting
output of the attention layer is:

= Attn(zmultiWQ7 ZmultiWK7 ZmultiWV) 4
where W%, WK, WV € R4 are the projection ma-
trices. Fig. {4 presents the process of generating attention
weights from multimodal embeddings, where cross-modal
communications are activated. For our shared encoder, the
one-layer vanilla transformer block proposed in [33] with
four-head attention is implemented. The feedforward layer
dimension is set to 128. ReLU is selected as the activation
function for intermediate layers and a rate of 0.2 is used
for Dropout operation. In addition, we did not introduce
positional coding information for the stacked multimodal
inputs. Since the features of each modality are generated by
different encoders, the network performance may not bene-
fit from positional encoding in the context of heterogeneous
input. This is further explored in the ablation study (Section
0.6.4).

Modality-specific classification head: The multimodal fea-
tures hmuiri € RMNXd oxtracted from the shared en-
coder E; are then decomposed to [h1,. .., hm,...,hy) for
identifying the type of signal transformation applied to
each modality. A modality-specific classification head C,
is shown in Fig.[5| 1D global average pooling is first applied
across all time steps of unimodal features, followed by a
fully-connected layer with 64 units. 1D Batch Normalization
is placed before the ReLU layer for more efficient learning
and a Dropout layer with a rate of 0.1 is applied to avoid
over-fitting. The final fully-connected layer is equipped with

a
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Fig. 5: Modality-specific classification head C), for signal
transformation recognition task. (GAP: 1D global average
pooling, FC: fully-connected layer, BatchNorm: batch nor-
malization, num class: number of signal transformations,
i.e., 6 in our work.)

a softmax activation function, where the unit number is
determined by the number of signal transformations n (i.e.,
n = 6 in our work, 5 transformations plus the original
version). In the end, the proposed model is optimized on
the pseudo-labeled dataset £ through the total loss Liota;
which is a combination of cross-entropy losses of individual
modalities (i.e., EDA, BVP, TEMP in our work):

I£]
1 ) )
Lin = ~17] > y'log(Crn(hi,)) ®)
i=1
M
Liotar = Z Ly, = Lega + vap + Ltemp (6)

i=1
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3.3 Multimodal emotion recognition based on physio-
logical signals

After pre-training the proposed SSL model with the pre-
text task on unlabelled data, only the encoder part E is
reserved for extracting efficient multimodal representations
in a variety of supervised downstream tasks. In this work,
we select emotion recognition as our downstream task. A
classification head C,,,, is applied to the output of the
encoder I to generate class probabilities for labeled sam-
ples Loy = {(z1,,y%),,y" € {1,...,e},m € {1,...,M}},
where e is the number of the emotion classes. The emotion
classification head is constructed in the same way as C);,, ex-
cept that it accepts multimodal features from encoder F. Af-
ter the multimodal transformer, features from each modality
are first passed through the 1D global average pooling layer,
then the flattened unimodal features are concatenated and
processed successively through a fully-connected layer with
192 hidden units, a Batch Normalization layer, ReLU activa-
tion function, a Dropout layer with a rate of 0.2 and a second
fully-connected layer with the number of hidden units equal
to the number of emotion classes for prediction. Finally, the
proposed model is optimized through the minimization of
cross entropy loss L.

|Lsupl
1 . .
Lowp = =17 > ¥'109(Cemo(E("))  (7)
‘ suz)| i=1

4 DATASETS
4.1 PRESAGE Dataset

The PRESAGE dataset is a large-scale multimodal physio-
logical signal dataset for emotion analysis. The data acqui-
sition is done at the Presage training centeﬂE] in Lille, France,
whose mission is to ensure the training of medical students
and health professionals through immersion in a recreated
hospital environment, where the high-tech mannequins or
hired actors, take the place of the patients and students act
as doctors. In order to analyze the students” emotional state
during the simulation training to optimize the educational
program, a large amount of unlabeled multimodal physio-
logical data has been collected from 201 trainees (104 males
and 97 females) during five different medical simulation
scenarios. Fig.[6](a-e) shows the images of different scenarios
captured by the cameras installed in the simulation room.
The data collection protocol was approved by the Institu-
tional Review Board of University of Lille with the reference
number 2022-626-5108 and all trainees were given a consent
form prior to training and were required to fully read the
form and provide a signature. To allow students to perform
normal medical simulation activities under interference-free
conditions, Empatica E4 Wristband (Fig. E] (f)), an invasive
wearable biometric sensor was adopted to continuously
record multimodal physiological signal data of high qual-
ity with different frequencies: 3-axis Accelerometer (ACC,
32Hz), Blood Volume Pressure (BVP, 64Hz), Electrodermal
Activity (EDA, 4Hz), Skin Temperature (TEMP, 4Hz), Heart
Rate (HR, 1Hz), Inter-beat Interval (IBI). In this work, we
employed data from three modalities: EDA, BVP and TEMP

2. https:/ /medecine.univ-lille.fr/ presage,
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collected in the five scenarios for self-supervised multi-
modal representation learning.

4.2 WESAD Dataset

The WESAD dataset [34] is a multimodal dataset for stress
and emotion recognition. Following a study protocol in a
restricted laboratory setting, three affective states, namely
baseline, stress and amusement, were elicited from 15 sub-
jects during which physiological and motion signals were
collected by two separate sensors: RespiBAN (chest-worn
device) and Empatica E4 (wrist-worn device). Since we
focus on wearable affective computing, only blood volume
pressure (BVP, 64 Hz), electrodermal activity (EDA, 4 Hz)
and temperature (TEMP, 4 Hz) captured by Empatica E4
were applied to the classification task. According to previ-
ous work [13], [14], [34], a stress detection task (non-stress
vs stress) and a emotion recognition task (baseline vs stress
vs amusement) can be performed on the WESAD dataset
for supervised learning, where the non-stress class is a
combination of the baseline and amusement classes.

4.3 CASE Dataset

The CASE dataset [35] is a multimodal emotion recognition
dataset with continuous annotations. Eight video clips were
employed to stimulate four different emotions: amusing,
boring, relaxing and scary from 30 subjects. During the
experiment, subjects were required to self-assess their own
emotional experiences using an annotation interface based
on valence-arousal scores, while six physiological signals
were recorded at a frequency of 1000 Hz. In our work,
we selected blood volume pressure (BVP), electrodermal
activity (EDA) and skin temperature (TEMP) signals as in
the self-supervised dataset for the classification task. We
adopted the same approach as in the literature [11f], [[15]
for the mapping from continuous values of valence and
arousal to discrete classes, resulting in a binary (low vs high
valence/arousal) and a three-class (low vs medium vs high va-
lence/arousal) classification problem for supervised learning.

4.4 K-EmoCon Dataset

The K-EmoCon dataset [36] is a multimodal dataset with
multiperspective annotations for emotion recognition in so-
cial interactions. 32 subjects were divided into 16 groups
for a two-person debate, during which facial expressions,
upper body posture, audio signals, EEG signals and pe-
ripheral physiological signals were recorded by different
sensors. In our experiments, only blood volume pressure
(BVP), electrodermal activity (EDA) and skin temperature
(TEMP) signals measured by Empatica E4 were retained for
downstream emotion recognition tasks. Tripartite annota-
tions, i.e., self-annotations, partner annotations and external
observer annotations were employed to assess subjects’
affective states during the debate. Based on the previous
work [11], we categorized the arousal- and valence-based
annotations into discrete classes, thus forming a binary
(low vs high valence/arousal) and a three-class (low vs
medium vs high valence/arousal) classification problem for
supervised learning.
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Fig. 6: Images of different scenarios captured by cameras placed in the simulation training room: (a): Doctor consultation,
(b): Prevention of escape for patients in an acute agitated state, (c): Second consultation for patients with suicidal tendencies,
(d): Management of cardiac arrest/severe head injury/chest trauma, (e): Diagnostic announcement and (f): the wearable
sensor Empatica E4 wristband used for physiological data collection during the simulation training.

5 EXPERIMENTS AND RESULTS

5.1 Data Preprocessing

To eliminate artifacts, we first applied a low-pass Butter-
worth filter with a cutoff frequency of 0.5 Hz for the EDA
and TEMP signals, while the same type of filter with a
cutoff frequency of 2 Hz is selected for the BVP signal
in PRESAGE, WESAD and K-EmoCon dataset. For the
CASE dataset, a low-pass filter with a cutoff frequency of
2 Hz was utilized to clean these three signals. Moreover,
we performed z-score normalization as in for each
signal recording to reduce the variation in physiological
responses between different subjects. Since the four datasets
involved in the experiments were collected using sensors
with different sampling frequencies, we then uniformly
downsampled all signals in the different datasets to the most
frequently occurring frequency, i.e., 4 Hz. Subsequently,
based on previous work [13], [14], we segmented the signal
recordings of all datasets into windows of length 60 s with
99.5% overlap for PRESAGE and WESAD, 99% and 95%
overlap for CASE and K-EmoCon, respectively. If the data
in a window corresponds to multiple labels, we adopt the
same strategy as in the previous work , i.e., choosing the
one with the majority as the final label. Table [1| concludes
the learning tasks corresponding to each dataset and the
number of samples created after data segmentation. The
last column in the table lists the total size of each dataset,
where the first dimension represents the total number of
samples, while the second and third dimensions represent
the signal length at a frequency of 4 Hz in a 60 s window
after segmentation (i.e., 240) and the number of modalities
(i.e., three modalities: BVP, EDA and TEMP), respectively.

5.2 Implementation and model training

The training process of our SSL-based approach consists of
two main phases. The first phase is to pre-train the proposed
model on the PRESAGE dataset using automatically gener-
ated pseudo-labels for signal transformation identification.
A set of transformation parameter vectors (15, 10, 9, 1.05, 4,

0.2) was chosen based on the experimental results of the pre-
vious study as SNR, magnitude warping variance coef-
ficient, number of permutation segments, number of time
warping segments, time-warping stretching coefficient, and
number of cropping segments for each modality to generate
the five transformations mentioned in Section 8.2.1} The pre-
training process of the proposed model took approximately
26 hours on an NVIDIA RTX 6000 GPU. The second phase
retains only the encoder part of the pre-trained model to
extract valid, generalized representations for emotion recog-
nition on WESAD, CASE and K-EmoCon datasets. We did
not introduce these three public datasets into pre-training
stage in order to verify the knowledge transfer ability of
the learned features across different datasets. Ultimately, the
proposed model was installed using Pytorch. The optimal
models for the pretext and downstream tasks were obtained
by the SGD (Stochastic Gradient Descent) optimizer with
weight decay parameter of 5e-7 to avoid overfitting. For
the first phase (self-supervised pre-training), learning rate,
batch size and the number of epochs are set to 5e-3, 32 and
20, respectively. For the second phase (supervised emotion
recognition), the learning rate, batch size and number of
epochs are set to le-4, 128, 20 on WESAD dataset, while for
CASE and K-EmoCon datasets, these parameters were set
to 1e-3, 64 and 64, respectively.

5.3 Evaluation metric and protocol

For a fair comparison, we adopted the same experimental
protocol as in [11]], [13], [14], [15], [34], i.e. Leave-One-
Subject-Out cross validation, which has the benefit of exam-
ining the generalization ability of the model to unpresented
subject data. Two metrics, accuracy and Fl-score applied
in [11], [13], [14], [15], were selected to evaluate the
performance of the proposed approach on the emotion
recognition task. Accuracy represents the proportion of
correctly classified samples to the total number of samples.
Fl-score is considered as a harmonic mean of the precision
and recall, which is suggested for evaluating imbalanced
datasets.
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TABLE 1: The learning tasks assigned to each dataset and the corresponding distribution of samples between classes in

different datasets. (P: Pretext task, D: Downstream task.)

Dataset Type Task Category (no. of samples) Total Size
Transformation Original version and
PRESAGE P Recognition five transformations (681641) (4089846, 240, 3)
Stress-2 stress (36279), non-stress (85574)
WESAD D Emotion-3 baseline (66859), stress (36279), amusement (18715) (12185, 240, 3)
Arousal-2 low (33211), high (61919)
Valence-2 negative(32017), positive (63113)
CASE D Arousal-3 low (4847), medium (26898), high (63385) (95130, 240, 3)
Valence-3 negative(9312), neutral (56870), positive (28948)
Arousal-2 low (3729), high (1488)
. Valence-2 negative(4050), positive (1167)
K-EmoCon || D Arousal-3 low (1783), medium (1904), high (1530) (5217, 240, 3)
Valence-3 negative(1783), neutral (1904), positive (1530)

5.4 Baseline Models

Since the exploration of wearable emotion recognition based
on peripheral physiological signals has not been well estab-
lished, a series of baseline models based on fully-supervised
learning, unsupervised learning, and self-supervised learn-
ing were implemented in addition to available state-of-the-
art methods to provide a more comprehensive and reliable
performance comparison. The followings are brief descrip-
tions of these models:

Supervised learning-based methods:

o SimpDCNN [29]: it is a simple convolutional network
consisting of three convolutional blocks with kernel
sizes of 24, 16 and 8, each followed by a ReLU activation
and a dropout layer.

e MulT [38]]: it is a transformer-based multimodal fusion
method applied to video, audio and text. The unimodal
data is first passed through a temporal convolutional
network to obtain low-level features, then transformers
based on cross-modal attention and self-attention mech-
anisms are applied successively for effective fusion.

e ResNet [39]: it is a 1D convolution-based residual
network adapted to physiological signals proposed in
[40], [41]], which is constructed similarly to ResNet-18,
consists mainly of 8 residual blocks with batch normal-
ization (BN) operation and ReLU activation function,
where each block contains two convolutional layers.
The three modalities: BVP, EDA, TEMP are fed into this
network as multi-channel signals.

e Ours (Supervised): it is our proposed multimodal net-
work, trained in a fully-supervised manner.

In addition, three additional supervised methods were ap-
plied for the performance comparison on the CASE and K-
EmoCon datasets since they lacked baseline results com-
pared to the WESAD dataset.

o DCNN [21]]: it employs a four-layer 1D convolutional
neural network to extract modality-specific features,
and a three-layer fully connected network connected
at the bottom of the network for classification.

o Attn-BiLSTM [42]: it applies a multilayer bidirectional
LSTM for capturing valid temporal information for
multimodal signals. The attention mechanism was ap-
plied to select the most relevant multimodal representa-
tion of the emotional state as input for a fully connected
layer-based classifier.

o MMResLSTM [43]: it uses separate four-layer LSTM-
based models for multimodal signals with residual
connections. Moreover, the weights of the LSTM layers
of both modalities are shared to activate cross-modal
communication.

Unsupervised learning-based methods:

o Autoencoder: it is an autoencoder with the same en-
coder part as our proposed model, while the decoder
part consists of three transposed convolutional blocks
for the reconstruction of the BVP, EDA, TEMP signals.
Each unimodal decoder consists of four-layer trans-
posed convolution with the same parameters as the
convolutional layers in the encoder.

Self-supervised learning-based methods:

o SigRep [11]: it adopts a similar model architecture to
SimCLR [18], containing an encoder of four inception-
inspired blocks and a projection head consisting of fully
connected layers, where each inception block consists
of 1D convolutional layers with different kernel sizes
and a maximum pooling layer in parallel. The model
is applied independently to each signal modality for
contrastive representation learning.

o BENDR [44]: it is a simpler version of wav2vec 2.0
[45] that was applied to EEG signals. We adapted it
for application to peripheral physiological signals at
low frequencies. The multi-channel signal consisting of
BVP, EDA, TEMP is first passed through a four-layer
convolution with kernel sizes of 3, 2, 2, 2, where the
GeLU is chosen as the activation function along with
GroupNorm and Dropout operations, and the obtained
low-level features are randomly masked and fed to the
same transformer as our proposed model. The final
output features are used to reconstruct the masked
features.

For a fair comparison, we used the code provided by the
authors of the above methods and applied the same ex-
perimental setup. If the code is not available, we followed
the parameters provided in these works for the model im-
plementation. For those models initially designed for non-
peripheral physiological signals, the parameters have been
slightly adjusted to match the low-frequency wearable data
for proper operation.
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TABLE 2: Performance comparison of different emotion
recognition tasks with state-of-the-art methods on the WE-
SAD dataset. (SL: supervised learning methods, UL: un-
supervised learning methods, SSL: self-supervised learning
methods, S: supervised, F: frozen, T: fine-tuned.)

Stress-2 Emotion-3
Type | Methods Acc [ FI | Acc | FI
LDA [34] 86.46 | 83.77 | 68.85 | 58.18
RF [34] 88.33 | 86.10 | 76.17 | 66.33
SimpDCNN [29] | 90.12 | 88.22 | 78.30 | 74.59
S MulT [38] 91.76 | 91.17 | 81.09 | 78.27
ResNet [39] 91.93 | 9097 | 80.85 | 79.63
StressNAS [13] 92.87 - 81.78 -
Res-TCN [14] 94.16 | 93.62 | 83.69 | 81.61
Ours (S) 93.83 | 9255 | 84.81 | 83.76
UL Autoencoder 91.51 | 90.33 | 80.39 | 79.13
SigRep [11] (F) 92.71 | 91.99 | 81.11 | 78.92
SigRep [11] (T) 9491 | 93.09 | 84.27 | 82.35
SSLL BENDR [44] (F) 9253 | 91.72 | 8198 | 79.71
BENDR [44] (T) 93.19 | 9255 | 82.44 | 80.69
Ours (F) 94.81 | 93.69 | 83.81 | 82.01
Ours (T) 96.29 | 95.11 | 84.94 | 82.60

5.5 Experimental Results
5.5.1 Comparision with state-of-the-art methods

Emotion-related classification tasks were performed on WE-
SAD, CASE, K-EmoCon datasets to evaluate the perfor-
mance of the proposed SSL model. Tables Ml summarize
performance comparisons with the state-of-the-art fully su-
pervised, unsupervised, and self-supervised learning-based
methods. For the SSL-based approaches, we report the re-
sults under two training modes: Frozen (F) and Fine-Tuned
(T). The first mode refers to freezing the pre-trained encoder
part and updating only the parameters of the classification
head in the downstream classification tasks, which is de-
signed to investigate the effectiveness of the learned self-
supervised multimodal features. The second mode employs
the pre-trained encoder parameters for model initialization
and updates all parameters normally to examine the perfor-
mance gain relative to the Frozen mode. From the tables,
first, it can be observed that our fully-supervised model
obtained better performance than other supervised learning
approaches in most emotion recognition tasks, confirming
the effectiveness of the proposed architecture. Secondly,
regarding our SSL model, the comparison results indicated
that, under the Frozen mode, our method achieved superior
performance over other fully supervised, unsupervised, and
self-supervised based approaches on 6 out of 10 tasks,
demonstrating the generalization and high discrimination of
the representation learned through the SSL pretext task. In
addition, the performance of our model was improved in the
Fine-Tuned mode, further narrowing the gap with super-
vised baselines and thus achieving state-of-the-art results in
8 out of 10 tasks. Additionally, it is interesting to note that as
the number of supervised samples decreases from WESAD
to CASE to K-EmoCon, the higher the performance gain
obtained by our SSL-based approach with respect to the su-
pervised approaches. This can be attributed to the fact that
supervised learning methods are more prone to overfitting
than self-supervised learning methods on low data regimes.
Further research on the performance comparison of these
two types of methods on limited data is presented in Section
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Thirdly, in comparison with non-supervised learning
methods, we significantly improved the performance of
SigRep and BENDR, especially on the CASE and K-EmoCon
datasets. The source of this performance gap may be related
to the deployed fusion strategies, in addition to the selected
pretext tasks. SigRep [11] learned effective representations
for each modality independently through contrastive learn-
ing, whereas BENDR [44] regarded multimodal signals as
a whole to reconstruct obscured multimodal features. Thus,
these two approaches ignored the encoding of inter- and
intra-modal correlations, respectively. The impact of differ-
ent SSL fusion strategies on downstream performance is
later investigated in Section Furthermore, the results
of the Autoencoder are inferior to other SSL methods. This
may be due to the unsupervised nature of its pre-training
process which results in more redundant patterns being
captured that are irrelevant to the downstream tasks.

5.5.2 Self-supervised learning vs Supervised learning on
limited labeled data

In the previous section, our self-supervised approach pre-
sented state-of-the-art performance on emotion recognition
tasks with all labeled data in the dataset. To further in-
vestigate the effectiveness of our fine-tuned model on a
limited number of labeled samples, we performed a com-
parison with four supervised learning models: our proposed
model with fully-supervised learning, MulT [38], ResNet
[39] and SimpDCNN [29]. MulT and ResNet were selected
since they share similar structures to our model and are
the best-performing supervised models in addition to ours.
Besides, SimpDCNN, as a low-complexity model, is not
prone to overfitting on limited data, allowing for a more
comprehensive performance comparison. We implemented
a similar sampling procedure reported in [8]], [9], i.e., 1,
50, 100, 500, and 1000 samples were randomly selected for
each class in the three datasets for training the classification
model. This process was executed 50 times independently
for different numbers of samples. The resulting average
accuracy and the corresponding standard deviation of all
compared models are illustrated in Fig. [7} First, our fine-
tuned model consistently outperforms other supervised
learning-based models for sample sizes varying from 1 to
1000 on the emotion recognition tasks of all three datasets.
Among supervised learning-based methods, SimpDCNN
exhibited the poorest results, over which our SSL model
could achieve significant performance gains of 6.84% -
21.19% for different downstream tasks. Our fully-supervised
model yields the highest results compared to other super-
vised models, whereas the fine-tuned model initialized by
self-supervised learning parameters continues to enhance
performance by 5.24% - 13.63%. Second, for all downstream
tasks, the standard deviation obtained by our fine-tuned
model is narrower with respect to the supervised learning-
based deep models, demonstrating its superior generaliza-
tion ability across different samples. The above findings are
consistent with those reported in [46] that the advantage
of the self-supervised learning-based method is its better
regularisation on low data regimes to avoid overfitting
problems compared to fully-supervised methods. As the
amount of available labeled data increases, the difference
in performance between the two types of models gradually
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TABLE 3: Performance comparison of different emotion recognition tasks with state-of-the-art methods on the CASE
dataset. (SL: supervised learning methods, UL: unsupervised learning methods, SSL: self-supervised learning methods, S:

supervised, F: frozen, T: fine-tuned.)

Type | Methods Valence-2 Valence-3 Arousal-2 Arousal-3
Acc F1 Acc F1 Acc F1 Acc F1
SimpDCNN [29] 7133 | 68.74 | 59.20 | 51.95 | 67.16 | 61.60 | 56.80 | 53.85
DCNN [21] 7235 | 69.96 | 59.78 | 52.80 | 69.63 | 63.43 | 56.09 | 53.51
MMResLSTM [43] 7334 | 7096 | 60.78 | 53.09 | 71.12 | 68.06 | 57.41 | 54.69
SL Attn-BiLSTM [42] 7425 | 71.27 | 61.97 | 53.64 | 7040 | 66.52 | 58.27 | 54.76
MulT [38] 74.81 73.17 | 63.14 | 6250 | 71.28 | 70.44 | 62.15 | 58.48
ResNet [39] 7529 | 74.62 | 62.89 | 62.18 | 7235 | 72.19 | 65.46 | 59.69
Ours (S) 76.94 | 75.06 | 6458 | 63.29 | 74.15 | 72.86 | 66.32 | 61.78
UL Autoencoderr 73.23 | 72.05 | 60.77 | 57.32 | 69.16 | 67.13 | 60.08 | 55.12
CorrNet [15] 76.37 | 76.00 | 60.15 | 53.00 | 74.03 | 72.00 | 58.22 | 55.00
SigRep [11] (F) 71.74 | 64.78 | 63.85 | 54.97 | 70.79 | 67.28 | 63.09 | 56.99
SigRep [11] (T) 7329 | 69.84 | 64.63 | 55.68 | 72.08 | 69.45 | 64.88 | 58.81
SSL BENDR [44] (F) 7294 | 6848 | 61.56 | 50.86 | 72.04 | 67.43 | 62.37 | 55.63
BENDR [44] (T) 7233 | 67.62 | 6215 | 53.03 | 71.51 | 67.32 | 63.52 | 57.01
Ours (F) 7749 | 75.85 | 65.51 64.07 | 73.67 | 70.76 | 65.09 | 59.64
Ours (T) 78.57 77.74 66.64 64.85 74.98 73.10 66.19 60.56

TABLE 4: Performance comparison of different emotion recognition tasks with state-of-the-art methods on the K-EmoCon
dataset. (SL: supervised learning methods, UL: unsupervised learning methods, SSL: self-supervised learning methods, S:

supervised, F: frozen, T: fine-tuned.)

Type | Methods Valence-2 Valence-3 Arousal-2 Arousal-3
Acc F1 Acc F1 Acc F1 Acc F1
SimpDCNN [29] 7714 | 70.06 | 59.67 | 4898 | 7248 | 61.21 | 46.49 | 38.34
DCNN [21] 7872 | 72.09 | 6197 | 51.39 | 73.67 | 6553 | 4991 | 39.24
Attn-BiLSTM [42] 79.76 | 72.19 | 6256 | 54.35 | 73.30 | 66.23 | 46.95 | 46.77
SL MMResLSTM [43] | 78.79 | 72.76 | 61.25 | 51.65 | 74.31 | 67.88 | 44.68 | 37.19
MulT [38] 80.13 | 76.72 | 6395 | 59.07 | 74.19 | 7249 | 49.25 | 47.86
ResNet [39] 80.53 | 78.04 | 64.60 | 62.22 | 7435 | 73.20 | 50.09 | 46.77
Ours (S) 81.51 | 78.60 | 64.07 | 60.83 | 75.17 | 73.62 | 50.42 | 47.52
UL Autoencoder 80.58 | 7558 | 63.65 | 58.32 | 71.56 | 69.10 | 48.83 | 47.10
SigRep [11] (F) 7898 | 73.15 | 63.00 | 54.07 | 73.36 | 67.80 | 47.85 | 42.58
SigRep [11] (T) 79.14 | 7355 | 61.74 | 52.69 | 73.94 | 68.71 | 48.56 | 43.90
SSLL BENDR [44] (F) 79.83 | 72.62 | 61.38 | 53.20 | 72.86 | 66.16 | 50.68 | 48.03
BENDR [44] (T) 7873 | 72.15 | 61.85 | 54.47 | 73.82 | 69.46 | 52.88 | 51.24
Ours (F) 8295 [ 80.07 | 66.97 | 61.28 | 74.79 | 73.40 | 50.76 | 48.66
Ours (T) 84.14 | 81.08 | 68.37 | 63.10 | 76.40 | 74.29 | 54.60 | 52.34

decreases. Overall, the comparison results suggest that the
proposed method can produce more meaningful and robust
representations for wearable emotion recognition than fully-
supervised methods, offering a potential solution to the
problem of little labeled data.

5.6 Ablation Studies

Different types of ablation experiments were designed and
conducted on the WESAD, CASE, and K-EmoCon datasets
to verify the validity of the proposed method. The encoder
part of the models involved was trained in freezing mode
and the obtained emotion recognition results are reported in
the following sections.

5.6.1 Ablation study of different fusion strategies

To demonstrate the effectiveness of the selected fusion strat-
egy, we conducted ablation studies on different SSL fusion
strategies. Three variants of the proposed model based on
early fusion, late fusion, and intermediate fusion strate-
gies were implemented for comparison. The corresponding
model architectures used for comparison are illustrated
in Fig (8l In all variant models, the TCN-based encoder
E,, transformer F, and signal transformation classification

head C all share the same parameter settings as the pro-
posed model (details are given in Section 3.2.2). For the
Early fusion setup, we treated the multimodal physiological
signal as a whole, i.e. a multichannel signal, from which
multimodal representations will be learned directly. For
the Late fusion setup, separate encoders were applied to
individual modalities to extract unimodal features for clas-
sification. In addition, the third variant model has the same
fusion strategy as ours, where unimodal features were first
captured and then concatenated to learn more advanced
multimodal features. The difference, however, is that this
model performs classification by multimodal features. This
is to verify the necessity of conducting modality-specific
classification in the proposed method, and we refer to this
setup as Intermediate fusion with an overall loss. Con-
sequently, the corresponding evaluation results are listed
in Table |5 Our model consistently achieved the best per-
formance on all datasets, demonstrating the effectiveness
of the selected fusion strategy, i.e., intermediate fusion. In
addition, the intermediate fusion-based models performed
better than those based on the other two fusions. This
can be attributed to the fact that the intermediate fusion
simultaneously models the heterogeneity and coordination
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Fig. 7: Performance comparison with state-of-the-art supervised learning-based methods on limited labeled data sampled
from the three emotion recognition datasets. The horizontal axis of each subplot is the number of randomly selected
samples from each class, varying from 1 to 1000, while the vertical axis is the corresponding average accuracy.

(1) Early Fusion + (2) Late Fusion
!
7 ! 7 GAP.
EDA—M‘{% ; EDAH?"E;’"EHE"
=, I =
= ! =
3 GAP ! 3 GAP
BVPﬂ% EDHES‘»CQ: BVP"%"Ep"Es‘*E"
I !
3 3
gl . o GAP.
TEMP —f & | TEMP*.O",EpA.ESﬂC*.
= . = o
,,,,,,, g
(3) Intermediate Fusion with an overall loss | (4) Ours
. !
7 ‘ % GAP.
EDA — @ |—| Ep ! EDA —| @& |— Ep Cr
£ , =
-
3 GAP ! 3 GAP
BVP — @ | — Ep Es — C — | B —g —E Es (Sne
g : g a
§ l 2 GAP
TEMP — & | — Ep ! TEMPHg-HEp L.cl
=) | S ==
["] TCN-based encoder (Ep) O Transformer (Es) () classfication head (C)

Fig. 8: Different architectures used in the ablation studies of
fusion strategies. (GAP: 1D global average pooling applied
before classification.)

of multimodal physiological signals, whereas the other two
fusion approaches only consider one of these two properties.
Furthermore, the third setting Intermediate fusion with
an overall loss performs slightly worse than our model,
affirming the importance of modality-specific classification.
The benefit of applying modality-specific loss functions is
that it forces the model to learn, for each modality, generic
features that are robust to perturbations in the time or mag-
nitude domain, while the application of an overall loss fails
to distinguish each modality’s contribution to the learned
representation.

5.6.2 Ablation study of different modalities

We conducted an ablation study of three modalities: EDA,
BVP, TEMP and their combinations to explore their perfor-
mance on emotion recognition tasks. The resulting average
accuracies and Fl-scores of our model are summarized in
Table@ First, for the unimodal performance, the EDA signal
performs outstandingly well among all the modalities, espe-
cially when detecting stress and arousal states. This is con-
sistent with previous findings that EDA is one of the most
relevant indicators of stress [47] and has even been adopted
as ground truth in some studies [48], [49] for the stress
analysis of other signals. In addition, it has been proven
to correlate linearly with arousal [49]. In the bimodal-based

classification, we first observed that the BVP+EDA setup
performed better on the stress-related tasks (i.e. S-2 and
E-3 on the WESAD dataset) than the other setups. This
suggests that the BVP signal and the EDA signal are highly
coordinated and correlated when the stress state is elicited,
making their combination more effective for detection. This
finding is quite reasonable. The BVP signal contains infor-
mation on heart rate (HR) and heart rate variability (HRV)
thus providing a strong correlation with stress states. In
[50], HRV and EDA were identified as the most relevant
physiological indicators for the real-time stress detection
task. Secondly, the EDA+TEMP setup achieved the best
performance on the classification task regarding arousal
level. This finding is supported by previous research [51]
which indicated that EDA and TEMP had a positive and
negative correlation with arousal scores respectively. Lastly,
our model achieved performance gains on both bimodal and
trimodal data in most cases, confirming again its effective-
ness for multimodal fusion.

5.6.3 Ablation study of missing modalities

We investigate the robustness of the proposed SSL model
when a signal modality is missing in downstream tasks,
which is quite common in real-world scenarios. There exist
a variety of experimental setups for incomplete modalities.
Based on [52], we selected the most challenging one, i.e.,
a modality is missing in both training and testing of the
downstream task, where 50% of the multimodal samples
were first randomly selected and subsequently the data
values of a specific modality were set to 0 to simulate its
absence. The robustness of the proposed SSL model was
measured by calculating its difference in performance in
two cases: one with all modalities present and one with
missing modalities. The smaller the difference, the more
robust the model is considered to be. The above experi-
mental procedure was repeated 10 times. Additionally, we
benchmarked our model against the SSL baseline models:
SigRep and BENDR. Fig. 0| presents the average degradation
in accuracy and Fl-score of the compared models when
a modality is missing in different downstream tasks. A
series of t-tests were further conducted on the performance
differences for a more systematic robustness comparison.
From the evaluation results, we can first observe that the
performance drops of our model are significantly lower
(p < 0.05) than other SSL models on most tasks. This
demonstrates the superiority of the proposed method in
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TABLE 5: Ablation study of different fusion strategies: average accuracy and Fl-score obtained for emotion recognition on
WESAD, CASE, and K-EmoCon dataset using different variant models. (S-2: Stress-2, E-3: Emotion-3, V-2: Valence-2, A-2:
Arousal-2, Inter w/ ol: Intermediate fusion with an overall loss.)

WESAD CASE K-EmoCon
Type S-2 E-3 V-2 A-2 V-2 A-2
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Early 91.22 | 8994 | 80.82 | 78.79 | 73.01 | 72.20 | 69.13 | 67.06 | 79.20 | 74.12 | 71.57 | 69.60
Late 93.02 | 91.73 | 81.48 | 80.91 | 75.58 | 72.27 | 7196 | 68.52 | 80.94 | 7643 | 72.81 70.87
Interw/ ol | 9353 | 9277 | 82.82 | 81.62 | 76.69 | 7352 | 7224 | 69.11 | 81.48 | 7722 | 73.06 | 71.29
Ours 94.81 | 93.69 | 83.81 | 82.01 | 77.49 | 75.58 | 73.67 | 70.76 | 82.95 | 80.07 | 74.79 | 73.40

TABLE 6: Ablation study of different modalities and their combinations: average accuracy and Fl-score obtained with
different modality combinations in the downstream emotion recognition tasks, where the best performing individual
modality and bimodal combinations for each task are underlined. (S-2: Stress-2, E-3: Emotion-3, V-2: Valence-2, A-2:

Arousal-2.)
WESAD CASE K-EmoCon
Modality S-2 E-3 V-2 A-2 V-2 A-2
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
EDA 92.36 90.58 | 78.72 75.90 | 75.21 74.80 | 72.15 70.13 | 80.65 74.60 | 73.09 72.69
BVP 87.82 86.35|75.20 68.80|75.90 75.15|69.23 65.07 | 80.76 74.13 |72.88 70.67
TEMP 78.15 7691 | 69.86 65.37 | 71.64 68.66 | 68.97 62.16 | 79.02 72.78 | 72.52 70.42
EDA + BVP |93.73 92.38 | 82.32 80.61 | 76.26 75.13 | 72.13 70.27 | 80.87 75.48 | 73.14 71.78
EDA + TEMP | 90.95 89.62 | 79.74 76.09 | 76.03 74.97 | 72.92 70.54 | 81.70 77.77 | 74.61 72.93
BVP + TEMP | 84.82 80.45|72.88 66.16 | 72.35 71.31 | 71.14 68.04 | 80.12 75.05 | 72.43 69.86
All 94.81 93.69 | 83.81 82.01 | 77.49 75.85 | 73.67 70.76 | 82.95 80.07 | 74.79 73.40
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Fig. 9: Evaluation results of the robustness of the SSL. method
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s in the presence of missing modalities. The horizontal axis of

each subplot represents the name of the missing modality, while the vertical axis represents the drops in model performance
compared to the case of complete modalities, where the metrics of the vertical axes in the first and second rows are accuracy
and F1-score, respectively. (ns: no significant difference; *: p < 0.05, the more asterisks, the more significant the difference.)

terms of robustness. Second, we also note that the impact
of missing modalities on the robustness of SSL methods is
task-dependent. For downstream tasks related to stress and
arousal levels, more severe performance declines could be
obtained in the absence of the EDA signal, compared to the
other two modalities. This result indicates the importance of
the EDA signal for identifying these two emotional states.
Similarly, missing the TEMP signal also leads to a consid-
erable reduced performance in arousal-based recognition,
whereas, in the valence-based tasks, the loss of the BVP
signal has the greatest impact on performance. The above
results, consistent with those in Section [5.6.2 reconfirm the
effect of different modalities on specific emotion recognition.

5.6.4 Ablation study of different model components

We also investigate the impact of different model com-
ponents on the performance of downstream classification

tasks. To validate the contributions of the modality-specific
encoder and the shared encoder, we designed two alterna-
tive models: No TCN and No Transformer. No TCN elim-
inates the temporal convolution network (TCN) where uni-
modal data is passed directly through the projection layer
(i.e. a fully connected layer with 128 units) in the modality-
specific encoder shown in Fig. 3] and the resulting uni-
modal low-level features are then concatenated as a whole
and fed into the transformer. No Transformer removes the
multimodal transformer, where unimodal features are first
extracted by modality-specific encoders and then averaged
along the time dimension by the 1D global average pooling
(illustrated in Fig. 5) for the final classification tasks. Table
[7] present the classification results of the above two variant
models on the three datasets. Our proposed model enhances
both the performance of No TCN and No Transformer
models on all classification tasks across different datasets,
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TABLE 7: Ablation study of different model components: average accuracy and Fl-score obtained for emotion recognition
on WESAD, CASE, and K-EmoCon dataset using different variant models. (5-2: Stress-2, E-3: Emotion-3, V-2: Valence-2,

A-2: Arousal-2)

WESAD CASE K-EmoCon
Model Variants S-2 E-3 V-2 A-2 V-2 A-2
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

No TCN 91.09 | 90.42 | 79.86 | 78.77 | 64.15 | 6220 | 66.87 | 57.87 | 79.39 | 75.34 | 71.24 | 66.59
No Transformer 92.18 | 91.55 | 81.08 | 79.30 | 74.65 | 71.53 | 70.04 | 68.40 | 80.67 | 76.17 | 72.09 | 70.66
With fixed PE 9349 | 91.63 | 82.38 | 80.47 | 76.37 | 7445 | 72.59 | 70.05 | 80.32 | 77.43 | 73.35 | 71.20
With learnable PE | 92.68 | 91.32 | 8242 | 81.24 | 7646 | 75.35 | 73.16 | 70.33 | 81.59 | 78.62 | 74.08 | 72.09
Our Model 94.81 93.69 | 83.81 82.01 77.49 75.58 73.67 | 70.76 82.95 | 80.07 | 74.79 73.40

TABLE 8: Ablation study of individual signal transformations and their combinations: average accuracy and Flscore
obtained for emotion recognition on WESAD, CASE and K-EmoCon datasets using different transformations in self-
supervised pertaining, where the best-performing transformations and combinations of transformations in each task are
underlined. (N: Noise addition, M: Magnitude-warping, P: Permutation, T: Time-warping, C: Cropping.)

T WESAD CASE K-EmoCon
ype 52 3 V2 A2 V2 A2
Single Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
N 90.18 89.16 | 78.04 7624 | 7353 7042 | 69.16 6148 | 79.69 7430 | 70.23 67.38
M 89.74 87.86 | 7690 73.77 | 68.75 67.46 | 6828 6694 | 80.13 7544 | 71.11 70.54
P 91.20 89.33 | 7838 75.67 | 73.61 71.17 | 7146 69.82 | 80.22 78.12 | 71.69 70.82
T 91.34 90.87 | 81.15 8044 | 71.17 69.53 | 70.81 69.01 | 80.39 7831 | 70.59 67.90
C 89.48 88.06 | 7921 7738 | 69.35 6246 | 69.17 66.60 | 79.68 74.07 | 70.87  69.05
Same Domain Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
N+M 89.69 8843 | 7752 7559 | 75.87 7422 | 71.83 69.62 | 81.46 7895 | 73.14 72.08
P+T+C 93.67 92.88 | 8231 8047 | 73.71 7195 | 7092 69.05 | 80.77 7858 | 72.66 71.11
Cross Domain Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
N+P 92.15 91.12 | 80.02 7893 | 75.77 7357 | 72.85 70.09 | 80.26 78.54 | 73.09 71.73
M+P 91.75 9047 | 79.24 77.31 7401 7292 | 7239 69.87 | 8034 79.15 | 71.89 70.76
N+T 9295 91.69 | 83.11 81.14 | 73.51 71.21 | 70.03 6891 | 81.57 79.43 | 72.04 69.75
M+T 91.51 90.18 | 79.85 7752 | 7145 70.07 | 71.61 69.14 | 80.29 79.04 | 71.39 69.61
N+C 91.28 90.15 | 7881 76.66 | 73.96 72.60 | 7057 6844 | 7952 77.83 | 73.13 7152
M+C 90.08 89.62 | 7827 7640 | 71.90 69.45 | 69.53 67.89 | 82.14 79.61 | 73.89 7251
All 94.81 93.69 | 83.81 82.01 | 7749 75.85 | 73.67 70.76 | 8295 80.07 | 74.79 73.40

highlighting the importance of capturing the heterogeneity
and cross-modal correlation of multimodal signals simulta-
neously. Subsequently, we examined whether the addition
of positional encoding could lead to better performance for
the transformers with heterogeneous embedding as input.
We employed two types of positional encoding (PE): With
fixed PE and With learnable PE in the transformer and
compared their performance with our PE-free model. With
fixed PE added the fixed positional encoding obtained from
sine and cosine functions of different frequencies as pro-
posed in [33] to the input embedding of the multimodal
transformer while With learnable PE adopted the same
learnable positional encoding in [53]]. Table [/|also show the
classification results of the proposed model with different
PE setting. We observed that temporal context information
injected by two types of PE did not contribute to model
performance on all classification tasks as expected. This can
be attributed to the fact that the multimodal embeddings
generated by the separate encoders already own different
structures, hence the additional positional information in-
troduces redundancy into the model.

5.6.5 Ablation study of different signal transformations

We further explored the impact of using individual transfor-
mations and their combinations in the pretext task on down-
stream emotion recognition performance. As mentioned in
Section the five transforms employed can be divided
into two classes, i.e., magnitude domain transformations
and time domain transformations. Therefore, the types of

combinations are arranged accordingly as combinations of
transformations within the same domain and combinations
of transformations across domains. The evaluation results
obtained on different emotion classification tasks are pre-
sented in Table [8! First, we noticed that Permutation and
Time-Warping, which perturbed the temporal order and
duration of events within the window, performed best
among the individual signal transformations, which is con-
sistent with the results in [7], [29], demonstrating the
necessity to encode the temporal relationships of signals
for emotion recognition. Second, the pre-trained models
obtained by combining the same domain or cross-domain
transformations generally perform better than those based
on individual transformations. The performance of these
combinations varies depending on the specific task. For
the same domain transformation combinations, P+T+C per-
forms better for stress-related tasks, whereas N+M is more
appropriate for arousal and valence-based tasks. For the
cross-domain combinations, N+T exhibited the best per-
formance on the classification tasks regarding stress, while
N+P and M+C performed best in predicting the arousal and
valence states. Finally, we found that models based on cross-
domain combinations outperformed those based on the
same domain combinations in two-thirds of the downstream
tasks. Meanwhile, our pre-trained models using the full set
of transformations consistently achieved superior perfor-
mance in the classification tasks. This can be attributed to
the fact that different types of transformations inject diverse
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prior knowledge for multimodal representation learning,
thus contributing to the generalizability of the network.

6 CONCLUSION

In this paper, we have proposed a self-supervised mul-
timodal representation learning framework for wearable
emotion recognition. Signal transformation recognition is
defined as a pretext task, where a large amount of un-
supervised data is automatically labeled by the imposed
signal transformation category for pre-training of the SSL
model. Subsequently, the encoder part of the pre-trained
model consisting of a temporal convolution network and
transformer is maintained to extract effective multimodal
representations for the downstream task, i.e. emotion recog-
nition. Eventually, we executed the pre-training on a large-
scale unrestricted emotion dataset PRESAGE and verified
the validity of the proposed method on three public mul-
timodal emotion recognition datasets. Experimental results
indicated that our approach surpassed fully-supervised, un-
supervised, and self-supervised learning methods, achiev-
ing state-of-the-art results in various emotion-related tasks.
Additionally, the proposed method performs better than
the fully-supervised learning approach on limited labeled
data, demonstrating its superior generalization ability to
avoid overfitting problems. A series of ablation studies also
confirmed the efficiency of the designed model architecture.
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