Performance Evaluation of Attribute-Oriented Algorithms
for Knowledge Discovery from Databases: Extended Report

Colin L. Carter and Howard J. Hamilton
Dept. of Computer Science, University of Regina, Regina, SK, Canada, S4S 0A2
email: {carter, hamilton}@ @cs.uregina.ca

Abstract

Practicaltools for knowledgediscoveryfrom databasemustbe efficient enoughto handle
large datasetsfoundin commercialenvironments.Attribute-orientednductionhasprovedto be
a useful method for knowledgediscovery,but two algorithmswhich implementit, AOI and
LCHR, have some limitations due to excessivememory usage. AOIl and LCHR generalize
databaseelationsin O(np) and O(n log n) time respectively,wheren is the numberof input
tuplesand p is the numberof tuplesin the outputrelation. Their spacerequirementsare O(n)
sincethey storethe wholeinput relationin memoryor on disk. In contrastwe presentGDBR, a
spaceefficient, optimal O(n) algorithmfor relationgeneralization.We also presentthe resultsof
empirical comparisons between GDB&R)DI andLCHR. We haveimplementecefficient versions
of eachalgorithmandempirically comparedhemon largecommercialdatasets. We presenthe
resultsof thesetests,showingthat GDBR is consistentlyfasterthan AOl andLCHR. GDBR'’s
timesincreaselinearly with increasednput size, while timesfor AOIl and LCHR increasenon-
linearly whenmemoryis exceededThroughbettermemorymanagementyowever,AOl canbe
improved to provide some advantageous capabilities.

Keywords: machine learning, knowledge discovery, data mining, attribute-oriented induction

1. Introduction

Knowledge discovery from databaseqKDD) is the nontrivial extraction of implicit,
previouslyunknown,and potentially usefulinformation from data[9]. As a branchof machine
learning, KDD encompasses a number of automated methods wherebynfieehdtionis mined
from datastoredin databases.Whena KDD methodis implementedas a practical tool for
knowledge discovery in databases, an important requirement it Itleats efficient aspossibleso
that it can handlethe large input data setstypically encounteredn commercialenvironments.
This paperpresentghe resultsof our efforts to compareimplementationof three similar KDD
algorithms to determine their suitability for application to large scale commercial databases.

Our work has been motivated by the desiresof corporate sponsorssuch as Roger’s
Cablevision to use our knowledge discovery tools on databases consuming 5 gigamge®ry
and containingmillions of records. Discoverytasksthat we have exploredhave usually been
gearedto relating two or three attributesto each other to seeif thereis any interesting
relationship betweenthem. For example,is there any significant relationship between a
customer’shasiccablesubscription(basiccableservicesfamily channelmovie channeletc.)and
the rating of the pay per view (ppv) moviesthat the customemrents? This discoverytask might
leadto the more effective targetingof advertisingcampaigngor ppv movieson cable stations.
Alternatively, is there any relationship betweenaheain which a customeiives andthe typesof
servicessubscribedto or the ppv moviesrented? We found that certain areashad very high
occurrence®f oneproductandvery low occurrence®f others. Again, this canaid in effective

targetmarketingcampaigns. Thesetypesof queriestypically relatedgeneralization®f only two
or three attributes to each other, but access potentially millions of records.

Attribute-orientedinduction is a KDD generalizationtechniquewhich, given a relation
retrievedfrom a relationaldatabasegeneralizests contentson an attributeby attributebasis[2].
The goal of relation generalizationis to producea small table of information that accurately
summarizeshe input datato such a degreethat people can easily recognizethe interesting
patternsthat emergefrom the generalizeddata. We havefound attribute orientedgeneralization
techniquesto produceuseful and informative summariesof input datain much lesstime than
standarddatabasdaechniquescommonly used by data managersn commercialenvironments.
Time savingsare realizedboth in termsof defining the generalizatiorpathsthat will be usedon
the data and in the actual summarization of data retrieved from the database.

The primary algorithmfor attribute-orientednduction, which we call AOI, runsin O(np)
time wheren is the numberof input tuples(databaseecords)andp is the numberof tuplesin the
final generalizedrelation [10]. A related algorithm, LCHR (Learn CHaracteristic Rule),
accomplishes the same result, diffiers slightly in its method[3]. LCHR runsin O(n log n) time
wheren is the number of input tupl¢8]. The spaceequiremenbdf bothAOI andLCHR is O(n)
since they both store the whole input relation either in memory or on disk.

Our first researchefforts focusedon implementingefficient versionsof attribute-oriented
algorithmsso that tools basedon them will handlelarge datasets[7], [8]. We have found,
however that neitherAOI or LCHR aspublishedscaleswell to large input datasets. Although
both thesealgorithmsare relatively efficient for moderateinput sizes,they are not optimal. In
addition, their memoryrequirementgrow with increasednput size, causingexcessivanemory
use and resultant performance degradation for large inputs.

We thereforepresentGDBR, an on-line and spaceefficient attribute-orientedalgorithm
which accomplisheshe sameresultas AOI andLCHR but runsin O(n) time, which is optimal.
For typical knowledgediscoverytasks,GDBR usesa small, constantamountof memory. In
Section2 we describerelevantportionsof AOI andLCHR. In Section3 we describeGDBR and
the basicdatastructuresand methodsthe algorithmuses. In Section4 we presenthe algorithm
moreformally. In Section5 we summarizehe complexity analyseof AOI, LCHR and GDBR.
In Section6 we presentempiricaltestresults. In Sections7, we describesomeimprovementdo
AOI which makeit moreusefulandconcludethe paperin Section8. A shortform of this paper
will appear ag6].

2. Overview of Attribute-Oriented Induction, AOIl and LCHR

An attribute-orientednductionalgorithmtakesasinput a relationretrievedfrom a database
and generalizes the data guided by a set of concept hierdictjied\ concept hierarchys atree
of conceptsarrangedhierarchicallyaccordingto generality. For discretevaluedattributes,leaf
nodescorrespondto actual datavalueswhich may be found in the database. For continuous
(usuallynumerical)valuedattributes leaf nodesrepresentliscreterangesof values. Higher level
nodesrepresentmore generalconceptscreatedby combining groups of lower level concepts
under unique names.

After retrieving task relevantdatafrom a databasethe first step of generalizationis to
convertthe datavaluesto matchingleaf conceptsrom the appropriateconcepthierarchy. This
initial conversionhowever,is not the focus of our algorithm. This paper,like [10], is primarily
concernedwith the generalizationalgorithm itself which takesa relation from ungeneralized

concepts to appropriately general concepts.

The generalizationprocessis limited by a set of user defined attribute thresholdswhich
specify the maximum numbef distinctvaluesthat mayexistfor eachattributeof the generalized
relation. When each attribute of the input relation has been generalized to withautiosof its
threshold,many tuples of the relation are identical to other tuples. A count of eachset of
identicaltuplesis thenstoredin one andthe restare eliminated. The resultis called the prime
relation.

The algorithmsAOI andLCHR usethe samefirst stageof generalizationcalled PreGenin
[10]. Both make one pass through the input relation to compile statistics about howlistzay
values of each attribute the input relation contains. These values are then generalizedby
ascendingthe relevantconcepthierarchiesuntil the total number of distinct valuesfor each
attributefalls within the rangeof that attribute’sthreshold. This producesa numberof concept
pairs where each ungeneralized concept is matched with a higher level concept.

AOIl and LCHR handle the replacementof ungeneralizedconceptsand removal of
duplicatessomewhadtifferently. AOI loopsthroughthe input relationon a tuple by tuple basis,
replacesthe value of each attribute with a generalizedconcept,and immediately inserts the
generalizeduple into a dynamically constructedprime relation. The prime relation is initially
empty. The first tuple encountereds insertedat the beginningof the relation, and its count
variableis initialized to one. Eachsubsequentuple readfrom the input relation is sequentially
compared withuplesin the primerelation. If anidenticaltupleis found,a countvariablefor that
tupleis incrementedandthe tuple to beinsertedis discarded.If no matchingtupleis found, the
tuple to be inserted is added to the end of the prime relation.

LCHR loopsthroughthe input relation,replacesall datavalueswith generalizecconcepts,
then sortsthe resultingrelation and removesduplicateswith one final pass.The final result of
both algorithmsis a small relation of uniquetuples,eachof which summarizegshe number of
tuples that it represents from the input.

3. GDBR Overview

GDBR incorporatesseveralenhancements the datastructuresusedby AOI and LCHR
and approaches the duplicate removal proceasnareefficientway. First, GDBR makesuseof
an augmentedconcepthierarchystructureto eliminatethe needto replaceconceptswith more
generalconcepts.Secondlyasit readstuplesfrom the databaseind convertsthesetuplesto leaf
conceptsjt assignsan orderto theseconceptdasedon a first encounterprinciple. Thirdly, the
numberof distinctconceptsncounteredior eachattributeis trackedasthe input relationis read,
and as soon as the attribute threshold is exceeded, the algorithm immeakasaygeshe level of
generalization. Finally, GDBR usesinformation about the number of attributesin the input
relation and the attribute thresholdsof each attribute to structurethe prime relation. The
encounteorderingsof a tuple’scomponentonceptsarethenusedto inserttuplesinto the prime
relation in a single step as eachis read. While this may require the prime relation to be
reorganizeda few times, it avoidsboth the needto performn searche®f the prime relationto
insert input tuples, as in AOI, or the need to sort a relation ohseein LCHR.

3.1 Augmented Concept Hierarchies

For each concept iahierarchy,we constructa patharray, anarrayof pointersto concepts
which representshe concept’spathto the root of thetree. Sibling leaf nodessharea single path
array, sincethe pathto the root from eachis the same. Eachparentnodesharesa portion of a
leaf descendant’sarray, since a parent’spath is a subpathof any of its descendantspaths.
Arrays, therefore,are only constructedfor eachgroup of leaf siblings. An augmentedree
structure for the attribute PROVINCE is showrFigure 1

In additionto the patharrays,we assigneachconcepta distance_to_maxaluewhichis the
difference betweenits depth and the depth of the deepestleaf concept. In Figure 1, the
distance_to_maxf eachlevel of the tree is markedto the right of the tree. For example,the
distance_to_maxf Albertais O sinceit is at maximumdepth,andthat of Quebecis 2 sinceits
depth is two levels less than the deepest leaf nodes.

For eachattributein the input relation, the algorithmkeepstrack of a generalizationevel
an integerrepresentindiow manytimesthe attribute hasbeengeneralized. Eachgeneralization
level is initially set to 0. As the need for generalization is detected, the level is incremented.

We define an accesdunction, get_generalized_concepthich takesas input any concept
anda generalizatiorlevel andreturnsa generalizecconceptat the appropriatdevel of generality.
If the generalizationevel exceedshe distance_to_maxf an input concept,the path array is
accessed according to ttéferenceof thesetwo valuesandthe conceptat thatindexis returned.
Otherwise the input conceptis returned. For example for the hierarchyshownin Figure 1, the
call get_generalized_concept(B.@),will returnB.C. becauseB.C's distance_to_maxoesnot
exceed the generalization level. Howegst_generalized_concept(B.C. v}l return Western

Wheninput attributevaluesarereadfrom the databasethey are convertedto conceptsand
stored asuch. As theinputrelationis generalizedthe generalizatiorlevel is incremented.Since
conceptsare only accessedby the get_generalized_concefinction, this inherently generalizes

Canada distance to max

Quebec _ - - Atlantic 2

AN

. -N.B. N.S Newfoundland PEI. 1

4V

. o> Atlantic
' _Albeta Sakdchewan Manitoba - | Ceneda 0
\) L4 T
T > | Paries
| Wegten
Caneda

Figure 1. An Augmented Concept Hierarchy for the Attribute PROVINCE

the valuesalreadystoredwithout havingto replacethe conceptshemselves.lt alsosavesGDBR
from having to scanthe input relation a secondtime to replaceleaf valueswith generalized
concepts as both LCHR and AOI do.

3.2 Encounter Ordering

To avoid sorting the generalizedrelation, we define an encounterordering on the input
concepts. Eachnodein the concepthierarchyis given an ordinal field which is initialized to O.
For each attribute in the input relation, we also keep a distinct_value_countan integer
representinghow many distinct conceptvalueshave beerencounteredor that attribute at the
current level of generalization. Each distinct_value_counts initialized to O at the start of a
generalization task. When a tupleéadfrom the databasegachattributevalueis convertedo a
conceptandthe ordinal of that conceptis examined. If its valueis 0, the distinct_value_count
variable is incrementedand the result is assignedto the conceptas its ordinal. In essence,
therefore,we both definean order on the input conceptan termsof a concept’sfirst encounter
and keep track of how many distinct values have been encountered.

3.3 Progressive Generalization

The GDBR algorithm progressivelygeneralizeghe input relation as the datais read. As
tuples are retrieved from the databaseand each new concept is encountered,the
distinct_value_counvariable for that attribute is incrementedand comparedto the attribute’s
threshold. If the attribute threshold has not been exceeded,the conceptis stored in a
distinct_valuesarray which keeps a record of all concepts encounteredat the current
generalizationlevel. When the numberof distinct values exceedsthe attribute threshold,the
conceptdn this array arerepeatedlygeneralizeduntil the total numberof conceptsjncludingthe
one newly encountered,again falls within the bounds of the attribute threshold. The
distinct_valuesrray andlistinct_value_courdre then adjusted to reflect this level of generality.

3.4 Duplicate Elimination

To handleduplicatetuplesefficiently, we constructthe prime relationasan m dimensional
array wherem is the numberof attributesin the input relation. The size of eachdimensionis
determinedby the attribute thresholdfor eachattribute. Tuplesare “inserted” into the prime
relationusingthe ordinal valuesof the tuple’scomponentonceptsasindicesinto the appropriate
dimensionof the array. Insertingsimply meanscompiling statisticsaboutthe insertedtuple, that
is, incrementing a counter tracking the number of tuples insertbddtinell andpossiblysumming
values of numerical attributes. Other summarization operations may also be performed.

Sincewe generalizeconceptsas soonasthe attributethresholdis exceedednd beforethe
tupleis insertedinto the prime relation,we will alwaysbe ableto insertanytuple into the prime
relation. This means, however, that when any attribute threshold is exceededand a
distinct_valuesrray is adjusted, we may also need to rearrange some ajritentsof the prime
relationto reflect the changesof someconcepts’indices. Immediatelyafter a tuple has been
inserted, the prime relation accuratelyreflectsthe datareadin. Upon readingthe last tuple,
processing is complete and no further scanning, sorting or reorganizing is necessary.

4. GDBR Algorithm

In this section,we describethe GDBR algorithm (Algorithm 1) which is discussedn more
detail in [4] and [5]. We assumethat a discovery task has been defined and the database
initialized to retrieve input dataWe alsoassumehatthetuple arrivesfrom the databaseetrieval
processwith its attribute valuesconvertedinto leaf conceptsfrom the appropriatehierarchies.
For simplicity, we also assumehat the attributethresholdis the samefor every attribute. The
algorithm can be easily extended to allow different attribute thresholds for each attribute.

The allocate_distinct_values_arragnd allocate_prime_relationproceduresdynamically
allocatethesestructures. The prime relation minimally storesa pointer to the distinct_values
array andanintegercountfor eachpossiblecombinationof conceptvalues. The get_next_tuple

Algorithm: GDBR - Generalizes a Relation to the Attribute Threshold
Input: attr_count - the number of attributes in the input relation
attr_threshold - the attribute threshold
hierarchies - an array of concept hierarchies matching the input relation’s attributes
Output: the prime relation
procedure generalize_database_relation (
attr_count : integer,
attr_threshold : integer,
hierarchies : array[attr_count] of ConceptHierarchy)
var
i : integer;
distinct_values : array[attr_count, attr_threshold] of ConceptNode;
distinct_value_counts : array[attr_count] of integer;
concept : ConceptNode;
tuple : Tuple;
prime_relation : Relation;

{ dynamically allocate distinct_values array and prime relation }
distinct_values := allocate_distinct_values_array(attr_count, attr_threshold);
prime_relation := allocate_prime_relation(attr_count, attr_threshold);
prime_relation.distinct_values = distinct_values;
while (tuple := get_next_tuple())
fori:=1to attr_countdo
concept := get_generalized_concept(tuple.attribute[i]);
if (concept.ordinal =0) then {concept has not been seen yet }
distinct_value_countsJi] = distinct_value_counts][i] + 1;
if (distinct_value_counts[i] > attr_threshold) then
distinct_value_counts]i] := generalize_concepts(distinct_values[i], concept);
generalize_relation(prime_relation, i);
else
concept.ordinal := distinct_value_countsfi;
distinct_values[concept.ordinal] := concept;
end {if}
end {if }
end { for }
insert_tuple(prime_relation, tuple);
end { while }
return prime_relation;
end { generalize_database_relation }

Algorithm 1. GDBR

procedureretrievesa tuple from the databasend convertsits attribute valuesto leaf concepts
from the appropriateconcepthierarchies. The get_generalized_conceptrocedureretrievesa
generalizedconcept at the current level of generality as describedin Section 3.1 The
generalize_conceptgroceduretakesas input the array of conceptsencounteredo far andthe
new conceptthat causedhe attributethresholdto be exceeded.It generalizeshe conceptshe
minimum numberof levelsnecessaryo insertthe new conceptinto the array and still be within
the attributethreshold. It thenreturnsthe numberof distinct valuesin the array after successful
adjustment. The generalize_relatioproceduretakesthe prime relationandthe currentattribute
index as arguments. It movesany tupleswhoseconceptshavehad a changeof ordinal to the
positionthe new ordinal determines. The insert_tupleproceduransertsthe tuple into the prime
relation as described in Sectidr.

5. Time and Space Analyses

In this section,we presentthe time and spaceanalysesof AOI, LCHR and GDBR. The
analysisof AOI is summarizedrom [10] anddiscussedn moredetailin [5]. The GDBR analysis
is also presented in more detai[%).

5.1 Time Analyses
5.1.1 Time Analysis of AOI

Theorem 1 (Han, [10]): The worst-casetime complexity of [AOI] is O(np), wheren is the
number of tuples of the initial relatid® andp is the number of tuples of the prime relatin

Proof Sketch:

The O(np) time analysisis derivedprimarily from the insertionof n generalizeduplesinto
the prime relation of sizep. Basedon the abovetheoremand a prototypicalimplementationof
AOI (DBLearn,[1]) which we receivedfrom the author, we have concludedthat the prime
relationis constructedn unsortedorderanda linear searchof the relationis requiredto matchan
insertedtuple with a tuple in the prime relation. The maximumnumberof comparisongor each
insertion is therefore for p tuples in the prime relation and @ for n inserted tuples. u

We note that the actualvalue of p canbe calculatedfrom the numberof attributesin the
inputrelationandthe attributethresholddor each. If a commonattributethresholdt is used,the
maximumsizeof the primerelationwill bet™ for m attributes If a distinctattributethreshold ;,

m
is usedfor eachattribute m, the worst casesize of the prime relationwill be p = |_| ti. We
1=1

restrictthe valueof t; to the total numberof leaf nodesin thei™ concepthierarchy. For discrete
valuedattributes.this representshe numberof distinct attribute valuesthat may be encountered
in the data. For continuous valued attributes such as numbers or times, this refirtesemtber
of rangesof valuesthat are defined as leaf nodesin the matching concepthierarchy. This
restrictionont; limits the sizeof p sothatit will not grow unreasonablyarge. In addition,given
a fixed number of attributep,is a bounded value.

5.1.2 Time Analysis of LCHR

Theorem 2: The worst-casdime complexity of LCHR is O(n log n) wheren is the numberof
input tuples.

Proof Sketch:

The differencebetweenLCHR and AOI is dueto the removalof duplicatetuplesandthe
construction of the prime relation. LCHR replaces each attribute vatheimput relationwith a
generalizedralue,sortsthe resultandremovesduplicateswith anothercompletepass. Sincethe
lower bound of sorting by comparison of adjacent elementsiso@(), LCHR is Oflogn). &
5.1.3 Time Analysis of GDBR

Theorem 3(From[5]): The worst-case time complexity for GDBR isnpwheren is the number
of input tuples,andwherethe numberof attributes the attributethresholdsandthe depthsof all
concept hierarchies are small.

Proof Sketch:

We define n as the numberof input tuples, m as the numberof attributesin the input
relation,t as the maximum attribute threshold ahals the deptbf the deepestoncepthierarchy.
The basicloop of the GDBR algorithmruns only n timesfor an input relation of sizen with m
iterationsto loop throughthe attributesin eachtuple. All operationsn theseloopsare bounded
by a small constanimeasureof work exceptfor the generalize_concep@ndgeneralize_relation
procedures.

There are m distinct_valuesarrays, each holding t concepts. Each array can only be
generalizeda maximum of d times with a small constantc for the work to generalizeeach
concept. So the total work done by teneralize_conceptanction is bounded bymdt. Again,
these values are extremely small in comparisanaod so may be ignored

A primerelationof sizep is generalizech maximumof mdtimeswith a small constantof ¢
asa measureof work to generalizeeachconcept. The upperboundfor the generalize_relation
function is thereforemdp.

The total work for the algorithm, therefore,is mn + cmdp If ¢, m andd are small in
relation ton andp, GDBRis O(n + p). We havealreadynotedin Section5.1thatp is a bounded
value. In contrast is unbounded, so for large p <n. Overall, therefore, GDBRis @y N
5.1.4 Proof of GDBR’s Optimality

Theorem 4: An O(n) algorithm is optimal for relation generalizationand therefore GDBR is
optimal.

Proof Sketch:

That OQ) is optimal is easily established by a simple adveraagyment. We needto show
that everytuple in the relation mustbe examinedat leastonceby the algorithm. We definean
adversarythat suppliesinput tuplesto GDBR. Assumingfor simplicity a common attribute
thresholdof t, theadversarywill supplytupleswith differing distinctattributevaluesfor thefirst t
tuples. Subsequently, it will randomly supply anyta attributevaluesit hasalreadysuppliedup
until the nth tuple. For the nth tuple, it will supplyformerly unencountereattribute valuesfor
each attribute, causing the attribute thresholoetexceededor eachandthe primerelationto be
generalized. Shouldthe nth tuple not be examined the prime relation would containvaluesof
insufficient generalityand thereforebe anincorrect generalization. Thus the lower bound of
relation generalization is @ and GDBR is optimal. []

5.2 Space Analyses

AOI andLCHR may be implementedn two differentways. In thefirst, all inputis stored
only in the databaseand mostprocessings donewith standarddatabase@perations. Thisis a
disk-basedmplementation. Alternatively, the input canbe readinto main memory,andstandard
programming techniquescan be used to manipulatethe data. This is a memory-based
implementation. While standarddatabaseperationsare relatively efficient, they inherentlyrely
on accesdo datastoredon disk. In contrast,accesgo datastoredin main memoryis much
faster. For this reason, we have implemented memory-based versions of AOI and LCHR only.

Both AOI andLCHR requirethat the databe scannedwice, oncefor calculatingstatistics
and once for generalization. AOIl does not need to store the input in memory for its
generalizatiorprocessandso cansimply readthe datatwice from the database.Our experience,
however, is that the database retrieval time is the largest factor in discovergtaskslingfrom
the database twice is a very costly solution, especially for large inputve@imnof AOI andthe
original DBLearn prototype, storesthe input in memoryto avoid readingthe databasdwice.
SinceLCHR sortsthe generalizedelation, it muststorethe relationin memoryunlessa much
slowerexternalsortis used. Implementedn this way, both AOI andLCHR requireO(n) storage
for the input relationwhenstoringreferencedo distinctattributevaluesandO(p) storagefor the
primerelation. Otherstoragerequirementdy the algorithmsare few and constantn relationto
the size of the input, andso areinsignificant. The total requirementghereforeare O(n + p), or
O(n) sincep is smallin relationto n. If AOI optsto readdatatwice, storagerequirementswill
only be Op), but overall times will increase greatly due to extra database access.

GDBR requiresonly O(p) spacefor the prime relation since eachtuple is examinedonly
once,immediatelyinsertedinto the prime relationandthendiscarded. This saveshe O(n) space
requirement of both AOI and LCHRUnlike AOI andLCHR, however the primerelationof size
p is allocatedin a block andthereforeis a maximum,worst casesize fromthe start. As notedin
Section5.1.1 howeverp is very small in comparison to

ShouldGDBR be usedto generalizerelationsfor input to otherautomatedprocessesand
the numberof attributesand size of attribute thresholdsincreasegreatly, the size of the prime
relation would also expand greatly. Since GDBR allocdisstructureto be maximumsize,this
could put GDBR at a spacedisadvantageo AOI or LCHR which dynamicallybuild the prime
relation as neededf this werethe case howevertheworstcasesizeof the primerelationis still
the same for each algorithm, and so the storage requirements would be similar.

6. Empirical Tests of AOI, LCHR and GDBR

We implemented efficient versions of GDBR, A@dLCHR andranempiricaltiming tests
for varied input sizesand attribute thresholds. In this section,we presentthe resultsof those
tests. In Section6.1 we describehow the testswere structured. In Section6.2 we presentthe
resultsof teststhat variedinput size while keepingattributethresholdsconstant. In Section6.3
we present the results of tests that varied attribute thresholds for a fixed input size.

Our implementationof AOI and LCHR closely followed the algorithmspresentedn [10]
and [3] respectivelyand originated from a prototypical implementationof DBLEARN [1]
suppliedto usby J. Han. Every effort wasmadeto makethe implementationgsfast aspossible
while remaining consistent with the published algorithms. For example, the DBLEBARDLYype
was extensively rewritten to enhance memory efficiency and $pged

6.1 Testing Methods

We benchmarkedthe three algorithms to specifically time the generalizationprocess
separatdrom databaseetrievalandthe conversionof databasettributevaluesto leaf concepts.
To be ableto effectively comparethe algorithms,however,somemodificationsto GDBR were
necessary. AOlI and LCHR require that the whole relation be read into memory before
generalization. The input is read, therefore,and then the actual generalizationprocesstimed
separately. GDBR, however,is an on-line algorithm. This makestiming just the generalization
partimpossiblesincebuilt in timing functionsarenot preciseenoughto time the generalizatiorof
onetuple eachtime it is retrievedfrom the database.We thereforeseparatedhe dataretrieval
portionsof GDBR from the actualgeneralizationoperations. The input relation was retrieved
from the databasen blocks of tuples,convertedto leaf conceptsand storedin memory. This
structurewas then generalizedoy GDBR on a tuple by tuple basisas thoughit were being
retrieved from a database.

For GDBR andAOI, we ran eachtesttentimesandcomputedthe averageime. Thiswas
easilyaccomplishedinceneitheralgorithmis destructiveto theinputrelation,andthe sameinput
was usedmultiple times. LCHR, however,is destructiveto the input sinceeachungeneralized
concepts replacedby a generalizedconcept,andthe generalizedelationis thensortedin place.
To run the test multiple times, the data must be retrieved ten times separately, or the input relation
must be duplicated between each generalization. As we will Ssrtions.2and6.3 however,
LCHR timesweremuchgreaterthanthe GDBR andAOI. In this light, runningthe testmultiple
timesto geta slightly moreprecisemeasuremenwasin our opinionunnecessarygndLCHR was
timed only once for an approximate measure.

We ran the testson an IBM compatiblePC with 32 Megabytesof RAM and an Intel 66
MHz 80486DX2processor.The operatingsystemwasIBM’s OS/2andthe databasevasIBM’s
DB2/2 relational DBMS. The data was commercial data supplied by a corporate sponsor.

6.2 Tests varying input size

Thefirst setof threetestsvariedthe numberof tuplesreadfrom the databasdérom 100,000
to 500,000in 100,000tuple increments. Only input relationswith two or threeattributeswere
generalizedsince these are typical of the taskswe have beerrunning in actual knowledge
discovery sessions. The input relations containedboth discrete and continuous (numerical)
attributes. In Tests1 and 3, the numericalattributeswere simply generalizedvithout summing
their values. In Test2, the sameinput relationwasusedasin Test1, but a numericalattribute
wassummedo seetheimpactof the summationrcomputations.A constantattributethresholdof
4 was used for all attributes.

Test1 involved an input relation with three attributes,two discreteproductcodesand a

Table 1. Test 1 Timing Results

GDBR AOlI LCHR
100K | 0.53 093 6.28

200K | 1.07 188 13.19
300K | 1.62 285 20.56
400K | 2.13 26.49 54.84
500K | 2.73 97.93 678.44

10

1000.0

N

Q

o

o
[

1 B GDBR
10.0 — |OAOI
OLCHR

=
o
I

Generalization Time in Seconds
(Logarithmic Scale)

0.1-

100K 200K 300K 400K 500K

Number of Input Tuples

Figure 2. Test 1 Time Results for Generalization of
Three Attributes, Varying Input Size

Table 2. Test 2 timing results

GDBR AOI LCHR

100K 0.59 0.99 6.09

200K 1.18 2.00 14.19
300K 1.84 3.03 20.75
400K 237 26.00 56.78
500K 3.01 98.70 645.38

dollar amount. Theinput relationwasgeneralizedvithout any summationof the dollar amounts.
The numericaltiming resultsare presentedn Table 1, and a graph of these,shown using a
logarithmicscale,in Figure2. For all timing tablesin this section,the algorithmsarelistedin the
top row andthe input sizein the left handcolumn. Cells of the table represenigeneralization
times in seconds.

We note first of all that LCHR takessubstantiallylonger than the other two algorithms,
taking from 12 to 248timesaslong as GDBR andabout7 timesaslong asAOI. LCHR was
slower primarily dueto sortingthe input relation,which we timed to take approximately95% of
its overalltime. Implementationallythe tupleswere storedin array of pointersandthe C library
function gsort wasusedto sortthis array. While this functionis a generalpurposefunction and
may not be as efficient as a sort written specifically for this task, it is still very efficient. Our
efforts to implementa fasterspecific sort were unsuccessful. GDBR rangesfrom 2 to 36 times
faster than AOI.

Thetimesfor AOI andLCHR increasan an approximatelylinear manneruntil 400,0000r
more tuplesare input. Thentimes increasenon-linearly when the input sizesexceedmemory
limitations anddisk swappingoccurs. The amountof increasewill vary somewhatependingon
the relative RAM and disk speedsof a given system. This increase however,emphasizeshe
primary disadvantagef the unboundedspacerequirementof AOI andLCHR whenlarge input
relationsare generalized.On the otherhand,GDBR usesa relatively small, constantamountof

11

Table 3. Test 3 timing results

GDBR AOI LCHR

100K 0.36 0.51 4.38
200K 0.70 1.02 9.56
300K 1.05 1.54 14.84
400K 1.40 2.04 20.00
500K 1.75 2.53 2591

memory, independenbf input size. We would thereforeexpectto seethe times for GDBR
continue to increase in a linear fashion, regardless of input size.

Test2 usedthe sameinput as Test 1 exceptthat it summedthe attribute that represents
dollar amounts. The results,shownin Table 2, are very similar to Test 1 exceptthat the
summationoperationsaddedabouta constant.06 secondsper 100,000input tuplesfor GDBR
andAOI. SinceLCHR wastimed only oncefor an approximatdime, the observedvariationsin
its times can be attributed to the inherent imprecision of one timing result.

Test3 (Table3) involved aninput relationwith two attributes,a productcodeanda dollar
amount. Like Test1, it did not sumdollar amounts. Sincememorywasnot exceededy either
AOI or LCHR, their time increasesre linear andare relatively proportionalto thoseof GDBR.
Under no memory limitations, AOI is approximately 1% times slower than GDBR.

6.3 Tests varying attribute thresholds

The secondsetof testswererun on fixed sizedinput relations(250,000tuples),andvaried
attribute thresholds. This set waessignedo testespeciallyAOl andGDBR sincetheir timesare
relatedto the size of the prime relation. The numberof tuplesin the prime relationis in turn
related to the attribute thresholds.

Two testsin this category,Tests4 and 5, are sufficient to indicate generaltrends. The
resultsof Test4 are presentedn Table 4 and Figure 3. The left hand column of Table 4
represents the attribute thresholds for the three attributes of the input relation.

The primary observationwe draw from Test4 is that times for GDBR remainrelatively
constant,LCHR increasesonly marginally, but AOI increasessteadily as attribute thresholds

increase. AOI's increase is due to the search of the prime relation when each tuple is iAserted.

the attributethresholdsncreasethe prime relationgrows in size andtakeslongerto searchfor
eachinsertionpoint. From the trendsindicatedin Table 4, we would expectthat AOI's time

Table 4. Test 4 timing results

GDBR AOI LCHR
1 1.33 1.82 16.06
2 135 194 16.44

4 135 237 1641
8 135 280 17.09

135 3.74 1741

1.36 4.68 17.25

135 7.74 1741

12

18

14 -

12 -

10 -

m GDBR
8 — [|OAoOl

| ririrli

Attribute Thresholds for Three Input Attributes

Generalization Time in Seconds

1,1,1

8,16,8
|
|
\

2,2,2
4,4,4
8,4,4
8,8,8
8,16, 16
8,32, 16

Figure 3. Test 4 Time Results for Generalization of Three Attributes, Varying
Attribute Thresholds

would eventuallyexceedthat of LCHR when attribute thresholdsget large enough. In current
practice, however, this may never happen since attribute thresholds are generally low.

Overall, GDBR rangesfrom 1.4 to 6 timesasfastas AOl and 12 to 13 times as fast as
LCHR in thesetests. AOI rangesfrom 9 timesfasterthan LCHR with low attributethresholds
down to only about twice as fast with higher thresholds.

Theresultsof Test5, which usedan input relationwith two attributesanddid not sumany
numericalattributes,aregivenin Table5, andparallelthe patternsobservedn Test4. Attribute
thresholds,however, are somewhatsmaller and therefore the increasesin AOI are not as
dramatic.

In summary,empirical testson large input relationsclearly showthat GDBR consistently
outperformsboth AOI andLCHR. GDBR rangesfrom beingonly marginally fasterto 36 times
faster than AOI, and about 12 to 2iflesfasterthanLCHR. The primaryadvantagesf GDBR
are derivedfrom its optimality andits small, constantmemoryrequirements. When large input
relationsare generalizedthe O(n) memoryrequirement®f AOI andLCHR causememoryto be
exceeded and disk swapping to bedlihis in turn causes non-linearincreasen time, degrading

Table 5. Test 5 timing results

GDBR AOI LCHR
0.88 1.18 11.56
0.88 1.22 12.09
0.89 1.26 12.19
090 1.38 12.22
0.88 1.40 1231

6 0.89 153 1253

= o0~ DNPR

00O ANE

13

the performance of both AOI an@CHR. GDBR, however,increase®nly linearly with increased
input size,andsoits timesremainvery small. Increasingattributethresholdsalsodoesnot affect
the times of GDBR significantly, while the times for AOI clearly increase as thresholds increase.

7. Algorithm Improvements

While the times foL.CHR aresubstantiallygreaterthanboth AOl andGDBR, the timesfor
AOI are more acceptable when memory limitations are not encounteresnehharyexcessesf
the AOI algorithmcanbeimproved. As describedn [10], AOI storeseachindividual input tuple
in ungeneralizedorm beforeany generalizatiorbegins. The sizeof theinput relationis therefore
O(n) for ninputtuples. Whentheinputrelationgrowslarge,memoryis eventuallyexceedednd
disk swappingbegins. Many of thesetuples,however,are duplicatedevenat the lowestlevel of
generality. When generalizationoccurs,all duplicatetuples are combinedand a count of the
numberof tuplescontributingto the combinedtuple is trackedby a votesvariable. The AOI
algorithmcanbe modified to storethe input relationnot asindividual input tuplesbut asunique
minimally generalized input tuples. When an input tuple is read from the database, the structure
which the input tuplesare storedis searchedor a match. If oneis not found, the input tuple is
insertedas a new tuple with a vote of 1. If a matchis found, the vote of the matchedtuple is
incrementedand any summaryinformationis updated. In this way only one storagestructureis
neededor eachuniquetuple. Theinputrelationcould be storedasan orderedstructureso that
the search would not be too expensive.

The preciseeffect of thesechangedo the run time of AOI is unclear. However,in our
experiencewe havefound that the numberof distinct tuplesreadfrom a databases muchless
thanthetotal numberof tuplesread. As such,AOIl would be muchlesslikely to exceedmemory
limitations and would therefore not suffer the increased time penalty s€éablanlandFigure 2

This changeto the AOI algorithm will increaseits usefulnessn comparisonto GDBR.
SinceGDBR is anon-line algorithmanddoesnot storethe input relation,the input mustbe read
againif overgeneralizatiolmccursandthe userdesiresa lessgeneralresult. This databaseccess
canbe very time consuming. AOI, however,storesthe input in memory. If overgeneralization
occurs, the input can simply be regeneralized without another access to the database.

Currently, GDBR and AOI have been tested on input relationsreldhively few attributes,
usually only two or threeThisis primarily becausehe summariegproducedoy attribute-oriented
generalizatiorbecomehard to understandvhen more than three attributesare includedin the
generalizedelation. However,the resultsof the generalizatiorof more attributesmay be useful
asinput to other machinelearningmethods,in which casegeneralizingmore attributesmay be
advantageousMore researchs neededo determinethe usefulnes®f the generalizatiorof more
attributes and the affect that more attributes would have on the methods presented in this paper.

8. Conclusion

We have noted that the GDBR algorithm is O(n) and as suchis optimal. Its space
requirementsre also constantand very modestat O(p) wherep is the size of the output prime
relation. Thesetwo factorscombineto enhancets performanceover a wide variety of input
conditions. We empirically demonstratedthis on relatively large input sets drawn from
commercialdatabasesyarying both the attributethresholdsandthe input relation sizeto ensure
thevalidity of theresults. While GDBR is fast, however,modificationsto the AOI algorithmwill
causeto have greater flexibility than GDBR, though the effect of these modification on

14

generalization time may be detrimental.

As fastandmemoryefficient algorithms,GDBR andanimprovedAOI will greatlyenhance
the potentialfor automatedknowledgediscoveryfrom existing,large commercialdatabasesThe
algorithms provide a suitabl&sisfor designinga softwaretool for knowledgediscovery. Where
a numberof concepthierarchiesexistfor a given databasewe foreseecreatingprocessesvhich
explorethe variouspossiblerelationshipsn the databasén anautomatedashion. The fasterthe
algorithm runs and the more memory efficient it is, the more thoroughly we can explore the
possibilities available.

References:

[1] Y. Cai,A Tutorialonthe DBLEARN System,Schoolof ComputingScience SimonFraser
University, March, 1990.

[2] Y. Cai,N. CerconeandJ. Han,Attribute-Orientednductionin RelationalDatabasesn: G.
Piatetsky-Shapiroand W. J. Frawley, eds., Knowledge Discovery in Databases
AAAI/MIT Press, Menlo Park, CA, 1991, 213-228.

[3] Y. Cai, N. CerconeandJ. Han, Learning CharacteristidRulesfrom RelationalDatabases,
Proceeding®f International Symposiunof Computationalntelligence‘89, Milano, Italy,
September, 1989.

[4] C.L. CarterandH. J. Hamilton, A Fast,On-line GeneralizatiorAlgorithm for Knowledge
Discovery, Applied Math. Lettersiccepted.

[5] C.L.Carter and H. J. Hamilton, GDBR: An Optimal Relation Generalizétigorithm for
Knowledge Discovery from Databases, Theoretical Computer Science, Submitted
November, 1994.

[6] C.L. CarterandH. J. Hamilton, Performanceevaluationof Attribute-OrientedAlgorithms
for Knowledge Discovery from Databases,in Proceedings of the Seventh IEEE
International Conferenceon Tools with Atrtificial Intelligence (ICTAI'95), Washington,
DC, November, 1995. Accpted July, 1995.

[7] C. L. Carterand H. J. Hamilton, Performancelmprovementin the Implementationof
DBLEARN, Tech. ReportCS-94-05,Dept. of ComputerScience,University of Regina,
Regina, SK, January, 1994.

[8] C.L. CarterandH. J. Hamilton, The SoftwareArchitectureof DBLEARN, Tech.Report
CS-94-04, Dept. of Computer Science, University of Regina, Regina, SK, January, 1994.

[9] W. Frawley,G. Piatetsky-ShapirandC. Metheus KnowledgeDiscoveryin DatabasesAn
Overview, Al MagazingeVol.13, No. 31992, 57-70.

[10] J. Han, Towards Efficient Induction Mechanism in Database Systems, Theoretical
Computer Science (Special Issue on Formal Methods in Databasesand Software
Engineering), October 1994.

[11] X.-H. Hu, Object Aggregation and Cluster Identification: A Knowledge Discovery
Approach Applied Math Letters Vol. 7, No. 4, 1994, 29-34.

15

