A PARALLEL UNIFICATION COPROCESSOR

F. N. Sibai

K. L. Watson

Mi Lu

Department of Electrical Engineering
Texas A&M University
College Station, Texas 77843.

ABSTRACT

Unification is a pattern matching operation very
frequently used in Artificial Intelligence. Logic
and PROLOG interpreters and theorem provers
heavily rely on unification. Since its beginning,
unification has suffered from a slow execution.
The execution time of logic programs and other
programs based on unification can be significantly
reduced by improving the performance of the
unification operation. In this paper, we introduce a
parallel unification coprocessor for speeding up the
unification algorithm. The machine is simulated at
the register transfer level and the simulation results
as well as performance comparisons with two serial
unification coprocessors are presented.

1. INTRODUCTION

Currently, the field of Artificial Intelligence (Al)
is gaining in popularity and actively expanding
into many areas of application. Al has served
as the basis for the fifth generation computer
project with the primary goal of replacing the
traditional Von Neumann computers by smarter ones
capable of reasoning, learning, making inferences
and decisions, and understanding speech and
pictures [1]. The logic programming language
PROLOG and the functiona!l programming language
LISP are widely considered as the two primary
programming languages available to Al programmers
and knowledge base developers. PROLOG's
statements in the form of Horn clauses, its argument
match capability, and nondeterministic and database
management features make it very suitable for Al
and expert system applications.

However, in its present form, PROLOG is
time—-consuming and very inefficient when run on
sequential general purpose machines. For instance,
Abe [2] notes that PROLOG's performance drops
to one tenth of the performance of procedural
languages (e.g., C, FORTRAN) when executed by
a general purpose computer. This is clearly why
today's expert systems and other Al application
programs implemented in PROLOG appear to
run very slowly on traditional general purpose
computers. In order to improve the performance
of PROLOG, several implementations of PROLOG
incorporate a number of parallel logic programming
schemes such as Conery's AND/OR model [3].
Ponder and Patt [4] described each of these
PROLOG implementations and compared them.
Another effective way to eliminate PROLOG's
inefficiency and slow execution on these machines

608

is to improve the performance of the unification
algorithm on which PROLOG interpreters and other
logic programming interpreters are built. In addition
to being frequently used in logic programming,
unification has applications in databases, theorem
proving, expert and knowledge-based systems, and
natural language and image processing.

Unification is an operation which attempts
to make two terms equal and often generates
conditions for this equality to hold. These conditions
appear under the form of variable substitutions or
bindings. For instance, the unification of the two
terms f(X,a) and f(b,a), where a and b are constants
and X is a free variable, succeeds (and the two
terms become equal) if the first argument of the
first term, X, is bound to the first argument of the
second term, b. In this example, the substitution set
generated by the unification operation contains the
single binding X /b and is referred to as the unifier.
In general, to successfuily unify two functions, the
heads(or functors) of the two terms, f, must be
identical and the ith argument of term 1 must
unify(match) with the ith argument of term 2, for
all arguments of the functions. A free variable can
unify with any term and, as a result of unification,
generates a binding. Two constants can only
successfully unify if identical. Two terms are said
to be unifiable if the attempt to unify them is
successful.

It is not sufficient that the functors be identical
and the arguments be matched for the unification
operation to succeed. The variable bindings must
be consistent with each other. The unification of
f(X,a,b) and f(c,Y,X), where X and Y are variables
and a,b and ¢ are constants, illustrates this point.
To successfully unify these two terms, the heads
and arguments of the terms are matched together
yielding : f/f, X/¢, a/Y, b/X. The functors
match is successful since both functors are identical
and the argument match produces three variable
substitutions: X/¢, Y/a and X/b. The first and
second substitutions bind X to ¢ and Y to g,
however, the third substitution binds X to b, which
is clearly a conflict with the first binding. Thus, in
this example, unification fails.

The unification operation was shown by
Woo [5-6] to consume on the average 55-70%
of the execution time of PROLOG interpreters,
far more than any other operation. To improve
the performance of unification, several attempts
are being made to design faster algorithms and to
design serial and parallel unification machines solely
responsible for executing the unification operation.

1984/89/0000/0608801.00 © 1989 IEEE

We introduce in this paper a parallel machine
to speed up the unification algorithm. First, in
the next section, we present the serial and paraliel
unification machines which have been proposed or
developed up to the present. Secondly, we describe
the architecture of the parallel unification machine
and the algorithm designed to run on it. Next, the
organizations of the two different processors in the
machine are briefly discussed. Finally, the results of
the machine's simulation.are presented.

2. HARDWARE FOR UNIFICATION

Unification was originally developed by Robin-
son [7] as the heart of the Resolution principle
around 1965. The original algorithm had an ex-
ponential time complexity. Several attempts have
been made later in the 1970s to devise a faster al-
gorithm. Perhaps the best sequential unification al-
gorithms are Paterson and Wegman's algorithm (8]
with linear time complexity and Martelli and Monta-
nari's algorithm [9]. However, a linear time complex-
ity for the unification algorithm fell short of making
PROLOG's performance acceptable and attempts
to create a paralle! algorithm had to be made.

In the 1980s, in the midst of strong efforts
for parallelizing unification, Yasuura [10] showed
that unification contains essentially sequential
computation which might not be accelerated by
a parallel computation scheme in the worst case.
He stated that it is very difficult to design a
parallel unification algorithm in time O(logtn) (n
being the number of terms to be unified and &
being a constant) even if an infinite number of
processors is used. Furthermore, Dwork [11] claimed
that parallelism cannot significantly improve the
performance of the best sequential solutions for
unification which is composed of a term matching
step and a binding check step. The subproblem
of binding consistency check is believed to be
serial in nature unlike the subproblem of term
matching, which was shown to offer a potential
for parallelism. Since software attempts to improve
the performance of unification seemed to be
restricted by the serial nature of the consistency
check, hardware implementations quickly became
the obvious alternative.

In 1981, Chang [12] designed a machine to
execute Robinson's unification algorithm. This one-
chip machine is composed of a controller, stacks,
registers and an equation table — an external RAM
where the two terms to be unified and the results
of the computation are stored. After executing
a current unification task, the machine records
the binding information in the equation table if
unification is successful, otherwise it indicates the
failure of the operation. The chip was never built
and no performance evaluation was made.

The SUM unification coprocessor [13] was
designed to support an LMI Lambda LISP machine.
The SUM coprocessor conducts unification assisted
by a content—addressable memory (CAM) for fast
access of binding agents.

Another unification coprocessor, consisting of
a hardware processing unit and a variable stack,
was developed by Woo [5-6], and was shown to
improve the performance of unification considerably.
The unify function implemented in hardware is
composed of eight routines, each dealing with one

data type. This unification unit holds the result
of unification in a flip-flop. If set, it indicates
that the two input terms are unifiable. If nested
functions are encountered, the unit invokes itself
recursively for each nesting. Woo measured the
AT&T unit's performance to be 14-15 times faster
than the UNSW interpreter's unify function on a
VAX 11/780.

Also, Gollakota [14] desighed a 54-pin unifica-
tion coprocessor equipped with an on-chip binding
memory, which is half CAM and half RAM. It is de-
signed to receive the address of two lists of terms
and the arity denoting the number of terms in the
lists, and unify all the terms in the lists.

Most of these coprocessors were shown to speed
up unification's execution. To speed up unification
even further, other approaches must be explored.
Although the studies by Yasuura and Dwork do
not strongly encourage parallelizing unification,
parallel processing and hardware techniques must
be explored fully due to the high frequency of
the unification operation in logic programming
interpreters.

Shobatake [15] designed a cellular systolic array
to implement unification. The critical characteristic
of his design is that for n symbols in the input terms,
the required number of cells which is the length of
the terms is very large and is in the order of O(n?").

Chen [16] proposed an overlapping algorithm
originating from Robinson’'s algorithm with a
one—dimensional systolic—like architecture. No
measurements were made.

Shih [17] proposed an array of mesh—connected
unification units to speed up AND parallelism in
clauses. Shih also proposed four binding algorithms
and studied their performance on his proposed
architecture. His machine was designed to be used
as a coprocessor to be invoked mainly when the
number of siblings in a clause body and the size
of the logic program are both large.

Inagawa [18] implemented a multiprocessor
system for unification and showed that the
unification parallelization effect was evident for a
small number of processing units. In this system,
the consistency check operation is conducted with
the shared memory and the shared variables' old
bindings are read from memory by the processors
and checked for consistency with the new bindings
before updating the variables’ cells in memory. This
requires however a lengthy backtracking step to
restore the variables’ cells in the main memory if
the unification operation ends with failure.

3. PARALLEL UNIFICATION MACHINE
3.1 ARCHITECTURE

We describe in this section the architecture of
the parallel unification machine for speeding up the
unification operation and present the unification
algorithm designed to run on it. We base our
algorithm and system architecture on the fact that
unification is composed of two steps, the first
being the match step which offers a high level of
parallelism, and the second being the consistency
check step with a low potential for paralielism.

The machine performs the unification operation
on two terms and outputs failure, or the variable
bindings in case of success, with the following

guidelines: i) the match and consistency steps must
be performed concurrently; ii) there must be a
fast backtrack operation in case of failure; iii) the
machine must function as a coprocessor supporting
a host processor. To parallelize the match step,
concurrent execution of term matching is to take
place in a number of identical processors to speed
up the matching phase of unification. This requires
a number of identical processors called Match
Processors(MP) which perform separate argument
matches in parallel. In this way, any argument
match that results in failure is detected quickl

and the whole unification operation is stopped wit

result;: FAIL. At the end of the matching phase,
the processors, one by one, send the resulting
unification substitutions or variable bindings to a
special processor(CCP) equipped with a CAM to
perform the consistency check step. This allows the
consistency check on the current binding and the
matching of the next arguments to be performed
in parallel. The CAM, which is to hold all bound
variables, is designed to speed up the access to
the variable bindings. The unification machine is
to serve as a coprocessor for a host processor
with the purpose of conducting the unification
tasks needed by the host. The host supplies the
addresses of the two terms to be unified in memory
to the coprocessor which generates the variable
bindings and sets the succeed (SU) flag if unification
succeeds, otherwise it sets the fail (FA) flag. The
host-coprocessor configuration is shown in Figure 1.

The unification machine architecture is shown in
Figure 2. Here, a shared memory holds initially the
two terms to be unified. The control unit(C.U.)
controls the read operation of these two terms.
Initially, the addresses of the two terms are fed
to the C.U. which dynamically schedules the first
arguments of the two terms to be matched in the
first available MP. While this MP is conducting
the match operation on the first two arguments,
the next arguments of the two terms are read by
another free MP. This last step is repeated until
all MPs are busy or until all arguments have been
scheduled. If the match operation of any MP results
in failure, the C.U. raises its FA flag signaling that
the result of the whole unification operation is FAIL,
and stops the operation of all the processing units
in the system. This happens anytime any of the
processing units in the system detects a failure in
the unification of the two terms. In case the match
operation conducted by the MP succeeds, the MP
generates a variable binding(if at least one of the
two matched arguments is a variable) as the result
of the argument match and requests the transfer
of the variable binding generated by it to the CCP
processor. It can happen however that, at one time,
more than one MP request the transfer of their
variable bindings to the CCP. Thus, an arbitration
algorithm is needed to select one MP to initiate
the transfer and force the other requesting MPs to
wait. The dynamic arbitration algorithm that was
chosen is the Independent Request/First—Available
From Left arbitration algorithm. We chose this
dynamic algorithm over other algorithms because
of its flexibility, good fault—tolerance, high speed
and low cost. In this algorithm, the ‘match job is
scheduled to the first MP available from left, i.e., in
case more than one MP is free, the job is granted
to the requesting MP closest to the C.U.(first from

[CTTTUTTTT WAIT/READY [T 7
e LR
\ ST
‘} JOp
i AST
aosT | T " LoPROCESSOR
i ADR (20)
| ADR 10}
su
?—G»A Do
a FA
N s IR

Figure 1. Host-Coprocessor Configuration

Memory

cu

vBS

Figure 2. System Architecture

Memory J
ME% Aﬂi (20)
WA - AB-Data (32)
STAR — AD 'J'Ti
FAL |MP1 | ——FA4 (MP4
cu RA1 [lrad
RG1 AG4
Adr (2Q) le———TWA1 WR4
suU
FA g

Figure 3. C.U.—MPs Configuration

610

left). Here, two lines are required for each MP:
a REQUEST line(RA) and a GRANT line(RG) as
shown in Figure 3. The MPs requesting transfer
raise their RA lines, the C.U. then checks whether
the CCP processor is not busy and if so, sets the RG
line of the requesting MP nearest to it and leaves
the other RG lines low.

After being granted the transfer, the MP with
the set RG starts the simultaneous transfer of the
variable binding to the CCP and the variable binding
store(VBS). The variable bindings are stored in
the VBS simultaneously as they are transferred to
the CCP to be checked for consistency with the
previous bindings, thus eliminating the overhead
time needed to store the bindings at the end of the
unification task in case unification succeeds. In case
the unification operation fails, no time—consuming
backtrack operation is needed to restore the pointers
of the variables in memory, for the VBS stack pointer
can be reinitialized to its old value in less than three
clock cycles.

3.2 UNIFICATION ALGORITHM

The algorithm running on the unification
machine is presented in Figure 4. The function
“arity(x)" returns the number of arguments in the
compound term X. In this algorithm, the addresses
of the two terms to be unified are read by the
C.U. and the Arity register is set to 1 in the C.U.
Afterwards, the unification algorithm can be broken
up into two loops running in parallel. The first loop,
a WHILE loop, takes place in the MPs. One cycle
of this loop starts by the reading of the next two
arguments of the two terms to be unified by one
free MP which conducts the match operation on
them. If the match fails, the MP sets the fail (FA)
flag and the algorithm stops. If the match succeeds,
the MP initiates a transfer request to transfer the
variable binding to the CCP and VBS. Next, Arity is
decremented in the C.U. and if not zero, a new loop
cycle is started all over again but this time, the read
and match operations may take place in another free
MP.

The second loop takes place in the CCP. There,
after the C.U. grants a transfer request to an MP,
the transfer of the variable binding from the MP to
the CCP and VBS is initiated. When the transfer
of the binding is completed, the CCP conducts a
consistency check on that new binding. If that check
fails, the FA flag is set. Else, if that binding was the
last binding generated, then the succeed (SU) flag
is set.

The MAT CH procedure accepts two terms z and
y, checks their types, and generates the binding z/y
if either one is a variable and provided the other
one is not the same variable. If neither z nor y is a
variable, then z should be exactly identical to y for
the match to succeed.

The CONSISTENCY_CHECK procedure ac-
cepts the binding z/y where z is always a variable and
y is of any type. If the variable z is not bound by pre-
vious substitutions then the binding z/y is recorded,
else z's previous binding is checked for consistency
with y. The procedure is recursively invoked when
the consistency check of two compound terms is
required.

611

BEGIN_UNIFY
Read address of terms and set Arity to 1 in C.U.
PARALLEL BEGIN

WHILE Arity not zero DO
BEGIN_WHILE
Read arguments(x, y) into a free MP
IF both x and y are functors
THEN Arity=Arity + arity(x)
MATCH(X, ¥)
IF match fails THEN set FA flag and STOP
ELSE IF a binding x/y is generated
THEN request transfer of binding to CCP/VBS
Arity = Arity - 1
END_WHILE

LOOP FOREVER
IF there is a granted transfer request THEN
Transfer the variable binding x/y to CCP and
to VBS from the requesting MP
CONSISTENCY_CHECK(X, y)
IF check fails THEN set FA flag and STOP
ELSE IF last binding THEN set SU flag and STOP
END_LOOP

PARALLEL_END
END_UNIFY

Figure 4. Parallel Unification Algorithm

4. THE MP AND CCP PROCESSORS

Data words are 32 bits wide. Four data types
are currently allowed: variable, function, list and
constant. The MP processor is responsible for
executing the match operation on the two terms
to be unified. Because compound terms are broken
up into functors and arguments which are matched
separately, the match operation becomes the simple
task of comparing two terms and generating a
substitution if at least one of the two terms is a
variable. To perform this, the MP reads the first
term to be matched into a register and decodes it.
If the term occupies more than one word, the rest
of the term is read and stored in an internal buffer.
The second term is then read into a second register,
decoded, and if both terms are of identical types, the
contents of the two registers are compared. When
both terms occupy more than one word, the next
word of term 1 is read from the internal buffer into
the first register, while the next word of term 2
is read from the external memory into the second
register and the contents of the two registers are
again compared.

The MP has a two-bus organization. The first
bus, DBUS, is interconnected with the external AB
and VBB buses through input and output data
registers. DBUS also connects these data registers
to the internal RAM and two 32-bit registers DREG1
and DREG?2 designed to hold the two term words to
be compared. DREG1 and DREG?2 are connected to
an ALU(comparator/subtractor). The second bus,
CBUS, links three 5-bit registers, FL, CS, and SR,
to an adder used to increment the pointer to the
32-word deep RAM. Also a comparator is provided
to compare the contents of the SR and FL registers.

The CCP processor is responsible for efficiently

conducting the consistency check on the variable
bindings generated by the MPs. This is done by
maintaining the variable information in a CAM with
parallel search and write capabilities. As soon as a
variable binding is read by the CCP, the variable is
searched in the CAM from which its binding status
is extracted. Depending on the binding information
of the variable, three situations may occur: 1) The
variable does not match any CAM entry. A new
entry for the variable is created in the CAM and
the variable's binding is stored in the internal RAM;
2) The variable is temporarily bound to another
variable. In this case, the binding is stored in the
RAM and the binding status and pointer fields for
the temporarily bound variables are updated in the
CAM; 3) The variable matches a CAM entry. The
variable's old binding is read from the internal RAM
and compared with the variable’s new binding. If not
consistent, the CCP sets its FAIL line and unification
ends with failure.

The CCP has a three—bus organization. The
main bus, MBUS, which is 32 bits wide, connects
the 1/O data register to the CAM, binding RAM
and DR1 and DR2 registers which hold the two
bindings to be compared. The 1/O data register
serves as a buffer between the external VBB bus
and MBUS. The DR1 and DR2 data registers are
connected to a comparator capable of comparing
words of different types. The first secondary bus,
SBUS1, links the CAM’s data register, DR, to seven
registers. Five of these registers are also connected
to the other secondary bus, SBUS2, which links
them to a LIFO hardware stack. Both secondary
buses are connected to an ALU capable of handling
add and subtract operations. The microcontrol
units of the MP and CCP processors function on
a two-phase clocking scheme. During phase 1, the
microinstruction is decoded while during phase 2, it
is executed.

5. PERFORMANCE EVALUATION

The machine was simulated at the register
transfer level with ISPS [19]. For performance
comparison purposes, the microcycle time was taken
to be 50 nanoseconds (decode, stack operations:
1 cycle; register transfers, CAM, RAM and ALU
operations: 2 cycles; external memory operations:
4 cycles). Unifications of several terms of different
types were simulated and the simulation results
are given in Table |. PUM refers to the execution
time in nanoseconds of the unification of these
terms on the paraliel machine, while UNIFIC refers
to their execution time on the serial coprocessor
UNIFIC, also operating with a microcycle time of
50 nanoseconds. Table Il shows the unification
execution times of functions with increasing arity on
the parallel and serial machines. The unification of
these terms generates the bindings X;i/a;. Table lil
gives the execution time of the unification of
two terms with increasing level of nesting. The
bindings generated by the unification of these nested
functions are X /b and Y/a. The speedup obtained
in Tables Il and 11l over UNIFIC falls in the range
1.490-2.791 and is plotted in Figure 5.

As expected, the speedup increases as the arity
is increased exploiting the concurrency of the match
and consistency check provided by the machine.
For the above terms, the machine reached its top
performance with only two MPs. To study the

612

effects of the addition of a third and even a fourth
MP to the system on the machine’s performance, we
have simulated the unification of the following terms
and measured the execution times of the machine
performing unification with one to four MPs and the
percent gain in speed contributed by the addition of
each MP.

1. A(f f(X'X'Vla)la‘lf(b'a‘l'X'X)lc)' z, v,
959&(9(@)))) / hY, Y, a, X)
2. th(f(X.X,V.a),a,f(b,a,X,X),c). Z, |
g(gCe(g@N))) / kY, Y, a, a)
3' héf(f(X’XyV'a)la'f(b'a'XIX)'c)l Zl b'
. s}ll y(g(g(U)))))cz x{ h(bY,))Y),))a) a) WD))
: %ég('égé(gé(% » RX/ il o))31” 0™ . v
AT P, ' '
6' hl(f((X7X7V7a)1a» b7V)7 f(Z7aa bag(g(U)))’ Z'
. g(g(c)), X) / hi(Y, Y, f(a,a,V,a), V, a)

hl(f(f(Xv-XaV7a):a)b7V)5 f Zva!g(g(U)))' Z'
9(g(c)), b) / h1(Y, Y, f(a,a,gf,a), V, a)
In Table IV, the execution times of the
unification of the above terms on the machine with
1-4 MPs and the percent gains in speed recorded for
the unification machine with 1-4 MPs with respect
to the machine with one MP(pipeline) are given.
The percent gains in speed are plotted in Figure 6.
The unification of the two terms in
example 1 succeeds generating the sub-
stitutions Y/Z/f(f(X.X,V.a).a,f(b,a,X.X),c); V/a;
X /9(g(g(g(U))))- In this example, because the first

- M
IR LEGEND |
254 P

- —— ONE
~= WO

SPEEDUP

0 T T T T T T T
2 4) [10 12 1
1= ARITY (ONE), LEVEL OF NESTING (Two)

Figure 5. Speedup Vs. Arity/Level of Nesting

% GAIN IN SPEED

1.0 2.0 30 40
NUMBER OF MPS

Figure 6. Plots of the Percent Gains in Speed

TABLE I. Execution Time of the Unification of Terms of Different Types

Term Term 2 Binding UNIFIC(ns) | PUM(ns) | SPEEDUP
X A X/A 1900 1700 1.118
X Y X/Y 1500 2000 0.750
X f(a) X/t(a) 2000 2300 0.870
a f(X) FAIL 850 700 1.214
h(X,Y) h(a,b) X/a,Y/b 5550 3350 1.657
h(X,X) h(a,b) FAIL 5400 3300 1.636
h(X,Y) h(f(a),b) [X/f(a),Y/b | 5650 3800 1.487
h(X,a) h(b,Y) X/b,Y/a 5600 3200 1.750
h(X.f(a)) | h(f(a),X) X/(a) 5800 4100 1.415
h(X,f(@) [h(Yf()) | X/a,Y/a 7650 3800 2.013
h(X.X,Y) | h(Y,ae) FAIL 7450 4150 1.795
h(X,Y,Y) | h(¥.e,a) FAIL 8400 4150 2.024
h(f(,X),a) [h(f(a,b)X) FAIL 9800 4800 2.042
h(f(X.X),a) h(f(a,b).X) FAIL 9700 4150 2.337

Table Il. Execution Time of

f(X],...,X,’) / f(al,...,a,-)

UNIFIC(ns) |PUM(ns) | SPEEDUP
1 3800 2550 1.490
5 10800 5900 1.831
10 19550 10150 1.926
15 28300 14400 1.965
i= ARITY

Table Ill. Execution Time of

h(AC- - (X)), 0) JR(A(..(fib)...),Y)

UNIFIC(ns) |PUM(ns) | SPEEDUP
1 8250 4050 2.037
4 16200 6600 2.455
8 26800 10000 2.680
12 37400 13400 2.791

i = LEVEL OF NESTING

613

Table IV. Execution Times and
% Gain in Speed for Examples 1-7

EX. |# OF EXECUTION % GAIN IN
MPs TIME (ns) SPEED

1 1 14450 0.00

1 2 12500 15.60
1 3 11700 23.50
1 4 11400 26.75
2 1 11550 0.00

2 2 9600 20.31
2 3 8800 31.25
2 4 7300 58.22
3 1 10400 0.00

3 2 9050 14.92
3 3 6700 55.22
3 4 6700 55.22
4 1 10350 0.00

4 2 7550 37.09
4 3 6500 59.23
4 4 6500 59.23
5 1 10050 0.00

5 2 8100 24.07
5 3 7300 37.67
5 4 6400 57.03
6 1 23550 0.00

6 2 19550 20.46
6 3 19550 20.46
6 4 19550 20.46
7 1 22850 0.00

7 2 15900 43.71
7 3 12900 77.13
7 4 10750 112.56

substitution is long and therefore requires a lengthy
access of the VBB bus, and the second and third
substitutions are rather short, the third MP (MP3)
and the fourth MP (MP4) perform the match oper-
ation on the last arguments and contribute to the
performance of the machine. The contribution of
the second MP _is larger than that of MP3 which
is larger than that of MP4. In this example, the
contribution of MP4, measured by the gain in speed
introduced by the addition of MP4, is rather smalil.

Example 2 is a modified version of example 1
in which the last argument of the second term
is altered to cause unification to fail. In this
example, because of the long first substitution and
the short second and third substitutions, all four
MPs are utilized and contribute to the performance
of the parallel unification machine. However, in
this example, since the outcome of the operation
is determined in the fourth MP, the addition of the
fourth MP boosts the machine's performance to
58.2% faster than the pipeline(1 MP) although the
fourth MP runs for only 6.2% of the total execution
time. In this case, without the fourth MP, the
machine’s gain in speed with respect to the pipeline
is degraded to 31.25%. Therefore, in example 2, the
addition of the fourth MP improves the performance
of the machine considerably.

In example 3, the third argument of the first
term in example 1 is altered to cause unification to
fail earlier than in example 2. Here, the functor
match and the first two argument matches are
executed in MP1 and MP2, and the third argument,
which causes unification to fail in this example,
is matched in MP3. This is why MP4 does not
affect the execution time in this example. The
third MP increases the speedup over the pipeline
by 55.22%, a noticeable jump over the 14.92%
speedup produced by the machine with two MPs. In
example 4, which is similar to example 3, the third
argument match fails, causing MP4 to stay idle and
to yield no performance improvements. in examples
5 and 7, unification fails and the addition of MP4
raises the speedup over the pipeline by 57.03% and
112.56%, respectively, with large gains in speed over
the machine with only three MPs. In example 6,
unification succeeds generating the substitutions
Y/f(f(X,X,V,a),a,b,V); Z/f(X,X,V,a); V/g(g(U));

/a and U/c. " In the examples where unification
succeeds, such as examples 1 and 6, the CCP run—
time stays constant as the number of MPs used in
the system is increased and is therefore independent
of the number of MPs used. This results in an
increase in the percent utilization time of CCP as
the number of MPs used is increased. From the
simulation resuits obtained, few cases (which are
rarely encountered in logic programs) arise in which
MP4 contributes and produces significant gains in
speed, and therefore the cost of the addition of the
fourth MP is not justified. Thus the machine with
only three MPs provides a performance very near to
the top possible performance in most cases.

1}

To compare the machine's performance with
that of the Hardware Unification Unit (HUU) [6],
the unification operations occurring in the following
program are simulated and their execution times on
the parallel machine are evaluated.

614

P(X.,Y) « P(X,2) , P(Z.Y)

P(a,b)

P(b,c1)

P(b,c2)

P(b,c3)

P(b,c4)

P(b,c5)
with query: P(a,U)?. On HUU, the average
execution time of the term unifications taking
place during the execution of the above program
was measured by Woo to be 10.5 microseconds,
assuming a microcycle time of 100 nanoseconds.
On the parallel unification machine, this average
execution time is 3.3 microseconds with only one
MP allowed in the system, and 3.0 microseconds
with two or more MPs allowed. This amounts to
a speedup of 3.18 and 3.53 for the machine with
one and two MPs respectively. In general, the
average term unification time was measured by Woo
to take between 10 and 20 microseconds on HUU
and 100 microseconds for the UNSW PROLOG
interpreter on a VAX 11/780. Considering
the unification examples in Table |, the average
unification time of these examples on the parallel
unification machine (PUM?2) is 3250 nanoseconds
and therefore, on the average, the parallel machine
executes the terms in Table | 30.77 times faster than
an average unification on the UNSW interpreter and
3.08-6.15 time faster than an average unification
on HUU. This significant gain in speed can be
attributed to the novel architecture of the parallel
unification machine which partitions unification into
concurrent match and consistency check operations,
the efficient three-bus CCP organization and, last
but not least, the variable CAM which allows fast
retrieval and update of variable information.

6. CONCLUSIONS

A parallel unification coprocessor partitioning
unification into a match step and a consistency
check step and conducting these two steps concur-
rently in a pipeline fashion was presented. The ma-
chine's architecture, algorithm, and processors were
described. The machine's performance was simu-
lated and compared with two serial unification co-
processors.

The parallel unification coprocessor with only
two MPs was shown to be significantly faster than

‘the two serial coprocessors for compound terms of

arities higher than 2. The study of the unification of
long terms indicated that the coprocessor reaches its
peak performance with 3 MPs in most cases. This
seems to confirm that the cost of the fourth MP is
not justified and therefore it seems that only 3 MPs
will be needed in the future. The significant speedup
of the parallel coprocessor over the serial ones can be
attributed to the following parallel machine features:

i. An architecture mapping the structure of unifi-
cation and partitioning unification into match
and consistency check operations performed
concurrently in a pipeline fashion.

ii. An efficient allocation policy allowing the
functors to be matched first, followed by the
respective arguments of the two terms, and
treating nested functions as level-0 arguments.

iii. A simultaneous transfer of the variable bindings
to the CCP and to the VBS in which they

vi.

Vii.

are stored thus eliminating the overhead. time
for saving the variable bindings at the end of
unification.

A fast backtrack feature.

A fast All-Processor-Stop policy conducted by
the C.U. which stops the operation of the
processors in the system as soon as failure in any
processor is detected. This policy has proven
its effectiveness in Inagawa's [18] multiprocessor
system.

A CAM for maintaining the variable information
of previously bound or temporarily bound vari-
ables, with parallel search and write capabilities.
The CAM provides fast retrieval and update of
the contents of its words.

A three-bus organization of the CCP processor
allowing as many as eight operations to take
place concurrently.

Future work includes the design of the

microcontrol units of the MP and CCP processors,
and the logic design of the C.U. and of the VBS.

1]
[2]

[3]

[4]

(5]

6]

(7

(8]

(9]

[10]

(1]

REFERENCES

Miller, R. K., Fifth Generation Computers.
Lilburn, Georgia: The Fairmont Press, 1987.
Abe, S. et al, “High Performance Integrated
Prolog Processor IPP," in The 14th Annual Int.
Symp. on Computer Architecture, pp. 100-107,
Pittsburg, PA, June 1987.

Conery, J., Parallel Execution of Logic pro-
grams. Norwell, MA: Kluwer Academic Publish-
ers, 1987.

Ponder, C., Patt, Y., “Alternative Proposals for
Implementing Prolog Concurrently and Implica-
tions Regarding Their Respective Microarchitec-
tures,” in The 17th Annual Workshop on Micro-
programming, pp. 192-203, New Orleans, LA,
October 1984.

Woo, N. S., “A Hardware Unification Unit:
Design and Analysis,” in The 12th Annual Int.
Symp. on Computer Architecture, pp. 198-205,
Boston, MA, June 1985.

Woo, N. S., “The Architecture of the Hardware
Unification Unit and an Implementation,” in The
18th Annual Workshop on Microprogramming,
pp. 89-98, Pacific Grove, CA, 1985.

Robinson, J. A., “A Machine—Oriented Logic
Based on the Resolution Principle,” Journal of
the ACM, vol. 12(1), pp. 23-41, January 1965.
Paterson, M. S., Wegman, M. N., “Linear
Unification,” Journal of Computer and System
Sciences, vol. 16(2), pp. 158-167, April 1978.
Martelli, A., Montanari, U., “An Efficient Unifi-
cation Algorithm,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 4(2),
pp. 258-282, April 1982.

Yasuura, H., “On Parallel Computational Com-
plexity of Unification,” in Proc. of the Int.
Conf. on FGCS, pp. 235-248, Tokyo, Japan,
Nov. 1984.

Dwork, C. et al, “On the Sequential Nature of
Unification,” J. Logic Programming, vol. 1(1),
pp. 35-50, June 1984,

615

[12]

(13]
(14]

[15]

[16]

(17]

(18]

(19]

Chang, S., Towards a Theorem Proving
Architecture, Dept. of Computer Science,
California Inst. of Technology, Pasadena, CA,
1981.

Robinson, P., “The SUM: an Al Coprocessor,”
Byte, vol. 10(6), pp- 169-180, June 1985.
Gollakota, R., Design and Analysis of UNIFIC: a
Coprocessor for the Unification Algorithm,
M. S. Thesis, Dept. of Electrical Engineering,
Texas A&M University, College Station, TX,
August 1986.

Shobatake, Y., Aiso, H., “The Unification
Processor Based on a Uniformly Structure
Cellular Hardware,” in The 13th Annual Int.
Symp. on Computer Architecture, pp. 140-148,
Tokyo, Japan, June 1986.

Chen, W., Hsieh, K., “An Overlapping Unifica-
tion Algorithm and Its Hardware Implementa-
tion,” in Proc. of the 1987 Int. Conf. on Paral-
lel Processing, pp. 803-805, University Park, PA,
1987.

Shih, Y., lrani, K., “Large Scale Unification
Using a Mesh—Connected Array of Hardware
Unifiers,” in Proc. of the 1987 Int. Conf.
on Parallel Processing, pp. 787-794, University
Park, PA, 1987.

Inagawa, M. et al, “Unification Parallelism for
Prolog Processing,” Systems and Computers In
Japan, vol. 19(1), pp. 37-46, January 1988.
Barbacci, M. et al, “ISPS Computer Description
Language,” Dept. of Computer Science
and Electrical Engineering, Carnegie-Mellon
University, Pittsburg, PA, 1981.

