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Guest Editorial
Neurosymbolic AI for Sentiment Analysis

I. INTRODUCTION

N EURAL network-based methods, especially deep learn-
ing, have been a burgeoning area in AI research and

have been successful in tackling the expanding data volume as
we move into a digital age. Today, the neural network-based
methods are not only used for low-level cognitive tasks, such
as recognizing objects and spotting keywords, but they have
also been deployed in various industrial information systems to
assist high-level decision-making. In natural language process-
ing, there have been two milestones for the past decade: one is
word2vec [1], a group of neural models that learn word embed-
dings (vector representations of words) from large datasets; and
one is the most recent GPT-based models [2], which combine
reinforcement learning with a generative transformer in order to
enable multi-round end-to-end conversations. While producing
highly accurate predictions on datasets and generating human-
like utterances, those neural network-based artifacts provide
little understanding of the internal features and representations
of the data. Many problems and concerns subsequently emerge
from this black-box issue. Because some of the problems and
concerns are also relevant in the context of sentiment analysis,
we list five of them below:
� Interpretability: Neural networks, particularly deep learn-

ing models, often have complex architectures and millions
of parameters. Understanding how these models arrive at
their predictions or decisions can be challenging. Although
some sentiment analysis applications are result-driven,
there are other critical and sensitive applications such as
finance, healthcare, or legal domains, where explanations
and justifications are essential. For instance, traders would
like to first know what are the triggering entities and events,
and why they cause market sentiment to fluctuate [3]; doc-
tors and medical staff analyze sentiment from health social
media, but the ultimate purpose is to leverage the sentiment
to discover medication non-adherence reasons [4]. These
tasks need more goal-driven neural architecture design,
which transcends the domain of neural network and ma-
chine learning. Although much effort has been devoted to
opening the black-box of neural networks, e.g., sensitivity
analysis, the interpretability problem generally worsens as
the model complexity grows.

� Bias from annotations: Neural network models typically
require large amounts of labeled data for training. Gather-
ing and annotating such datasets can be time-consuming,
expensive, or even impractical for certain languages or
specialized domains. Annotation practices for sentiment
analysis, e.g., [5], [6], have shown that there is only limited
degree of agreement for some ambiguous expressions.
This data reliance can also introduce biases present in
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the training data, which is more difficult to find than in a
structured knowledge base. These biases would finally lead
to erroneous predictions and understanding of individual’s
sentiment.

� Diagnozability: Sentiment analysis models trained from
open data usually need adaptation before being deployed
to a specific use environment. During this phase, multiple
rounds of tests are conducted and feedback is gathered.
This feedback, even clearly sorted as in [7] or [8], are
difficult to fix. In fact, neural networks can struggle with
generalizing to data that differs significantly from their
pre-training distribution. When dealing with the feedback,
such as rare words, novel sentence structures, or domain-
specific jargon, neural networks are constrained with the
format of “instance-label”, and the outcomes of such fixes
are unreliable.

� Lack of commonsense: Neural network-based models learn
from patterns, but often lack explicit knowledge of com-
mon sense and world knowledge. For example, to un-
derstand the sentiment in the sentence “The movie had
stunning cinematography, but the plot fell flat.”, one needs
to know a commonsense that movie is expected to be dra-
matic and “fell flat” carries a negative sentiment toward its
plot. Without commonsense, the sentence becomes a pure
description and its link to the elicited-sentiment relies on
commonsense. Neural network-based models learn from
the various patterns associated with this sentence, after
which, some overfitted patterns may be generalized to other
sentences, causing hallucinated sentiment from objective
descriptions.

� Cost: Sentiment analysis in areas such as customer rela-
tionship management works on a great amount of data.
When the focus is a final statistical result, the speed and
cost of sentiment analysis on a single piece of text becomes
important. It is well known that modern large language
models are expensive to train and run (e.g., training GPT-3
and GPT-4 involves tens of thousands of GPUs running
continuously for months [9], and are estimated to cost over
4 million USD; when running, its API is priced at around
0.1 USD per thousand words). Large-scale or real-time sen-
timent analysis jobs with time/cost constraints, therefore,
becomes challenging.

The potentially broad societal impacts of neural network-
based methods alert people to a dystopian future and re-ignite
research on neurosymbolic AI (also known as hybrid AI):
a key idea to mitigate unexpected model behavior and in-
ject interpretability by combining learnable parameters (neuro)
with predefined knowledge bases or templates (symbolic). In
traditional symbolic AI, knowledge and reasoning are repre-
sented using explicit symbols and rules, and logical inference
is used to manipulate these symbols to derive new knowl-
edge. These features supplement neural models with explicit
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symbolic representations and reasoning capabilities. In neu-
rosymbolic AI, symbolic representations and reasoning are used
to provide high-level context and logic, while neural networks
are employed for pattern recognition, learning from data, and
capturing low-level features. This hybrid approach allows neu-
rosymbolic AI systems to leverage the power of neural networks
for tasks such as perception, language understanding, and pattern
recognition, while also benefiting from symbolic reasoning for
tasks that require explicit knowledge representation, logical
inference, and explainability.

In the context of sentiment analysis, we are witnessing three
main research directions. The first direction focuses on inter-
pretability and explainability: instead of only aiming for high ac-
curacy, neurosymbolic AI systems also focus on how accurately
a machine learning model can associate a cause to an effect; and
possibly also on the the ability of the parameters (often hidden in
deep neural networks) to justify the results. The second direction
is about leveraging existing lexicons and knowledge bases [3]
to fuse factual information [10] or some high-level decision
making mechanism at some layer of the neural model. The
third direction is about leveraging theories developed in other
reference disciplines to guide the neural architecture design,
so that the sub-module functions become clear and the whole
model’s interoperability is enhanced. All three directions are
achieving sound improvements in sentiment analysis and are
deepening our understanding of affective computing and the
cognitive root of human emotion.

In the context of this background, we launch this special issue
of IEEE Transactions on Affective Computing that focuses on
presenting some representative recent advances in designing,
using, and evaluating neurosymbolic AI for sentiment analysis.

II. CONTENTS OF THIS SPECIAL ISSUE

Out of the 50 submissions received, only 9 were accepted
to appear in this special issue. All articles have been reviewed
by at least three reviewers and handled by the guest editors,
except for [11] and [12], which were handled independently
by other Associate Editors of the journal. Among the selected
articles, [11], [13], [14] belong to the first direction of inter-
pretability and explainability; [12], [15], [16] belong to the
second direction of injecting external knowledge into a neural
model; finally, [17], [18], [19] belong to the third direction of
migrating theory from reference disciplines.

The special issue also presents four new datasets that future
researches could use: ConvECPE for emotion-cause pair ex-
traction from conversation [11], Emotion-Cause-in-Friends for
multimodal emotion-cause pair extraction [13], PerceptSent for
visual sentiment analysis [16], and TWISCO for suicidal intent
detection [19].

A. Interpretability and Explainability [11], [13], [14]

Emotion-cause pair extraction (ECPE) is a task that extracts a
segment from emotion words’ context to provide an explanation
for the emotion detected. ECPE in conversations is especially
challenging because the cause expression can span multiple
rounds of texts.

In the first article [11], the authors propose a new two-step
framework for extracting multiple emotion-clause pairs simul-
taneously in a conversation. The future plan is to integrate the
speaker’s personality into the prediction.

In [13], a special type of emotion-rich conversation is studied.
The conversations in sitcoms such as ‘Friends’ are found to
contain more emotions and cause clauses compared to movies.
In this article, the authors propose multi-modal emotion-cause
extraction based on audio, video and text features. Previous
studies have constructed an annotated multi-modal conversation
dataset from 10 famous TV series. In this article, the text and
facial expressions are combined when annotating the cause of
an emotion.

In [14], an end-to-end approach for the ECPE task is explored
to tackle cascading errors that are often associated with pipeline
models. In this article, the authors solved the issue of capturing
the implicit co-occurrence or exclusion patterns between mul-
tiple pairs of emotions. This is achieved by finding the cause
clauses after finding the emotion clauses. They also have a
pre-training phase that can reduce the computation time needed
for limited datasets.

B. Knowledge Selection and Utilization [12], [15], [16]

Humans often rely on context and commonsense to under-
stand emotions in utterances. Hence, it is necessary for ma-
chines to effectively integrate commonsense databases into their
models. Transformers are commonly used in dialogue systems
to model words and their context. In addition, an emotional
dictionary is used where each word has a score. In [12], the
authors propose automatic selection of emotional knowledge to
reduce the size of the database. This allows better performance
of a sequence transformer on datasets of different sizes and from
different domains.

On the other hand, incorporating external knowledge is not
a “the more the merrier” game. Previous studies have shown
that removing/eliminating ineffective knowledge can improve
model performance. In [15], the authors propose to eliminate
external knowledge from an utterance that may have negative
effects on the classifier. Many previous studies have suggested
organizing external knowledge using relationships. For example,
in ConceptNet [20], the nodes are concepts, and the edges are
the relationships. In this paper, the authors randomly eliminate
words whose emotion is inconsistent with the utterance of
emotion. Recently, recurrent neural networks are being used to
capture inter-speaker dependencies in a conversation. Instead,
here they use graph attention to refine the weights of knowledge
at both syntactic and semantic levels.

Another way of curating external knowledge is by storing
metadata with the dataset. In [16], the authors explore convo-
lutional neural networks and investigate the influence of user
subjectivity for visual sentiment analysis. To accurately judge
baseline performance, they consider different experimental set-
tings of the number of target classes and voting. A vector space of
emotions is found to be more accurate than categorical labelling.
This is because people may have the same sentiment for an
utterance, but the reason may differ. To leverage a psycho-
logical theory, a new dataset for sentiments in Flicker images
was created along with perceptions and evaluator’s metadata
(age, gender, socioeconomic status, education background, and
psychological hints).

C. Multidisciplinary Interoperability [17], [18], [19]

Automatic text summarization helps reduce the time of filter-
ing large amounts of text. One challenge in text summarization
is to capture long distance sentiment flows. In [17], the authors
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use a meta-design to consider global changes of sentiments in
a document with the aim of providing better summaries. Previ-
ously, joint-sentiment-topic models have been used to predict the
relationship between topic and sentiment. Here, they leverage
common structures in writing for organizing sentences such as
hierarchical or circular. The output of topic models can also be
used to create evaluation indicators. The proposed method shows
over 2% improvement over baselines in text summarization.

In [18], the authors tackle the challenge of a large volume of
texts in the metaverse, which are very resource-consuming when
it comes to emotion processing. A recurrent voting generator was
proposed to analyze text in virtual reality using three different
algorithmic modules. Here, a dynamic system is needed for
content creation in a 3D space. In the past, a multi-combination
method was used to control the flow of communication in space
and time. In this article, they propose automatic generation of
words using an English book such as a drama by Shakespeare
in a rapidly evolving metaverse.

Finally, suicidal intent detection in textual data is closely re-
lated to sentiment analysis. Previous studies have used manually
annotated tweets together with social graphs to predict suicide.
However, limited ethical guidance is currently available on this
problem. In [19], the authors propose a feature based graph
convolutional network for this task. For feature development,
the authors apply a coding framework developed in psychology
to distinguish between different mentions of suicide. They also
investigate the relationship between feelings of dominance and
expressions of suicide. Experiments on benchmarks show that a
high false negative rate is desirable to detect rare events where
a person does not show these intentions.
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[19] A. M. Schoene, L. Bojanić, M.-Q. Nghiem, I. M. Hunt, and S. Ananiadou,
“Classifying suicide-related content and emotions on twitter using graph
convolutional neural networks,” IEEE Trans. Affect. Comput., vol. 14,
no. 3, pp. 1791–1802, 2023.

[20] R. Speer, J. Chin, and C. Havasi, “ConceptNet 5.5: An open multilingual
graph of general knowledge,” in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 4444–4451.

https://dx.doi.org/10.1145/3580480


1714 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 14, NO. 3, JULY-SEPTEMBER 2023

Frank Xing received the bachelor’s degrees in information systems and economics from Peking
University, Beijing, China, and the PhD degree in computer science and engineering from Nanyang
Technological University, Singapore. He is currently an assistant professor with the Department
of Information Systems and Analytics, National University of Singapore. His research interests
include FinTech and the application of sentiment analysis and text mining in information systems.
He was the guest editor of IEEE Transactions on Artificial Intelligence, Applied Soft Computing,
Information Processing & Management (Elsevier).

Björn Schuller (Fellow, IEEE) received the Doctoral degree in electrical engineering and infor-
mation technology from the Technical University of Munich, Munich, Germany. He is currently
a full professor with the Imperial College London, London, U.K. heading GLAM and with the
University of Augsburg, Augsburg, Germany. He is best known for his works advancing machine
learning for the engineering of intelligent audio and multisensorial complex information systems,
affective computing, mHealth, human-computer/robot interaction, and multimedia retrieval. His
publications received more than 50000 citations (according to Google Scholar). He is a fellow of
the AAAC, BCS, ELLIS, and ISCA.

Iti Chaturvedi received the PhD degree in computer engineering from Nanyang Technological
University, Singapore. She is currently a lecturer of information technology with James Cook
University, Townsville, QLD, Australia, where she teaches information processing and design
thinking. Her research interests include signal processing and artificial intelligence on social
media.

Erik Cambria (Fellow, IEEE) received the PhD degree in computing science and mathematics
from the University of Stirling, Stirling, U.K., in 2012, following the completion of an EPSRC
project in collaboration with MIT Media Lab, USA. He is currently a full professor with Nanyang
Technological University, Singapore. His research focuses on neurosymbolic AI for explainable
natural language processing in domains, such as sentiment analysis, dialogue systems, and
financial forecasting. He was the recipient of several awards, including the 2018 AI’s 10 to
Watchand the 2019 IEEE Outstanding Early Career Award, and was featured in Forbes as One of
the five People Building our AI Future.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 14, NO. 3, JULY-SEPTEMBER 2023 1715

Amir Hussain (Senior Member, IEEE) received the PhD degree in novel neural network archi-
tectures and algorithms for real-world applications from the University of Strathclyde, Glasgow,
U.K. He is the director of the Centre of AI and Robotics, Edinburgh Napier University. His
research interests include cognitive data science and trustworthy AI and NLP technologies to
engineer the next-generation of smart and secure industrial and healthcare systems. He is elected
as an Executive Committee member of the U.K. Computing Research Committee (UKRC) - the
National Expert Panel of the IET and the BCS for U.K. computing research. He is the founding
chief editor of the Cognitive Computation Journal (Springer).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


