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Abstract

For thepurposeof nonlinearcontroland uncertainty/imprecisionhan-

dling,fuzzycontrollershave recentlyreachedacclaimand increasingcom-
mercialapplication.The fuzzycontrolalgorithmsoftenrequirea "super-
visory" routine that provides necessary heuristics for interface, adaptation,
mode selection and other implementation issues. Performance characteristics

of an on-line fuzzy controller depend strictly on the ability of such super-

visory routines to manipulate the fuzzy control algorithm and enhance its
control capabilities.

This paper describes an expert system driven fuzzy control design ap-

plication to nuclear reactor control, Ibr the automated start-up control of
the Experimental Breeder Reactor-II. The methodology is verified through

computer simulations using a valid nonlinear model. The necessary heuristic
decisions are identified that are vitally important for the implemention of

fuzzy control in the actual plant. An expert system structure incorporating
the necessary supervisory routines is discussed. The discussion also includes

the possibility of synthesizing the fuzzy, exact and combined reasoning to
include both inexact concepts, uncertainty and fuzziness, within the same
environment.

1 Introduction _S'_

Standard logic rules used in conventional control systems represent a model of the

operational rules in which the information describing the nature of the process
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is confined to the exac! definitions of an event/mode. In reality, ss'stem opera-
tions often deviate from prescribed definitions and set-points. Most of the control
problems arise due to tile severness of these mismatches; their solutions require an
appropriate interpretation of the inexactness. The emergence of fuzzy logic al_d
fuzz)' control concepts have brought a new dimension to these problems and gener-
ally to the uncertainty management problem. Especially in industrial applications
where a system's performance depends on the operator's ability to handle inexact-
ness, the fuzzy algorithms show a potential to enhance the operator's performance
and reduce operating risk.

This paper focuses on a fuzzy control application to nuclear reactors. Particular
emphasis is given to the automated start-up control of the Experimental Breeder
Reactor-II (EBR-II). The EBR-II operations constitute a good example of operator-
driven systems where the inexactness is entirely interpreted using human expertise.
A fuzzy control algorithm is developed and implemented in the feedback-loop using
a validated nonlinear model. The feedback controller is designed to maintain the
plant states within the desired start-up trajectories for a given change in the set
points. The set-points of the two control inputs are obtained from actual start-
up data of the EBR-II. Thus, the plant model is driven by the combination of
predetermined control trajectories and a fuzzy control correction.

The implementation of the fuzzy control paradigm within the actual plant en-
vironment requires additional considerations. Most importantly the adaptation of
the fuzzy control rules for a possible unexpected plant behavior is often necessary
to provide robustness. The EBR-II start-up procedure includes steady-state inter-
,,'als between each 10 MW startup transient. This requires a sequential change in
the mode of the transient. Accordingly, the flexibility of the controller needs to be
adjusted for the different modes of the overall transient. Another consideration is
related to the control system synthesis. The regulation task may be incorporated
with the anticipator)' paradigm in which the on-line decision making utilizes ex-
tended knowledge (anticipated future behavior ) as well as on-line information from
the plant [4]. This paper introduces the concept of using an expert system as a
supervisory routine which manipulates the fuzzy controller to enhance performance

2 Fuzzy Control Paradigm

The central notion in fuzzy logic is that of a linguistic variable [1] whose values
are words or sentences in a synthetic language. A linguistic variable includes an

adjective-like term (and its antonym), a modifier and a connective. The modifier is
a measure of intensity which is associated by a possibility distribution. This is often
referred to as the membership function in the literature. The fuzzy control policy is
represented as a finite collection of rules, called fuzzy productions (FP), of the form

R i" if (X_ is A_) and... (Xr, is Ai,,)
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t]lell

Vi i i - ; -= ao + a,.X, + ... + a,,._,, (1)

where R i is the /til rule; A; is a linguistic value of X_ in Ri; yi is tlle control
i adjustable parameters. The truth value of tile antecedent ofvariable, and an are

R i is given as (minimum is denoted by A)

Wi = A_(X,) A ... A Ai,_(X,_) (2)

; - - i The aggregated value ofwhere A.i(Xj) is the grade of membership of Xj in Ai.
control Y is a normalized linear combination given by

w,Y'+... + w.Y"
Y --=- (3)w,+...+w.

The equation above suggests a weighted vote in the decision of control. Generally
in a fuzzy production system, all rules are considered to be fired - with different
strengths. Of course, rules that fire strongly contribute significantly to the final
conclusions.

Fuzzy logic applications to control dynamic systems require fuzzy rules to de-
pend on the past performance of the process more than the batch type operations
where the fuzzy rules represent the inexactness among the standard logical propo-
sitions. The fuzzy control paradigm for the dynamic, on-line systems includes a
table of fuzzy rules (truth table) that relates the state variables to the control
variables. The truth table is constructed using a set of previously recorded data
during the particular mode of operation. Every line in the truth table corresponds
to a unique relationship among the state and control variables of the system. The
implementation of control is determined by an interpolative method when the in-
put to the control system does not match with the canonical structure of the table
(fuzzy predicate). The linear interpolation alLsocorresponds to the triangle mem-
bership function. Note that the linear interpolation between any two points in the
phase-plane does not necessarily indicate that the method employs a linear control
law.

The control law can be formulated as follows. Consider a process identified
by state variables (X,,...,Xn) and control variables (yx,...,y,). Each control
variable is calculated by

yi = W, iUI +"" + W,,iU_ (4)
W,i +... + W,,i

where

uj = 7(x,) (5)
and Wjis are trainable weights. The partial controls Uj represent one relationship
between the state variable Xj and the control yi. The resultant control which



incorporates the relationships between all of tlle state variables and }"' is tile voted
average of all contributions.

One important aspect of this approach is the degree of consistellcy between
the measured states and ttle corresponding elements of the truth table. A sparse
distribution of measured states may not easily be interpretable by the table. This
brings the robustness issue into the picture. Regardless of the reason, of sparse-
ness (unanticipated transients or measurement degradation), the con' :,-Lsystem is
always desired to inherit some degree of robustness. One way of enhancing the
robustness is to identify the characteristic state variable of the system which is
the best candidate to represent the overall state of operation. Unfortunately, this
is a system related property and the best candidate may not be reliable in many
systems. In nuclear reactors however, neutron population can be considered as the
characteristic state variable which is a good indicator of the overall performance.
The robustness is then enhanced by referring to the reactor power measurement
ard identifying the remaining membership functions accordingly.

3 Fuzzy Controller for EBR-II Plant Start-up

EBR-II is a 62.5 Mw(th) liquid-metal reactor built for irradiation experiments.
The reactor start-up is mainly controlled by plant operators who make on-line
judgements about the reactor performance. The operators adjust the control rod
position and the intermediate heat ecchanger sodium flow rate by comparing the
measured system variables with the reference trajectories or predetermined set
points. In this work, the operator is replaced by a fuzzy controller.

The automation of the EBR-II start-up procedure requires a trajectory following
strategy for both rod reactivity and secondary scdium flow. Unlike the steady
state control of dynamic systems, the trajectory following control imposes some
difficulties when incorporated within the fuzzy control paradigm. A new approach
that employs the fuzzy control in the feedback loop is tested. The fuzzy block
includes a truth table identifying the state and control variables in a common
phase plane. The table is constructed using a data set previously recorded during
a successful startup at EBR-II. In the feedback loop, the fuzzy block provides a
correction to the startup commands (fixed trajectories) ensuring that the plant
states remain within the phase plane as represented in the table.

The fuzzy controller is tested through simulations using a previously validated
nonlinear model (10 state variables) [2]. The simulation results show that the
performance of the control system with the fuzzy block in the feedback loop is
comparable to the actual plant control. The rod reactivity and secondary sodium
flow trajectories are followed accurately as well as the other state variables of the
plant.

The simulations are performed using the model building capabilities of software
system MATRIX-x [3]. Figure 1 shows the SYSTEM BUILD [3] blocks representing



tile EBR-tl model, fuzzy controller and tlle control logic block nalnod "wire". 'File
interior of the fuzzy block is shown in Fig. 2 where the input channels 1,2 and
3 correspond to the on-line readings of reactor power, core exit temperature and
intermediate heat exchanger outlet temperature. The output of fuzzy blocks are
equally weighted to yield the tinal form of the control signals (rof=rod position,
wf=flow rate). Figures 3,4 and 5 compare the actual plant data (operator driven)
with the simulation results where operators were replaced with the fuzzy controller.
The control signals are compared in a similar manner as shown in Figs. 6 and 7.

4 Expert Systems and Fuzzy Control

The point of departure in the present research is that the intuitive control strate-
gies employed by the EBR-II operators can be viewed o.s fuzzy algorithms and/or
heuristics. The heuristics are encoded in the knowledge base of an expert system
employing the structure of fuzzy productions. In this manner, qualitative informa-
tion is handled in a rigorous way. Facts are encoded as propositions having the
canonical form "X is A", as shown in the left hand side (LHS) of Eq. 1. In this
representation, each constituent clause of the LHS of a fuzzy production is viewed
as a constraint on a variable, such as X1.

Although the system describes the operator's control strategy based on linguis-
tic statements (in the manner of Eq. 1), there is no general method for calculating,
the membership functions for a particular parameter (control, state). The values

i in Eq. 1 (and hence the weights I'V i) are determined throughof the coefficients aj
training. Future work will focus on the training aspect. The possibility of using a
neural network for this purpose is currently under investigation. In such a case, the
expert system functions as the supervisor which coordinates on-line training when
necessary. Training, however, can not guarantee that the fuzzy control algorithm
will always converge to the correct values of the coefficients. The resulting ambigu-
ity and subjectivity in the implementation of fuzzy control laws are compensated
by a modular expert system design, that allows for expansion and modification on
the face of experience.

In addition to training functions, the expert system provides the general identifi-
cation of the system and makes decision about changing the mode of the controller.
There are two types of controller modes: normal modes and non-routine modes.
The normal modes are: start-up, cold standby, restart, steady power, plant shut-
down, and fuel handling. The non-routine modes are: manual or automatic scram,
anticipatory shutdown, plant cooldown, and plant heatup.
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5 Conclusions

A control system using fuzzy productions and applications to the automated startup
of the Experimental Breeder Reactor-II has been presented. An expert system su-
pervises the fuzzy controller. The overall system emulates the actions of a plant
operator. The operator control strategy is based on linguistic statcmcnts which
translate into fuzzy productions dcscribing heuristic control rules. A comparison
with actual plant data shows that the fuzzy controller perforlns very well.

In the case of a startup mode, the relation between the state and control vari-
ables is often qt,alitatively known. Fuzzy logic rules are an appropriate way for
implementing such an approximate and yet quite robust control strategy. The pos-
sibilities of usiTlg neural networks for training and employing anticipatory control
will be investigated in the future.

References

[1] L. A. Zadeh, "Fuzzy Algorithms," Information and Control, Vol. 12, pp 94-102,
1968.

[2] R. C. Berkan, B. R. Upadhyaya and R. A. Kisner, "Low-order Modeling of
Experimental Breeder Reactor-II", ORNL-TM 6590, 1990.

[3] MATRIX-x WS User's Guide, Integrated Systems, Inc. Version 3.0, 1990.

[4] L. Tsoukalas and J. Reyes-Jimenez, "A Hybrid Expert System-Neural Net-
work Methodology for Anticipatory Control in a Process Environment," in
Proc. of The Third International Conference on Industrial and Engineer-

ing Applications of Artificial Intelligence and Expert Systems IEA/AIE-90,
ACM/SIGART, Charleston SC, July 15-18, 1990.

6



?uzzy

Figure I. Three super blocks showing the EBR-II, fuzzy
controller and the control strategy implementation.
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Figure 2. Details of the fuzzy controller showing
individual control law generation using
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Figure 3. Comparison of reactor power (%) response due to
the fuzzy controller and EBR-II plant data.
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Figure 4 Comparison of reactor core-exit coolant
temperature (F) due to fuzzy controller and
the EBR-II plant data.
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Figure 5. Comparison of IHX secondary sodium outlet

temperature (F) response to fuzzy controller
and the EBR-II plant data.



Figure 6. Comparison of control rod bank ii position (inch)
as designed by the fuzzy controller and the

actual EBR-II plant data.
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' Figure 7. Comparison of secondary sodium flow rate (%)

as desogned by the fuzzy controller and the
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