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ABSTRACT

In this paper, we first define a neural network model NNCO
for the multiconstraint zero-one knapsack problem and then
present a methodology to approximately solve this problem in
near real-time by use of the characteristic that many neural
networks can be shown to minimize an energy function
defined for the networks. In addition, to illustrate the process
of the neural network mode! to approximately solve the
multiconstraint zero-one knapsack problem, we overcome the
difficulty that there is no guidance available as to what values
the parameters ought to take by designing an algorithm
ADJUSTPAR to automatically adjust the values of the
parameters used in the "energy" function. Moreover, we:
compare the methodology we present with related works and
demonstrate its significant improvements. We also simulate
the neural network model with several appropriate activation
functions to approximately solve a set of eleven relatively large
and difficult multiconstraint zero-one knapsack optimization
problems from literature with well-known optimum solutions.
The result of the simulation demonstrates how the
methodology presented here can work well to the
multiconstraint zero-one knapsack problem and can be easily
extended to solve other combinatorial optimization problems.

L Introduction

It is believed that the multiconstraint zero-one knapsack
problem is too complex to be solved in polynomial time{8].

This problem can be defined as:
n
Maximize MP= D" P;*Xj
i=1
n
Subjectto > Ajj*Xj SRy (i=1,.,m)
=1 Xje {0,1} (j=len).

Without loss of generality, all Rj, Ajj, and P; are assumed to
be nonnegative.

Researches in this area aim at searching for the good solutions
efficiently. In general, what is truly desired is to generate a
feasible solution with values close to the values of an optimum
solution in a reasonable amount of time. But for larger
number of constraints there does not exist any reasonable fast
exact algorithm and several proposed heuristics depend very
much upon the statistical distribution of the coefficients{4]. In
addition, these heuristics lack of the property of parallel
processing. Neural network models typically consist of many

simple neuron-like processing elements interacting via
weighted connections. Each unit has a state value representing
its state that is determined by the inputs received from the other
units in the network and from externals. The nature of the
neural network models is determined principally by their
connectivity and by taking boolean or real valued
variables[13,14,15,16,21,23]. Making use of these collective
computational capabilities, neural network models hold
promise for developing feasible solutions to those problems
that are computationally intense. Besides, many neural
network models are well suited for parallel implementation
either in hardware [1,5,6,10,12,20] or in software[3,27,28].
So it goes without saying that we can use the properties of
neural networks to propose a methodology which can do well
even in conventional computers.

In this paper, we first define a neural network model called
NNCO for the multiconstraint zero-one knapsack problem and
then present a methodology based on NNCO to approximately
solve this problem in near real-time by use of the characteristic
that many neural networks can be shown to minimize an
energy function defined for the networks[14,15]. The NNCO
is modeled as a sparse network of neurons with two different
types. One neuron type is called variable(master) nodes which
activate autonomously and the other type is called
auxiliary(slave) nodes which are activated by variable nodes.
The variable nodes represent the desired result and the
auxiliary nodes just do some computations for the variable
nodes. These neurons of the same type can activate
simultaneously and asynchronously. This model is inherently

parallel in that many nodes of the same type can carry out theix
computations at the same time. Due to the property of
asynchronous parallel processing, the model can easily map to
parallel architectures.

The methodology presented here consists of four stages.
First, formulate problem's constraints and desired optima by a
specific mathematical function called "energy” function. This
function must mathematically well characterize the desired
problem and must have the feature that the stable states of the
network model correspond to the "best" solutions of the
problem. Second, map the problem to the neural network
model, i.e. define each component of NNCO for the problem.
Third, choose an appropriate activation function that can make
the "energy" function be bounded and decreased in this neural
network model. This shows the network will converge.
Fourth, adjust parameters. Because there exists several
parameters in the “energy” function, it is important to
appropriately set the values of these parameters. It is assumed
that there is no guidance available as to what values the
parameters ought to take[30]. Here we design an algorithm
ADJUSTPAR to automatically adjust the values of these
parameters and find it is well suited for the multiconstraint
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zero-one knapsack problem. This operation of parameter
adjusting can be regarded as the modification of connections in
neural network models. It acts like unsupervised learning.
Using the methodology presented above, the "programmer"”
can solve the multiconstraint zero-one knapsack problem by
knowing what the problem is rather than how to solve it. It
matches the claim that neural networks will eliminate or reduce
the job of computer programmers[2].

In addition to the methodology presented above, we describe
how to add heuristic rules to the neural network model NNCO
in order to guide the network to find good solutions rapidly.
Moreover, we compare the methodology we present with
related works and demonstrate its significant improvements.
We also simulate the neural network model with several
appropriate activation functions to approximately solve the
multiconstraint zero-one knapsack problem. Using this
methodology, we solve a set of eleven relatively large and
difficult test problems from literature with well-known
optimum solutions. The result of the simulation demonstrates
how the methodology based on NNCO presented here can
work well to the multiconstraint zero-one knapsack problem
and can be easily extended to solve other combinatorial
optimization problems.

II. The Neural Network Model NNCO

It is helpful to begin with an analysis of our neural network
model, called NNCO, for the multiconstraint zero-one
knapsack problem and then describe the various specific
assumptions we make. The NNCO is modeled as a sparse
network of neurons with two different types. One neuron type
is called variable(master) nodes which activate autonomously
and the other type is called auxiliary(slave) nodes which are
activated bv variable nodes. The variable nodes represent the
desired result and the auxiliary nodes just do some
computations for the variable nodes. These neurons of the
same type can activate simultaneously and asynchronously.
Note that there is no difference between the terms neuron and
node.

The model can be formally described as an
eight-tuple(G,W,S,1,B,A,5,6). Here G is a directed graph
with nodes V=( 1,2,..n,n+1,..,n+m} and edgesEC VxV,
where n, m are the number of variable nodes and auxiliary
nodes respectively. All of the processing of the model is
carried out by these nodes. These nodes are only relatively
simple units, each doing its own relatively simple job. A
node's job is simply to receive inputs from its neighbors,
external input and itself, and then to compute an output value.
This model is inherently parallel in that many nodes of the
same type can carry out their computations at the same time.

Each edge (i,j) € E has weight Wiji € W indicating the
strengths of the connections, where W is a set of real numbers
and edge (i,j) denotes the edge from node i to node j. Ifedge

(ij) ¢ E, then wji = 0. In this model we assume that each

node provides an additive contribution to the input of the
nodes to which it is connected. The total input of each node
from its neighbors is simply the weighted sum of the separate
input from each of the individual nodes.

In addition, to the set of nodes and weights, we need a
representation of the state for the system. This is primarily
specified by a vector of real numbers S to represent the pattern
of activations over the set of nodes. It is useful to see the
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processing of the model as the evolution of a pattern of
activations over the set of nodes.

The initial condition of the network model is described by
vector 1. Each element of the vector has a list with two values
which stand for the external input and the initial state value for
one of the nodes. Vector B, showing the importance of these
nodes, is the strengths of nodes. That is used to indicate the

strength of each node. The type function A denotes the
node's type, that is

A : V = {'variable', 'auxiliary'}

We also need transition functions § and 6 to characterize how
the states of variable nodes and auxiliary nodes are updated.
These functions consist of two steps. To get the net input of
the nodes first and then apply the appropriate activation
function to get new states of the nodes. Formally, if S; is the

state of variable node i, then

Si := 8 ( i, Z{Wj;*S; | edge(iDeE, j* i}, B; L)

and if S is the state of auxiliary node i, then
Si =06 (S Z[Wij*Sj ledge(.i)eE, j=* i}, By L) .

Where Wijj is the weight from node j to node i, B; is strength
of node i, and Ij is the initial element of node i.

From the above description, this model has the following
characteristics which are proposed by Newell[11] for a
computational model, and can be easily extended to other
combinatorial optimization problems.

(1) All processing in the model is local. o ]

(2) The processors(neurons) are limited in their information
capacity.

A3) Ttﬁe bandwidth of communication between the processors
is limited.

(4) The model is hierarchical.

(5) The model is massively parallel.

III. Methodology to the Multiconstraint Zero-One
Knapsack Problem

The major concept used in the proposed methodology is that
many neural networks can be shown to minimize an energy
function. We suppose that if we can formulate an "energy"
function for the multiconstraint zero-one knapsack problem in
which the "lowest” "energy” states correspond to the "best"
solutions, then we can make use of the properties of the speed
and the computational power of neural networks to rapidly get
good solutions. In addition, we propose an algorithm
ADJUSTPAR to automatically adjust the strengths of the terms
used in the "energy" function which describes the behavior of
the desired problem, although it is assumed that there is no
guidance available as to what values the parameters ought to
take[30].

The neural network model used in the methodology is the
NNCO. This model has been described in the previous
section. At this point, we will describe the methodology to the
multiconstraint zero-one knapsack problem in four stages as
follows:



Stage 1. Define the "energy” function

It means we must formulate problem'’s constraints and desired
optima by a specific mathematical function called "energy"”
function. This function must mathematically well characterize
the behavior of the problem and must have the feature that the
stable states of the network model correspond to the "best”
solutions of the problem. This is what we said knowing what
the problem is instead of knowing how to solve it.

We can derive the "energy” function of the multiconstraint
zero-one knapsack problem in which the "lowest " "energy”
states correspond to the "best” solutions. This can be
separated into three terms. First, the "energy" function must
favor strongly stable states to get the maximal profits and an

appropriate form for this requirement can be chosen as :

n n
DB~ D Pi*X; a)
=3 =

This term is equal to zero if all X equal one or otherwise it is
greater than zero. From this, we can guarantee this term of the
"energy" function is greater than or equal to zero and has
"Jowest" value while getting the maximal profits.

The second term contains information to match the constraints
of the multiconstraint zero-one knapsack problem. We use a
function F such that the value of F will be larger if the
constraints are violated more. So this term can be written
down as:

m n

> F(Q Aj*Xj -Ri)
=1 j=1

@

If the constraints are not violated any more, then this term
ought to equal zero. Thus we will define F(z) =0ifz$ 0
and F(z) > 0if z > 0. In addition, we must make the value of
this function increase when the value of z increases in order
to meet the requirement that the value of function F will be
larger if the constraints are violated more. The detail of this
function will be described later. From above description, this
term is also greater than or equal to zero.

The last term is defined to emphasize the zero/one property of
this problem. It has minimal value when, for eachi, Xj=1o1

Xj = 0. Two appropriate forms and their corresponding
graphs for this term are as follows:

n
X *(1-X)  0¢ X<l ®)
i=1

| -

o] 1

or
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2 (xf#-2*x3+X2) X eR @
=

T -

o} 1

The two equations can be easily derived from their

corresponding graphs. For flexibility, i.e. Xj € R, we use
the equation (4) in our implementation.

Now we can write down the "energy"” function of the
multiconstraint zero-one knapsack problem as the sum of Eq.
(1), Eq. (2), and Eq. (4) :

n n
E= a*(D Pj-> Pi*Xj)
=1 =l
m n n

B> SUFCQ. APXRO+Y* > (X4 - 2%X;34X;2)
i=1 j=1 i=1

Where a, B, Y are nonnegative constants and are used as the

strengths of these terms. They are applied to denote how

important each term is in the problem.

All the three terms in the "energy" function E can be easily
verified to be greater than or equal to zero, thus E is bounded
and greater than or equal to zero.

We can define the "energy” function in other forms, e.g. first
use Lagrangean method (function)[25] to eliminate the
constraints, then define the "energy" function of the
transferred problem.

Stage 2. Map the problem to the neural network
model

Now we can define each component of NNCO for the
multiconstraint zero-one knapsack problem . We first define a
variable node of the neural network model NNCO for each
variable and an auxiliary node for each constraint. The other
important thing that must be considered is to make the variable
nodes converge to some stable states in which we can get the
"lowest" "energy” and the good profits. Thus the operation
can be defined as follows. The net input of each variable node
is derived by the change of the "energy" function due to
changing the state of this variable node. Then apply an
appropriate activation function which meets the requirement
that the "lowest" "energy" states correspond to the "best”
solutions.

From above description, the net input of variable node i in the
multiconstraint zero-one knapsack problem is derived by the
change AE in E due to changing the state of node i by & Xj,
that is



neti =-0 E/d Xj
m n
= a*Pi-B* D [A* (D Ag* X-Rj)l
j=i k=1

- Y (4*Xi3_6*Xi2+2*xi)

where net; is the net input of variable node i and f(z) = 0 F(z) /

0z. Here we define function f as:

f(z)=0
f(z)= z

ifz<0
ifz>0

The function f will be a larger positive value when the

corresponding constraint equation it represents is being

violated more. This definition makes function F meet the

requirement that the value of function F is larger if the

constraints are violated more and is zero if no constraint is

ivfiolat%d. That is we can get F(z) = 0if z< 0 and F(z) =z2 /2
z>0.

The function f can be other forms also. The only requirement
is to make the term of the "energy" function it represents be a
larger positive value when the corresponding constraint is
violated more and be a smaller value when the corresponding
constraint is met. This operation is accomplished by the
auxiliary nodes.

Before describe each component of the neural network model
NNCO for the multiconstraint zero-one knapsack problem
formally, let's sketch the model for this problem as the
following figure.

INPUTS: I n

-Aml
-A2l

Y Y Y
OUTRUTS
XX X3 X
Figure : neural network model for multiconstraint zero-one
knapsack problem

This figure is derived from the formula of the net input of the
variable node i. A node's job is simply to receive inputs from
its neighbors, external input, and itself, and then to compute
an output value. Each node provides an additive contribution
to the inputs of the node to which it is connected. The total
input of each node from its neighbors is simply the weighted
sum of the separate input from each of the individual nodes.
In this figure, we define a variable node for each variable and
an auxiliary node for each constraint. The external input to the
variable node Xj is Pj and to the auxiliary node Yj is -R;j. The
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weight from variable node Xj to auxiliary node Yj is Ajj and
from auxiliary node Yj to variable node X; is-Ajj. In addition,
the variable nodes have self-connection. Note that Pj, Rj and
Aj; are the coefficients of the multiconstraint zero-one
knapsack problem defined previously.

At this moment, we can formally define the

eight-tuple(G,W,S,I,B,7\.,8,0’) of the NNCO for the
multiconstraint zero-one knapsack problem. We define a
variable node for each variable and an auxiliary node for each
constraint. The graph G and the weight W are as the figure
showed above. The weights of the edges are zero if the
corresponding edges do not present in this figure. The state S
is set binary value or bounded continuous 'value in our
simulation. P; is the input of node i (named Xj in the figure),

i=1,..,n and the input of node n+i (named Yj in the figure),
i=1,.,m is -R;. Initially we set the state of each node to be
zero. The bias B is set depending on the problem instances
and heuristics. It is used in transition function 8. The type
function A is defined as: A(i)='variable' for i=1,..,n and
A(i)="auxiliary' for i=n+1,..,n+m. Formally, if S is the state
of variable node Xj, the transition function § is formulated as:

S;=0 ifBj=0
Si=1 ifBj=1
Si = ACT_FUN(o*Lj+B* > (Wjj * S +7*Gj)
j#i
otherwise

Where G; = -4 * $;3 + 6 * §;2-2*S; and ACT_FUN is the
appropriate activation function used.

Finally, if S; is the state of auxiliary node Yj, the transition
function ¢ is defined as:

8i=1f( > (Wjj *Sj) +1Ij ), where the function f is
defined above.

For clarity, we describe the whole operation of the network.
As the definition of NNCO, the variable nodes are
autonomous and can activate simultaneously. When the
variable nodes activate, they trigger all the auxiliary nodes and
then update the states themselves. The operation continues
until the network leads to one of the stable states that do not
further change with time. At the moment, the states of the
variable nodes are the result of the desired problem.

Stage 3. choose an appropriate activation function

Convergence to stable states is the essential feature of neural
network models. In the previous stage we have formulated the
net inputs of the variable nodes as the change of the "energy”
function due to changing the states of the variable nodes. If
we can choose the activation functions that can make the
change of states of the variable nodes in the same direction as
their net inputs, then any variable node can always behave so
as to decrease the "energy" function. Moreover, since the
"energy" function is bounded, the process of the network will
lead to stable states that do not change any more.



In the multiconstraint zero-one knapsack problem, we
formulate netj = - d E/d Xj ,i.e. AE=-netj * aXj. From

this formula, we can choose an activation function that can
make the change of the value of variable Xj in the same
direction as the net input of X; to make any change of
“energy" function E be negative. There are many activation
functions that match the requirement[23] and we will describe
some of them in our simulation later. Since E is bounded, the
process of the neural network model will lead to stable states
that do not further change with time.

Stage 4. Adjust parameters.

In the proposed methodology we define an "energy" function
for the multiconstraint zero-one knapsack problem and it exists
several parameters that need to be selected to produce a
sensible computation in the "energy" function. The parameters
have significant influence on getting feasible solutions. For
example, if we get an answer that violates the constraints of
the problem, then we must increase the strengths of the
constraints used in the "energy” function. This step must be
repeated until we feel good for the answer responded. But if
we make the values of the strengths of the constraints too
large, the effect of the other terms in the "energy” function will
disappear. In addition, the parameters suited for one problem
instance may not suit for others.

In section four of Wilson and Pawley[30], it was stated that as
there is no guidance available as to what values the parameters
ought to take, several runs were made varying the values of
the operating parameters. But here we will present an
algorithm ADJUSTPAR which can automatically adjust the
parameters to achieve valid and good solutions. The operation
of parameter adjusting can be regarded as automatic
modification of the connection weights in the neural network
model. It acts like unsupervised learning.

Before describe the algorithm, we first separate the terms of
the "energy" function into three categories: (1) Profit which is
used to describe the objective of the problem, (2) Constraint
which is used to describe the behavior of the conditions that
can not be violated any more, (3) Restraint which is used to
illustrate these conditions that can violate a few. From this
definition, we can write down the "energy” function E in
general as

E = o' * Profit + ' * Constraint + Y * Restraint.

The idea of the algorithm ADJUSTPAR is to assume that the

larger o' is the better solutions we will get. But we can not
violate any term in Constraint. The operation of this algorithm

is to make B'and ¥ be constant and to modify the value of o

continuously until the network converges with maximum o' to
valid solutions which mean no term in Constraint is violated.
If the network converges to a state with an invalid solution

then decrease o' in proportion to the magnitude of the
Constraint violated. The algorithm is described as follows:

Algorithm ADJUSTPAR
Step0. Set decreasing rate EPSILON and tolerant error
ERROR.
Stepl. Calculate the maximum value of the terms of
Constraint that can be violated in the net input and
then let it be M.

Step2. Set FIRST = true and PREV_ o' = 2%a'.
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/* if o' is initially set too small then double it */
Step3. Activate the network until it converges.

Step4. ‘Calculate the value of terms of Constraint that are
violated in the net input and let it be M".

StepS. Set & = EPSILON * M'/M.  /* the proportion of
Constraint violated */
Step6. If 8 = 0.0 then { /* get a valid solution */

EPSILON = EPSILON/2;

/* make o be decreased less */
o' =PREV_a';
if (FIRST)

/* if the network never converges to an invalid */
PREV_a'=2*a';

J* solution then double o', otherwise set &' to be */
/¥ its previous value that gets an invalid solution */

Step7. If 6> 0.0 then {
FIRST = false;

PREV_a'=a';
/* keep the value of o that gets an invalid solution */
oa=a*(10-0)

/* decrease o in proportion to the magnitude of */
/* the Constraint violated */

/* get an invalid solution */

}
Step8. If EPSILON > ERROR then goto step3.
Step9. Stop.

The variable PREV_ o is used to make o' larger if it is set too
small initially and to make it back to the previous value that

gets an invalid solution. The latter means we may decrease o'
more so as to make it get a valid solution, thus we must go

back and decrease o less. The decrease of o' is in proportion
to the ratio of magnitude of Constraint violated to the
maximum magnitude of Constraint can be violated controlled
by decreasing rate EPSILON.

The algorithm must be executed several times, with different
random number sets which make the network activate in

different ways, to get the better parameter o' which always
makes us get better and valid solutions. In our simulation, we
find this algorithm is very suited for the multiconstraint
zero-one knapsack problem.

IV. Simulation Results

The multiconstraint zero-one knapsack problem is known to be
NP-hard[8, thus a good algorithm for its optimum solution is
very unlikely to exist. In this paper, we use the concept of the
neural network models to efficiently derive good solutions. In
order to demonstrate how well the proposed methodology is, a
simulation is conducted on PC/AT using Microsoft C. We
solve a set of eleven relatively large and difficult test problems
from the literature[22,24,29] with well-known optimum
solutions. Fach problem has been solved ten times with
different random number sets.

In this experiment of the operation of the network, we first
select variable nodes at random to make it similar to
asynchronous parallel processing and then compute their net
inputs. After computing the net inputs of variable nodes, the



state values of these nodes are then determined according to an
appropriate activation function which meets the requirement
that it can make the change of the value of variable Xj in the

same direction as the net input of X;. Several variants are
available as follows:

(1) Hard limit :
Xj=1 if net; 2 0
Xj= if netj < 0

(2) Threshold logic :
Xj=X; +net;
if (X{>1) then Xj=1
if(Xj<0) then X;=0

(3) Schema model
Xi=Xj+netj* (1-Xj) if net;20
Xj =X +net; *Xj if net; <0
if(Xj>1) then Xj=1
if(Xj<0) then X;=0

(4) Unbounded threshold logic
Xj = Xj + net;

(5) Unbounded schema model
Xi=Xj+netj*(1-X;) if netj20
Xj =Xj +net; * Xj if net; <0

(6) Sigmoid :
Xj=1/( + exp(-nety/tp))
where tp is a nonnegative constant

(7) Stochastic :

P(Xj=1)=1/(1+exp(-netyT))
where T is a nonnegative constant and P ( Xj=1)
means the probability that the variable X; equals one.

The activation functions used in our implementation are chosen
to make the change of the state values of variable nodes be in
the same direction as the net inputs of these nodes. In
activation functions (1) to (6), the value of the "energy"
function continues to decrease until all variable nodes converge
to some fixed values. This is a hill-climbing procedure that
simply ensures the system will find the local optimal solutions.
The activation function (7) is used to reduce the deficiency.
The parameter T is slowly decreased. This is the same

activation function used in Boltzmann machine(13,21,23]. It
overcomes the local optimal solutions and gets a near optimum
solution, but it spends more time. In addition, if the parameter
T is decreased quickly, then it may get a worse local optimal
solution.

From our experiment, we find the activation functions 1) to
(5) will always get the same local optimal solutions in an
almost the same short time, and the activation functions (6)
and (7) will always get the better local optimal solutions in a
longer time. In activation function (6), when the network
converges, we choose the variable nodes one by one according
to the state values until any one of the constraints is violated,
These chosen variable nodes are the result of the desired

problem. We also find the values of parameters o, B, and v
are more important when we use the activation functions 4)
and (5). Their values should be smaller in the two activation
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functions, otherwise the system will overflow. Due to this
observation, we think it is better to add a constraint into the
requirement of the choice of activation functions. That is, in
addition to the requirement described above, we had better
select these activation functions that are bounded.

In this simulation we calculate the following statistics for each
problem selected from literature and each activation function
used.

(1) Average deviation from true optimum, i.e. e*=(Ze;)/
10 with : ¢; = (MP;* - MP; ) / MP;¥, i=1,..,10 where MP;
is the *proﬁt obtained at run i by the method considered and
MP;" is the true optimum profit for the same problem
instance. Note that e; > 0.

(2) Average standard deviation of deviation s defined by :
s=[Z(ej-¢"2/911/2,i=1,.,10.

(3) Maximum deviation from true optimum, i.e. emax =

Maxi=1),_'10 ei‘
(4) Average CPU times required to solve one problem by each
method in seconds.

Table I shows the first three statistics for each problem and
activation function used. In the first column the problems are
identified with their authors' name. Column two and three
give the dimensions of each problem. Column four to six
show- the average deviation from true optimum for the
activation functions used. The activation functions (1) to (3)
always get the same result, so we show them in the same
column. The system easily overflows while using activation
functions (4) and (5), so the two activation functions are not
used in this experiment. Column seven to nine show the
average standard deviation of deviation and column ten to
twelve indicate the maximum deviation from optimum
solution.

The last column gives the parameters used in each problem.
The values of parameter o used in the problems of Petersenl

and Weingartner] are obtained by the algorithm ADJUSTPAR
which is described in stage 4 of the methodology presented

above. Initially we give the value of a to be 200 for the
Petersen] problem and to be 10 for the Weingartner] problem.

After the termination of the algorithm we get the values of o to
be 2.98 and 1.71 respectively. The function of parameter T
used for stochastic activation function in Petersen's problems
is Ty = To/ (1+t) where T is the initial value of parameter T.
When T is used in the other problems, it is linearly
interpolation from T The time t used in stochastic function is
measured in the number of cycles. Note that in this column
we just show these parameters that are changed.

The result of table I suggests that deterministic activation
functions in general do not produce as good solutions as
stochastic activation function. But if the parameter T is
decreased too fast, the stochastic activation function may geta
worse result.

For comparative purpose we design a branch-and-bound
algorithm which is similar to Gavish and Pirkul[9] to get the
time for obtaining the optimum solution. Table II shows the
result. This result demonstrates our methodology works
rapidly and well on problems with arbitrary problem
dimensions, i.e. the time needed is not exponential as the
branch-and-bound method. In addition, we can find our



methodology needs short execution time even in the
conventional personal computer.

In short, we can confirm from the results of the simulation, the
methodology presented here can be used to get near optimum
solutions rapidly for the multiconstraint zero-one knapsack
problem. Moreover, because the execution time is short, we
can start the desired problem several times with different
random number sets to get almost all the optimal solutions.

Table I: Results of selected literature test

problems[22,24,29,31]
N, o T T
mmfer mumber  activation fction wiivation fuxtion hivaton furction
6 0o 0 6 0w 0 0
peocal 610 016 0 05 0 0 0810 038 0 0@ ;:326%
2010 10 01% 0166 0080 016 0100 0085 0330 0251 0200 =)
JI5 10 Q2 00 OME OML 008 0% OAT 018 028 gRIO
0 10 028 0I% 022 000 0088 Ol 043 0288 038 Toel0W
S B0 020 0m QI 0085 00 0091 030 0295 03%6
6% 10 0% 00 O 000 000 008 0240 022 02M o=
7% 5 LN 010 oML 000 000 00 0240 0260 020 m
Vel B 2 0166 L7 0080 017 00 060 0340 0148 019 e=iN
205 2 0050 003 008 0mS 0mS 007 010 Q0% 00% o:%
San 1t 60 N 037 01 oM 00 00 000 0480 0200 0148 TX-IN0
ot 20N 027 0l 007 QI8 043 003 0M0 QIS ol ﬁn

* The optimum solutions, which do not report in the paper of Senju and
Toyoda, are obtained from[31].

Table If: Average CPU times required to solve one problem by each method(in seconds)*

. methodology presented here
Problem veriable i h"u'\'ﬁh activatl ctivation activation
© number number b:und funcllion(?sl(S) Functinn ) function (7)

Petersen 1 6 10 0.12 0.17 0.24 0.38
2 10 10 0.78 1.0t 1.32 1.R0
3 15 10 21.87 1.89 297 8.m
4 20 10 48279 5.45 11,70 9.90
5 28 10 757191 11.88 2220 12.47
6 39 5 90730.51 17.57 2394 20.30
7 50 ik 30.29 42.64 46.00
Weingartner 1 28 2 1660.16 5.14 16.16 26.49
2 105 2 baid 54.14 84.60 199.66
Senjn, 1 60 30 T 199.94 307.60 429.36
Toyoda 3 60 30 7+ 207.63 25317 446.02

* The computer in simulation is (BM PC/AT whose
computing index relative to IBM/XT is 11.7.

** The execution is terminated after running a week, i.e. its
execution time is longer than a week.

V. Heuristics

In addition, to the advantages we have described, we can
easily add heuristics to the methodology based on NNCO. It
can carry out by changing the "energy” function, weight
matrix, initial state, biases, etc. For example, in the
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multiconstraint zero-one knapsack problem, it is intuitionally
assumed that some variables have known values. This'can be
done by setting biases. Table III compares the results of some
problems with and without using this heuristic. The heuristic
used here is to set two variables with the largest profits to have
the state value one. Using this simple heuristic we can get
better solutions more rapidly.

Table III; Results of selected problems while using heuristic

no  heuristic with  heuristic

weng  avenge  avenige maximum  AVeTIge avenge  averige maximum

problem
C_w deviation  geviation  deviation
ume of deviation

deviation  devigtion  deviation

time of eviation

Petersen2 101 0190 0166 0080 097 0009 0006 0015

Petersen3 187 0122 0070 0.111 153 0077 0044 0147

Petersend 545 0228 0190 0212 379 0083 0.043 0150

VL. Compare with Related Works

There are some known combinatorial optimization problems
solved by neural networks. They are done by using
well-known neural network models to compute solutions via
first choosing connectivities and external inputs which
appropriately represent the "energy" function to be
minimized[16,17,26]. That is we must first formulate desired
problem in an "energy" function that well characterizes the
behavior of this problem and then compare it with the "energy”
function of the well-known neural network model to get the
connectivities and external inputs. If the "energy” function of
the problem contains terms which can not transform to the
form of the model, then use Taylor expansion to retain these
terms that match the form of the model[18]. But it is not
always possible to express the problems of interest in the
known neural network models. They also can be solved by
analog circuits[26]. But it is not practical to implement a
circuit for each problem instance and it is difficult to adjust the
parameters used in the "energy" function of the problem.
Simulated annealing is another way to solve combinatorial
optimization problems[4,19]. It uses the Metropolis algorithm
for an appropriate numerical simulation of the behavior of a
collection of nodes system at a finite temperature to provide a
natural tool for bringing the techniques of statistical mechanics
to solve combinatorial optimization problems. But it is
radically slow.

Recently, Fort uses Kohonen algorithm to solve the traveling
salesman problem[7]. The important defects of this method
are the large time needed to achieve good solutions and there is
no clear methodology to apply this method to other
combinatorial optimization problems. In addition, its
mathematical analysis is difficult and needs sophisticated
probabilistic concepts. Based on these, we intend to formally
propose a methodology to approximately solve the
multiconstraint zero-one knapsack problem in a reasonable
time and to be easily implemented on parallel computers.
Besides, the methodology we present has the following
significant improvements: we can define the "energy” function
of the desired problem in any continuously differentiable form,



of the desired problem in any continuously differentiable form,
the parameters used in the "energy" function of the desired
problem can self-adjust, and the methodology can be easily
extended to other combinatorial optimization problems.

VII. Conclusion

We have presented a neural network model NNCO for the
multiconstraint zero-one knapsack problem and a methodology
based on this model to approximately solve this problem in
near real-time by the use of this simple concept that an energy
function generates a good solution without detailed algorithms.
This methodology consists of four stages. First, define the
"energy" function of the problem. Second, put the problem to
the neural network model. Third, choose an appropriate
activation function to make the "energy" function be bounded
and decreased. Fourth, adjust parameters automatically. This
stage can be regarded as automatic modification of the
connection weights in the neural network model. It acts like
unsupervised learning. In addition, we describe how to add
heuristic rules to the neural network model to guide it to find
good solutions rapidly. Moreover, we compare the
methodology with related works.

We have also demonstrated how the methodology presented
here can work well for the multiconstraint zero-one knapsack
problem. There appears to be a large class of computation
problems for which the methodology can generate a near
optimum solution in near real-time without the need of detailed
algorithms. The major advantages of this methodology are
summarized as follows :

(1) Can rapidly provide a good solution.

(2) Due to the short execution time, we can start the network
several times with different random number sets to get
almost all the optimal solutions.

(3) Can automatically adjust the values of the parameters used
in the "energy" function and this can be regarded as
automatic modification of the connection weights in the

_neural network model. It acts like unsupervised learning.

(4) The "energy" function can be defined in any continuously
_differentiable form.

(5) Since the major differences of optimization problems in
neural network models are the "energy” functions and the
parameters, we can extend the methodology to solve a lot
of combinatorial optimization problems with different
"energy"” functions and the parameters as inputs.
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