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Abstract

We describe some simple domain-independent improvements to plan-refinement
strategies for well-founded partial order planning that promise to bring this
style of planning closer to practicality. One suggestion concerns the strategy
for selecting plans for refinement among the current (incomplete) candidate
plans. We propose an A* heuristic that counts only steps and open conditions,
while ignoring “unsafe conditions” (threats). A second suggestion concerns the
strategy for selecting open conditions (goals) to be established next in a se-
lected incomplete plan. Here we propose a variant of a strategy suggested by
Peot & Smith and studied by Joslin & Pollack; the variant gives top priority to
unmatchable open conditions (enabling the elimination of the plan), second-
highest priority to goals that can only be achieved uniquely, and otherwise uses
LIFO prioritization. The preference for uniquely achievable goals is a “zero-
commitment” strategy in the sense that the corresponding plan refinements
are a matter of deductive certainty, involving no guesswork. In experiments
based on modifications of UCPOP, we have obtained improvements by factors
ranging from 5 to several hundred for a variety of problems that are nontrivial
for the unmodified version. Crucially, the hardest problems give the greatest
improvements.
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1 Introduction

The history of planning research shows at least two major strands, whose
respective goals are to achieve practical planning and well-founded planning.
Practical planning research seeks to provide planning frameworks and tools
that are sufficiently expressive, flexible and efficient to be effectively usable in
applications such as planning robot actions, transportation planning, factory
scheduling, genetic engineering and conversation planning. Some of the earli-
est practically motivated planning “formalisms” were the MICROPLANNER
implementation of Hewitt’s PLANNER language [13, 24], STRIPS [8], and
NOAH [23], and some familiar later examples are NONLIN [25], DEVISER
[26], SIPE [27], PRS [9], FORBIN [7], and O-Plan [6].

The emphasis in well-founded planning is on constructing planners that can
be proved to have certain desirable properties, such as soundness and com-
pleteness for their intended class of problems, or the ability to find optimal or
near-optimal solutions. The first well-founded planner was probably C. Green’s
QA3 [12], offering sound and complete planning within the expressively quite
rich situation calculus. However, its performance was impractical, and this
provided some of the impetus behind the development of STRIPS and its de-
scendants. The subsequent quest for more practical planners contributed many
valuable ideas to planning theory and practice, but there remained a lingering
dissatisfaction in the planning community with the lack of formal founda-
tions and guarantees for the resultant planners (highlighted by troublesome
problems such as the Sussman anomaly and the register exchange problem).
This led to a renewal of efforts in the 80’s to find viable approaches to well-
founded planning, exemplified by novel algorithms such as BIGRESS [22, 16]
(based on dynamic logic), Bibel’s linear connection method for plan genera-
tion [3], TWEAK [4] (Chapman’s partial-order planner based on his “modal
truth criterion”) and SNLP [18] (another systematic partial-order planner us-
ing propositional STRIPS operators). These efforts have gained considerable
momentum in recent years, leading both to extensions of earlier approaches,
such as UCPOP [20] and BURIDAN [17], and systematic comparative perfor-

mance evaluations (e.g., [2, 15]).

Despite these efforts, it seems fair to say that well-founded planners still per-
form dismally in practical terms. For example, when we tried to apply the
programs evaluated in [15] to the standard UCPOP suite of test problems, we
found that none achieve reasonable performance on the 3-disk Towers of Hanoi
(T of H) puzzle (requiring 7 moves for its solution), or on some other simple
problems. UCPOP did best on T of H but still took over 3 minutes of CPU
time on a SUN 10, generating tens of thousands of partial plans. (This was
with the “delay separation” switch on [21];' with this switch off, performance

li.e., delaying the use of “promotion” and “demotion” to avert threats until all vari-
ables appearing in the conflict conditions are bound; and disabling altogether the use of
inequations to block unification of threatening effects with threatened causal links



was typically several times worse.) This is disappointing, since puzzles like
T of H are easily solved by inexperienced people, with very little trial and
error search; moreover, the very first well-founded planner, C. Green’s QA3,
reportedly solved some (carefully formulated) versions of this problem rather
easily [12]. It should be noted that such toy problems are not particularly
outlandish from a practical perspective; for instance T of H and blocks world
problems resemble problems that arise in such areas as connecting railroad
cars into trains (with use of sidetracks) and pallet management in automated
warehouses. (Some of the other problems in the test suite, such as the “ferry
domain”, are more directly evocative of real-world applications.)

Some recent studies of partial-order planning strategies (e.g., [15]) could be
interpreted as implying that the level of planning performance achieved so far
is about the best that is possible for domain-independent planners; any real
improvements from this point on will have to come from exploiting domain-
specific information. Our outlook on well-founded, domain-independent plan-
ning is more optimistic. In the following, we suggest improved planning strate-
gies based on the one hand on more carefully formulated heuristics for selecting
plans for refinement, and on the other on “deductively oriented” (or “zero com-
mitment”) strategies for choosing subgoals. We describe these two classes of
techniques in Sections 2 below, and in Section 3 we report our preliminary
experimental results based on slightly modified versions of UCPOP. These
results suggest that order-of-magnitude improvements in the performance of
well-founded planners are possible, bringing them closer to practical usability.

2 Plan Selection and Goal Selection

2.1 UCPOP

We will be basing our discussion and experiments on UCPOP, an algorithm
exemplifying the state of the art in well-founded partial-order planning. Thus
we begin with a sketch of this algorithm, referring the reader to [1, 20] for
details.

In essence, UCPOP explores a space of partially specified plans, each paired
with an agenda of goals still to be satisfied and threats still to be averted. The
initial plan contains a dummy *start™ action whose effects are the given initial
conditions, and a dummy *end* action whose preconditions are the given goals.
Thus goals are uniformly viewed as action preconditions, and are uniformly
achieved through the effects of actions, including the *start™ action.

The plans themselves consist of a collection of steps (i.e., actions obtained by
instantiating the available operators), along with a set of causal links, a set
of binding constraints, and a set of ordering constraints. When an open goal
(precondition) is selected from the agenda, it is established (if possible) either



by adding a step with an effect that unifies with the goal, or by using an
existing step with an effect that unifies with the goal. (In the latter case, it
must be consistent with current ordering constraints to place the existing step
before the goal, i.e., before the step whose preconditions generated the goal.)
When a new or existing step is used to establish a goal in this way, there are
several “side effects”:

e A causal link (5,,Q,S.) is also added, where S, indicates the step “pro-
ducing” the goal condition ) and S. indicates the step “consuming” ).
This causal link serves to protect the intended effect of the added (or
reused) step from interference by other steps.

e Binding constraints are added, corresponding to the unifier for the action
effect in question and the goal (precondition) it achieves.

e An ordering constraint is added, placing the step in question before the
step whose precondition it achieves.

o [f the action in question is new, its preconditions are added to the agenda
as new goals (except that eq/neq conditions are integrated into the bind-
ing constraints — see below).

e New threats (called “unsafe conditions”) are determined. For a new
step and its causal link, other steps threaten the causal link if they have
effects unifiable with the condition protected by the causal link (and these
effects can occur temporally during the causal link); and the effects of
the new step may similarly threaten other causal links. In either case,
new threats are placed on the agenda.

Binding constraints assert the identity (eq) or nonidentity (neq) of two vari-
ables or a variable and a constant. Eg-constraints arise from unifying open
goals with action effects, and neg-constraints arise from neq-preconditions of
newly instantiated actions and from matching negative goals containing vari-
ables to the initial state. (We set aside “separation” as a means of averting
threats, which also leads to neq-constraints.) Neq-constraints may be disjunc-
tive, but are handled simply by generating separate plans for each disjunct.

The overall control loop of UCPOP consists of selecting a plan from the current
list of plans (initially the single plan based on *start™ and *end*), selecting a
goal or threat from its agenda, and replacing the plan by the corresponding
refined plans. If the agenda item is a goal, the refined plans are those corre-
sponding to all ways of establishing the goal using a new or existing step. If
the agenda item is a threat to a causal link (S,,Q,S.), then with the “delay
separation” switch on there are two refined plans, respectively constraining the
threatening step to be before step S, (demotion) or after step S. (promotion),
thus averting the threat.



Inconsistencies in binding constraints and ordering constraints are detected
when they first occur (as a result of adding a new constraint) and the corre-
sponding plans are eliminated. Planning fails if no plans remain. The success
condition is the creation of a plan with consistent binding and ordering con-
straints and an empty agenda.

What we have described so far is actually POP. The “U” and “C” in UCPOP
correspond to a liberalized form of STRIPS-like operator specifications, al-
lowing universally quantified preconditions (and goals) and conditional effects.
For instance, it is permissible to have a precondition for a PICKUP(x) action
that says that for all y, (not (on y x)) holds. Also, it is permissible to have
conditional effects for a PUTON(x,y,z) action (“put x on y from z”), stating
that when y is not the table, it will not be clear at the end of the action, and
when z is not the table, it will be clear at the end of the action. We need not
be concerned here with the details of how such conditions are handled. They
cause only minor perturbations in the operation of UCPOP; for instance, con-
ditional effects can lead to multiple matches against operators for a given goal,
each match generating different preconditions. (Of course, there can be mul-
tiple matches even without conditional effects, if some predicates occur more
than once in the effects.)

The key issues for us are the strategic ones: how plans are selected from the
current set of plans (discussed in section 2.2), and how goals are selected for a
given plan (discussed in section 2.3).

2.2 The trouble with counting unsafe conditions

The choice of the next plan to refine in the UCPOP system is based on an
A* best-first search. Recall that A* uses a heuristic estimate f(p) of overall
solution cost consisting of a part g(p) = cost of the current partial solution
(plan) p and a part h(p) = estimate of the additional cost of the best complete
solution that extends p. In the current context it is helpful to think of f(p) as
a measure of plan complexity, i.e., “good” plans are simple (low-complexity)
plans.

There are two points of which the reader should be reminded. First, in order
for A* to guarantee discovery of an optimal plan (i.e., the “admissibility” con-
dition), h(p) should not overestimate the remaining solution cost [19]. Second,
if the aim is not necessarily to find an optimal solution but to find a satis-
factory solution quickly, then f(p) can be augmented to include a term that
estimates the remaining cost of finding a solution. One common way of doing
that is to use a term proportional to h(p) for this as well, i.e., we “empha-
size” the h-component of f relative to the g-component. This is reasonable to
the extent that the plans that are most nearly complete (indicated by a low
h-value) are likely to take the least effort to complete. Thus we will prefer
to pursue a plan p’ that seems closer to being complete to a plan p further



from completion, even though the overall complexity estimate for p’ may be
greater than for p [19] (pages 87-88). Alternatively, we could add a heuristic
estimate of the remaining cost of finding a solution to f(p) that is more or less
independent of the estimate h(p).

With these considerations in mind, we now evaluate the advisability of includ-
ing the various terms in UCPOP’s function for guiding its A* search, namely

S, OC, CL, and UC,

where S is the number of steps in the partial plan, OC is the number of open
conditions (unsatisfied goals and preconditions), CL is the number of causal
links, and UC is the number of unsafe conditions (the number of pairs of
steps and causal links where the step threatens the causal link). The default
combination used by UCPOP is S+0C+UC.

(a) Concerning S, the number of steps currently in the plan, this can naturally
be viewed as comprising ¢(p), the plan complexity so far. Intuitively,
a plan is complex to the extent that it contains many steps. While
in some domains we might want to make distinctions among the costs
of different kinds of steps, a simple step count seems like a reasonable
generic complexity measure.

(b) Concerning OC, the number of open conditions, this can be viewed as
playing the role of h(p), since each remaining open condition must be
established by some step. The catch is that it may be possible to use
existing steps in the plan (including *start™, i.e., the initial conditions)
to establish remaining open conditions. Thus OC can overestimate the
number of steps still to be added, forfeiting admissibility.

On the other hand, even open conditions that do not require new steps do
require some work on the part of the planning algorithm. So these open
conditions can be viewed as contributing to the remaining cost of find-
ing a solution, biasing UCPOP slightly toward trading off solution cost
against solution-finding cost. As such, OC appears to be a reasonable
generic component of the A* heuristic function.

(c) Concerning CL, the number of causal links, one might motivate the inclu-
sion of this term by arguing that numerous causal links are indicative of a
complex plan. As such, CL appears to be an alternative to step-counting.
In fact, as long as a partial plan does not yet link any preconditions to the
initial state, and as long as each step establishes just one precondition
or goal, CL is essentially the same as S. Once preconditions are linked
to the initial state, or if steps are used to establish multiple conditions,
CL will differ from S by preferring plans in which steps have few precon-
ditions to plans in which steps have more preconditions, even when the
total number of steps are the same.



This seems like a reasonable alternative to 5. However, if we simply add
CL to S, we will again tend to emphasize plan cost relative to plan-
completion cost, and thus decrease the chances of finding a solution
quickly. So it appears that if CL is used as a g-measure, then the S
term should be dropped from the overall heuristic.

(d) Concerning UC, the number of unsafe conditions, we note first of all that
this is clearly not an h-measure. The number of unsafe conditions bears
no definite relation to the number of steps that must still be added,
and in fact arbitrarily many “unsafe” conditions may cease to be unsafe
upon addition of ordering constraints or binding constraints. When such
expired threats are selected from the agenda, they are recognized as such
and discarded without further action.

Can we then view UC as a g-measure? Or as a measure of the remain-
ing cost of finding a plan? The former possibility seems plausible at
first glance for plans in which we have added no constraints to avert un-
safe conditions. For such plans, UC should generally increase with the
number of steps in those plans, since adding steps typically adds unsafe
conditions.? However, once we have refined some plans to remove unsafe
conditions, the UC count need no longer vary systematically with the
number of steps. Besides, even if it did, augmenting ¢ in this way would
work against finding a solution quickly, since it would emphasize ¢ rather

than A.

That leaves us with the question whether UC is indicative of the remain-
ing cost of finding a solution. One could argue that unsafe conditions
are “flaws” that will have to be remedied by refinement steps. The more
refinements a plan requires, the longer it will take to complete.

However, this argument is dubious at best. As already noted, unsafe
conditions include many possible conflicts which may eventually vanish
as a result of subsequent partial ordering choices and variable binding
choices not specifically aimed at removing these conflicts. Thus counting
unsafe conditions can arbitrarily overestimate the number of genuine
refinements still needed to complete the plan. In fact if we consider a
plan that already contains all n steps that will be needed, we can see
that in the worst case there may be O(n?) unsafe conditions, yet there
must exist O(n) refinements that fully linearize these steps, completing
the plan. This observation also suggests that UC could easily swamp the
S+0C terms, suppressing their role in guiding the A* search.

The conclusions we can draw are thus that S+0OC and CL+OC are the most
promising general heuristic measures for plan selection, while the UC term

2UC will also tend to increase when existing steps are used to establish open conditions,
since this adds causal links. Since CL could also serve as a plan complexity measure — see
(c) — this tendency is still consistent with the supposition under consideration.



should probably not be included. Note that with both S+0C and CL+0C
there will be a preference for those offspring of a plan that reuse actions already
in the plan rather than adding new actions. With CL+OC, such offspring
have the same cost as the parent, while with S40OC they actually have a lower
cost, emphasizing the preference for action reuse. This emphasis appears to
give the S+0C measure considerable advantages in some domains. Because
of its nearly uniform experimental superiority to the CL4+OC measure, we
will not further consider the latter here. The S+OC heuristic was in fact
previously considerd by Peot and Smith [21], but because their focus was on
threat-removal strategies neither they nor other researchers appear to have
fully recognized the advantages of this measure.

2.3 The goal selection strategy

An important opportunity for improving planning performance independently
of the domain lies in identifying “forced refinements”, i.e., refinements that can
be made deterministically. Specifically, it makes sense to give top priority to
open conditions that cannot be achieved; and then preferring open conditions
that can only be achieved in one unique way — either through addition of
an action not yet in the plan, or through a unique match against the initial
conditions.

The argument for giving top priority to unachievable goals is just that plans
containing such goals can be eliminated. Thus we prevent allocation of effort
to the refinement of doomed plans, and to the generation and refinement of
their doomed successor plans.

The argument for preferring open conditions that can only be achieved uniquely
is equally apparent. Since every open condition must eventually be established
by some action, it follows that if this action is unique, it must be part of every
possible completion of the partial plan under consideration. So, adding the
action is a “zero-commitment” refinement, involving no choices or guesswork.
At the same time, adding any refinement in general narrows down the search
space by adding binding constraints and adding a causal link and further ef-
fects that can temporally constrain other threatening or threatened actions.
For unique refinements this narrowing-down is monotonic, never needing re-
vocation. In short, the strategy cuts down the search space without loss of
access to viable solutions.

Peot and Smith [21] studied the strategy of preferring forced threats to un-
forced threats, and also suggested possible use of a “least commitment” strat-
egy for handling open conditions. “Least commitment” always selects an open
condition which generates the fewest refined plans. Thus it entails the priori-
ties for unachievable and uniquely achievable goals above (while also entailing
a certain prioritization of nonuniquely achievable goals). Joslin and Pollack
[14] studied the uniform application of such a strategy to both threats and open



conditions in UCPOP, terming this strategy “least cost flaw repair” (LCFR).?
Combining this with UCPOP’s default plan selection strategy, they obtained
significant search reductions (though less significant running time reductions,
for implementation reasons) for a majority of the problems in the UCPOP test
suite.

In UCPOP, goals are selected from the agenda according to a LIFO (last in
first out, i.e., stack) discipline. Based on experience with search processes in Al
in general, such a strategy has much to recommend it, as a simple default. It
will tend to maintain focus on the achievement of a particular higher-level goal
by regression — very much as in prolog goal chaining — rather than attempting
to achieve multiple goals in breadth-first fashion. We have therefore chosen
to stay with UCPOP’s LIFO strategy whenever there are no unachievable or
forced open conditions. This has led to very substantial improvements over
LCFR in our experiments.

3 Experiments Using UCPOP

In order to test our ideas we have modified version 2.0 of UCPOP [1], replacing
its default plan-selection strategy (S+OC+UC) and goal-selection strategy
(LIFO) to incorporate strategies discussed in the previous sections. We use
“ZLIFO” (“zero-commitment last in first out”) to denote the goal-selection
strategy that assigns highest priority to open conditions that can be achieved
with zero-commitment plan refinements, and second-highest priority to open
conditions most recently added to the agenda.

We have tested the modified planner on several problems in the UCPOP suite,
emphasizing those that had proved most challenging for previous strategies.
We have also included one of the two artificial domains (ART-#.s-Fc105) that
served as a testbed for Kambhampati et al.’s extensive study of the behavior
of various planning strategies as a function of problem parameters [15].* The
experiments were conducted on a SUN 10.

Figures 1 and 2 give the formalizations of the two versions of the T of H domain
in terms of UCPOP’s language, while the formalizations of the other problems
from the UCPOP suite are not repeated here.> We thought it important to
test more than one version of T of H, since this was the hardest problem for
UCPOP (as well as other algorithms we tried before focusing on UCPOP),
and its difficulty has long been known to be sensitive to the formalization

(e.g., [12]). Figure 3 supplies a UCPOP formalization of ART-# s~ ci0p-

3We would find “least commitment flaw repair” more accurate.

4This domain was chosen since absolute performance data are provided for it in [15].

>The formalizations of these domains except the 3-operator version of the T oh H and
the artificial domain from [15] are available along with UCPOP via anonymous FTP from
cs.washington.edu



(define (operator move-disk)
:parameters ((disk ?disk) ?below-disk ?new-below-disk)
:precondition (:and (smaller ?disk 7new-below-disk) ;handles pegs
(:neq ?new-below-disk ?below-disk)
(:neq ?new-below-disk ?disk)
(:neq ?below-disk 7disk)
(on ?disk 7below-disk)
(clear ?disk)
(clear ?new-below-disk))
reffect (:and (clear 7below-disk)
(on ?disk 7new-below-disk)
(:not (on 7disk ?below-disk))
(:not (clear 7new-below-disk))))

Initial state: ((smaller D1 P1) (smaller D2 P1) (smaller D3 P1) (smaller D1 P2)
(smaller D2 P2) (smaller D3 P2) (smaller D1 P3) (smaller D2 P3)
(smaller D3 P3) (smaller D1 D2) (smaller D1 D3) (smaller D2 D3)
(clear P2) (clear P3) (clear D1) (disk D1) (disk D2) (disk D3)
(on D1 D2) (on D2 D3) (on D3 P1))
Goal state: (and (on D1 D2) (on D2 D3) (on D3 P3))

Figure 1: Formalization of T-of-H1

‘ plan-selection ‘ goal-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC 204.51 160911/107649
LIFO S+0C 0.97 751/511
ZLIFO S+0C+UC 6.90 1816/1291
ZLIFO S+0C 0.54 253/184

Table I: Performance of plan/goal selection strategies on T-of-H1

Tables [-I1X show the CPU time (seconds) and the number of plans cre-
ated/explored by UCPOP on nine problems in the following domains: Towers
of Hanoi with three disks and either one operator (T-of-H1) or three operators
(T-of-H3), the blocks world (tower-invert4 and sussman-anomaly), Russell’s
tire changing domain (fix3), the ferry domain (ferry-test), “Dan’s fridge” do-
main (fixa), and the artificial domain ART-#. 505 (specifically, ART-3-6
and ART-6-3). Note that the number of plans is probably more meaningful
than the CPU time for evaluating the performance of the strategies examined.
In fact our implementation of these strategies was committed to not altering
UCPOP’s data structures; they could have been implemented more efficiently
with modified data structures.

Tables I and II show that for the T of H the plan selection strategy S+0OC gives
dramatic improvements over the default S+OC+UC strategy. (In these tests

‘ plan-selection ‘ goal-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC > 600 > 500000
LIFO S+0C 8.54 5506/3415
ZLIFO S+0C+UC > 600 > 500000
ZLIFO S+0C 1.24 641/420

Table II: Performance of plan/goal selection strategies on T-of-H3

10



‘ plan-selection ‘ goal-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC 2.45 2131/1903
LIFO S+0C 2.48 2131/1903
ZLIFO S+0C+UC 0.33 96/74
ZLIFO S+0C 0.33 96/74

Table III: Performance of plan/goal selection strategies on fixa

‘ plan-selection ‘ goal-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC 6.50 3396/2071
LIFO S+0C 0.43 351/215
ZLIFO S+0C+UC 1.12 357/221
ZLIFO S+0C 1.53 574/373

Table IV: Performance of plan/goal selection strategies on fix3

‘ plan-selection ‘ goal-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC 1.35 808/540
LIFO S+0C 0.19 148/105
ZLIFO S+0C+UC 2.81 571/378
ZLIFO S+0C 0.36 142/96

Table V: Performance of plan/goal selection strategies on invert-tower4

‘ plan-selection ‘ goal-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC 0.63 718/457
LIFO S+0C 0.32 141/301
ZLIFO S+0C+UC 0.24 136/91
ZLIFO S+0C 0.22 140/93

Table VI: Performance of plan/goal selection strategies on test-ferry

‘ goal-selection ‘ plan-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC .67 558/392
LIFO S+0C 1.36 1299 /840
ZLIFO S+0C+UC 0.16 72/49
ZLIFO S+0C 0.18 79/54

Table VII: Performance of plan/goal selection strategies on ART-#.s-#c10h

with #.st = 3 and #., = 6 (averaged over 100 problems)

‘ goal-selection ‘ plan-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC 1.32 985/653
LIFO S+0C 2.08 1743/1043
ZLIFO S+0C+UC 0.14 57/37
ZLIFO S+0C 0.14 57/37

Table VIII: Performance of plan/goal selection strategies on ART-#.s-#c10h

with #.st = 6 and #.,, = 3 (averaged over 100 problems)




(define (operator MOVE-D1) (define (operator MOVE-D2)

:parameters ((thing ?from) (thing ?to)) :parameters ((thing ?from) (thing ?to))
:precondition (:and (on D1 ?from) :precondition (:and (on D2 ?from)
(clear 7to) (clear ?to)
(:not (on D1 ?to)) (:not (on D2 ?to))

(:neq ?to D1)) (:not (on D1 D2))
:effect (:not (on D1 ?to))
(:and (on D1 ?to) (:neq ?to D1)
(:not (clear ?to)) (:neq 7to D2))
(clear ?from) :effect (:and (on D2 7to)
(:not (on D1 ?from))) (:not (clear 7to))

(clear ?from)
(:not (on D2 ?from))))

(define (operator MOVE-D3)

:parameters ((thing ?from) (thing ?to)) Initial state: ((on D1 D2) (on D2 D3)
:precondition (:and (on D3 7?from) (on D3 P1) (clear D1)
(clear 7to) (thing D1) (thing D2)
(:not (on D3 ?to)) (thing D3) (thing P1)
(:not (on D1 D3)) (thing P2) (thing P3)
(:not (on D2 D3)) (clear D1) (clear P2)
(:not (on D1 ?to)) (clear P3))
(:not (on D2 ?to))
(:neq ?to D1) Goal state: (and (on D1 D2) (on D2 D3)
(:neq ?to D2) (on D3 P3))
(:neq ?to D3))

:effect (:and (on D3 ?to)
(:not (clear ?to))
(clear ?from)
(:not (on D3 ?from))))

Figure 2: Formalization of T-of-H3

‘ plan-selection ‘ goal-selection ‘ CPU-time ‘ plans created/explored ‘

LIFO S+0C+UC 0.06 11726
LIFO S+0C 0.04 36/21
ZLIFO S+0C+UC 0.12 67/43
ZLIFO S+0C 0.07 11/25

Table IX: Performance of plan/goal selection strategies on sussman-anomaly

the default LIFO goal selection strategy was used.) In fact, UCPOP solved
T-of-H1 in 0.97 seconds using S+0C versus 204.5 seconds using S+OC+UC. T-
of-H3 proved harder to solve than T-of-H1, requiring 8.5 seconds using S+0C
and an unknown time in excess of the 600 CPU-second limit using S+0C+UC.

Our ZLIFO goal-selection strategy can significantly accelerate planning com-
pared with the simple LIFO strategy. In particular, when ZLIFO was combined
with the S+0OC plan-selection strategy in solving T of H, it further reduced
the number of plans generated by a factor of 3 in T-of-H1 (obtaining an overall
reduction by a factor of 636, and decreased the required CPU time from 204.5
to 0.54 seconds!), and by a factor of 8 in T-of-H3.

Tables ITI-VIII provide data for problems that are easier than T of H, but
still challenging to UCPOP operating with its default strategy, namely fixa,
tower-invert4, fix3, test-ferry and the artificial domain ART-#.s-# 105 (with
H#Hest = 3 and #o = 6 and with #.5 = 6 and #.. = 3). The results show
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;Replace i by O, ..., 9 in the following two operators:

(define (operator Ail) (define (operator Ai2)

:parameters () :parameters ()

:precondition ((Ii)) :precondition ((Pi))

reffect (:and (Pi) [(Ii+1)] :effect (:and (Gi) [(Pi+1)]
{C:not (Ii-1))})) {(C:not (Pi-1))}))

Initial state: ((I0) (I1) (I2) (I3) (I4) (I5) (I6) (I7) (I8) (I9))
Goal state: (and (GO) (G1) (G2) (G3) (G4) (G5) (G6) (G7) (G8) (G9))

Figure 3: Formalization of ART-#.s-F#c05. The square brackets (not part of
the syntax) indicate parts to be included only for i < ny (#est); the braces
(not part of the syntax) indicate parts to be included only for 0 < ¢ < n_

(Fecton)-

that the combination of S+OC and ZLIFO substantially accelerates UCPOP
in comparison with its performance using OC+54+UC and LIFO. The number
of plans generated dropped by a factor of 22 for fixa, by a factor of 5.9 for fix3,

by a factor of 5.7 for tower-invert4, by a factor of 5.1 for test-ferry, by a factor
of 7 for ART-3-6, and by a factor of 17 for ART-6-3.

Concerning ART-#.5-# 100, note that the performance we obtained with un-
enhanced UCPOP (624 plans generated for ART-3-6 and 985 for ART-6-3)
was much the same as (just marginally better than) reported in [15] for the
best planners considered there (700 - 1500 plans generated for ART-3-6, and
1000-2000 for ART-6-3). This is to be expected, since UCPOP is a generaliza-
tion of the earlier partial-order planners. Relative to standard UCPOP and its
predecessors, our “accelerated” planner is thus an order of magnitude faster.
Interestingly, the entire improvement here can be ascribed to ZLIFO (rather
than S+OC plan selection, which is actually a little worse than S+OC+UC).
This is probably due to the unusual arrangement of operators in ART-# -
#oop into a “clobbering chain” (A,_; clobbers A, _;:’s preconditions, ...,
Ajq ;1 clobbers Ag1’s preconditions; similarly for A, ), which makes immediate
attention to new unsafe conditions an unusually good strategy.

In experimenting with various combinatorially trivial problems that unmodi-
fied UCPOP handles with ease, we found that the S+OC and ZLIFO strategy
is neither beneficial nor harmful in general; there may be a slight improvement
or a slight degradation in performance. Results for the Sussman anomaly in
table IX provide an illustrative example.

For direct comparison with Joslin and Pollack’s LCFR strategy, we imple-
mented their strategy and applied it to a few problems. It did very well
(sometimes better than ZLIFO) for problems on the lower end of the difficulty
spectrum, but poorly for harder problems. For T-of-H3 (the hardest problem),
LCFR in combination with the default S+OC+UC plan selection strategy ran
in 96.3 cpu seconds, creating/ exploring 9942/6402 plans (cf., 641/420 for
ZLIFO). With S+0C plan selection, results were marginally better (87.7 cpu

13
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Figure 4: Increased speedup of ZLIFO and S+0OC relative to the number of
plans generated by LIFO and S+O0C+UC (log-log scale).

seconds, 9387/6998 plans).

We summarize our results in Figure 4, showing the speedup obtained with the
combined ZLIFO goal selection strategy and S+0OC plan selection strategy as
a function of problem difficulty (as indicated by the number of plans generated
by the default LIFO plus S+OC+UC strategy). The trend toward greater
speedups for more complex problems (though somewhat dependent on problem
type) is quite apparent from the log-log plot.

4 Conclusions and Further Work

We have argued in favor of some simple, domain-independent improvements
to partial order planning strategies, based on the one hand on a carefully
considered choice of terms in the A* heuristic for plan selection, and on the
other on a preference for choosing open conditions that cannot be achieved
at all or can only be achieved uniquely (with a default LIFO prioritization of
other open conditions). Since the plan refinements corresponding to uniquely
achievable goals are logically necessary, we have termed this strategy a “zero-
commitment” strategy.

Our experiments based on modifications of UCPOP indicate that our strategies
can give large improvements in planning performance, especially for problems
that are hard for UCPOP (and its “relatives”) to begin with. The best perfor-
mance was achieved when our strategies for plan selection and goal selection
were used in combination. Further, our results indicate that zero-commitment
is best supplemented with a LIFO strategy for open conditions achievable in
multiple ways, rather than a generalization of zero-commitment favoring goals
with the fewest children. A sufficient variety of problems were tried to indicate
that our techniques are of broad potential utility.
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One promising direction for further work is to make the zero-commitment strat-
egy apply more often by developing ways of identifying “false options” as early
as possible. That is, if a possible action instance (obtained by matching an
open condition against available operators as well as against existing actions)
is easily recognizable as inconsistent with the current plan, then its elimination
may leave us with a single remaining match and hence an opportunity to apply
the zero-commitment strategy.

One way of implementing this strategy would be to check at once, before
accepting a matched action as a possible way to attain an open condition,
whether the temporal constraints on that action force it to violate a causal
link, or alternatively, force its causal link to be violated. In that case the
action could immediately be eliminated, perhaps leaving only one (or even no)
alternative. This could perhaps be made even more effective by broadening
the definition of threats so that preconditions as well as effects of actions can
threaten causal links, and hence bring to light inconsistencies sooner. Note
that if a precondition of an action is inconsistent with a causal link, it will
have to be established with another action whose effects violate the causal
link; so the precondition really poses a threat from the outset.

Another direction for further work is to apply efficient temporal reasoning
methods to the problem of eliminating inconsistent promotion/demotion al-
ternatives for threat elimination, given the set of all (definite) threats and
ordering relations in the plan under development. Though this problem is in
principle NP-hard, algorithms that are very efficient on average are described
in [10, 11]. This could be far more efficient than trying each possible promotion
and demotion, checking in isolation for consistency with ordering constraints.
A similar idea was previously explored in [28] using arc consistency techniques,
but we think further gains are possible with the algorithms mentioned above,
which are more general than arc-consistency testing and employ intelligent
backtracking for efficient search.

Finally, another direction that seems very promising to us (based on some hand
simulations) is to precompute certain constraints that must hold throughout
the search space of a given problem, based on the structure of the operators,
initial conditions and goal conditions. This often permits some matching ac-
tions for open conditions to be immediately eliminated, as they would violate
the precomputed constraints.

Our conclusion, both from the results we have presented and from the pos-
sibilities for further speedups we have mentioned, is that ample opportuni-
ties still exist for major improvements in the performance of well-founded,
domain-independent planners. These may be sufficient to make such planners
competitive with current more pragmatically designed planners.
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