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Abstract

Practical tools for knowledge discovery from databases must be efficient enough to handle
large data sets found in commercial environments.  Attribute-oriented induction has proved to be
a useful method for knowledge discovery, but two algorithms which implement it, AOI and
LCHR, have some limitations due to excessive memory usage.  AOI and LCHR generalize
database relations in O(np) and O(n log n) time respectively, where n is the number of input
tuples and p is the number of tuples in the output relation.  Their space requirements are O(n)
since they store the whole input relation in memory or on disk.  In contrast, we present GDBR, a
space efficient, optimal O(n) algorithm for relation generalization.  We also present the results of
empirical comparisons between GDBR, AOI and LCHR.  We have implemented efficient versions
of each algorithm and empirically compared them on large commercial data sets.  We present the
results of these tests, showing that GDBR is consistently faster than AOI and LCHR.  GDBR’s
times increase linearly with increased input size, while times for AOI and LCHR increase non-
linearly when memory is exceeded. Through better memory management, however, AOI can be
improved to provide some advantageous capabilities.
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1. Introduction

Knowledge discovery from databases (KDD) is the nontrivial extraction of implicit,
previously unknown, and potentially useful information from data [9].  As a branch of machine
learning, KDD encompasses a number of automated methods whereby useful information is mined
from data stored in databases.  When a KDD method is implemented as a practical tool for
knowledge discovery in databases, an important requirement is that it be as efficient as possible so
that it can handle the large input data sets typically encountered in commercial environments.
This paper presents the results of our efforts to compare implementations of three similar KDD
algorithms to determine their suitability for application to large scale commercial databases.

Our work has been motivated by the desires of corporate sponsors such as Roger’s
Cablevision to use our knowledge discovery tools on databases consuming 5 gigabytes of memory
and containing millions of records.  Discovery tasks that we have explored have usually been
geared to relating two or three attributes to each other to see if there is any interesting
relationship between them.  For example, is there any significant relationship between a
customer’s basic cable subscription (basic cable services, family channel, movie channel, etc.) and
the rating of the pay per view (ppv) movies that the customer rents?  This discovery task might
lead to the more effective targeting of advertising campaigns for ppv movies on cable stations.
Alternatively, is there any relationship between the area in which a customer lives and the types of
services subscribed to or the ppv movies rented?  We found that certain areas had very high
occurrences of one product and very low occurrences of others.  Again, this can aid in effective
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target marketing campaigns.  These types of queries typically related generalizations of only two
or three attributes to each other, but access potentially millions of records.

Attribute-oriented induction is a KDD generalization technique which, given a relation
retrieved from a relational database, generalizes its contents on an attribute by attribute basis [2].
The goal of relation generalization is to produce a small table of information that accurately
summarizes the input data to such a degree that people can easily recognize the interesting
patterns that emerge from the generalized data.  We have found attribute oriented generalization
techniques to produce useful and informative summaries of input data in much less time than
standard database techniques commonly used by data managers in commercial environments.
Time savings are realized both in terms of defining the generalization paths that will be used on
the data and in the actual summarization of data retrieved from the database.

The primary algorithm for attribute-oriented induction, which we call AOI, runs in O(np)
time where n is the number of input tuples (database records) and p is the number of tuples in the
final generalized relation [10].  A related algorithm, LCHR (Learn CHaracteristic Rule),
accomplishes the same result, but differs slightly in its method [3].  LCHR runs in O(n log n) time
where n is the number of input tuples [2].  The space requirement of both AOI and LCHR is O(n)
since they both store the whole input relation either in memory or on disk.

Our first research efforts focused on implementing efficient versions of attribute-oriented
algorithms so that tools based on them will handle large data sets [7], [8].  We have found,
however, that neither AOI or LCHR as published scales well to large input data sets.  Although
both these algorithms are relatively efficient for moderate input sizes, they are not optimal.  In
addition, their memory requirements grow with increased input size, causing excessive memory
use and resultant performance degradation for large inputs.

We therefore present GDBR, an on-line and space efficient attribute-oriented algorithm
which accomplishes the same result as AOI and LCHR but runs in O(n) time, which is optimal.
For typical knowledge discovery tasks, GDBR uses a small, constant amount of memory.  In
Section 2 we describe relevant portions of AOI and LCHR.  In Section 3 we describe GDBR and
the basic data structures and methods the algorithm uses.  In Section 4 we present the algorithm
more formally.  In Section 5 we summarize the complexity analyses of AOI, LCHR and GDBR.
In Section 6 we present empirical test results.  In Sections 7, we describe some improvements to
AOI which make it more useful and conclude the paper in Section 8.  A short form of this paper
will appear as [6].

2. Overview of Attribute-Oriented Induction, AOI and LCHR

An attribute-oriented induction algorithm takes as input a relation retrieved from a database
and generalizes the data guided by a set of concept hierarchies [11].  A concept hierarchy is a tree
of concepts arranged hierarchically according to generality.  For discrete valued attributes, leaf
nodes correspond to actual data values which may be found in the database.  For continuous
(usually numerical) valued attributes, leaf nodes represent discrete ranges of values.  Higher level
nodes represent more general concepts created by combining groups of lower level concepts
under unique names.

After retrieving task relevant data from a database, the first step of generalization is to
convert the data values to matching leaf concepts from the appropriate concept hierarchy.  This
initial conversion, however, is not the focus of our algorithm.  This paper, like [10], is primarily
concerned with the generalization algorithm itself which takes a relation from ungeneralized
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concepts to appropriately general concepts.
The generalization process is limited by a set of user defined attribute thresholds which

specify the maximum number of distinct values that may exist for each attribute of the generalized
relation.  When each attribute of the input relation has been generalized to within the bounds of its
threshold, many tuples of the relation are identical to other tuples.  A count of each set of
identical tuples is then stored in one and the rest are eliminated.  The result is called the prime
relation.

The algorithms AOI and LCHR use the same first stage of generalization, called PreGen in
[10].  Both make one pass through the input relation to compile statistics about how many distinct
values of each attribute the input relation contains.  These values are then generalized by
ascending the relevant concept hierarchies until the total number of distinct values for each
attribute falls within the range of that attribute’s threshold.  This produces a number of concept
pairs where each ungeneralized concept is matched with a higher level concept.

AOI and LCHR handle the replacement of ungeneralized concepts and removal of
duplicates somewhat differently.  AOI loops through the input relation on a tuple by tuple basis,
replaces the value of each attribute with a generalized concept, and immediately inserts the
generalized tuple into a dynamically constructed prime relation.  The prime relation is initially
empty.  The first tuple encountered is inserted at the beginning of the relation, and its count
variable is initialized to one.  Each subsequent tuple read from the input relation is sequentially
compared with tuples in the prime relation.  If an identical tuple is found, a count variable for that
tuple is incremented, and the tuple to be inserted is discarded.  If no matching tuple is found, the
tuple to be inserted is added to the end of the prime relation.

LCHR loops through the input relation, replaces all data values with generalized concepts,
then sorts the resulting relation and removes duplicates with one final pass. The final result of
both algorithms is a small relation of unique tuples, each of which summarizes the number of
tuples that it represents from the input.

3. GDBR Overview

GDBR incorporates several enhancements to the data structures used by AOI and LCHR
and approaches the duplicate removal process in a more efficient way.  First, GDBR makes use of
an augmented concept hierarchy structure to eliminate the need to replace concepts with more
general concepts.  Secondly, as it reads tuples from the database and converts these tuples to leaf
concepts, it assigns an order to these concepts based on a first encounter principle.  Thirdly, the
number of distinct concepts encountered for each attribute is tracked as the input relation is read,
and as soon as the attribute threshold is exceeded, the algorithm immediately increases the level of
generalization.  Finally, GDBR uses information about the number of attributes in the input
relation and the attribute thresholds of each attribute to structure the prime relation.  The
encounter orderings of a tuple’s component concepts are then used to insert tuples into the prime
relation in a single step as each is read.  While this may require the prime relation to be
reorganized a few times, it avoids both the need to perform n searches of the prime relation to
insert input tuples, as in AOI, or the need to sort a relation of size n, as in LCHR.
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3.1 Augmented Concept Hierarchies

For each concept in a hierarchy, we construct a path array, an array of pointers to concepts
which represents the concept’s path to the root of the tree.  Sibling leaf nodes share a single path
array, since the path to the root from each is the same.  Each parent node shares a portion of a
leaf descendant’s array, since a parent’s path is a subpath of any of its descendants’ paths.
Arrays, therefore, are only constructed for each group of leaf siblings.  An augmented tree
structure for the attribute PROVINCE is shown in Figure 1.

In addition to the path arrays, we assign each concept a distance_to_max value which is the
difference between its depth and the depth of the deepest leaf concept.  In Figure 1, the
distance_to_max of each level of the tree is marked to the right of the tree.  For example, the
distance_to_max of Alberta is 0 since it is at maximum depth, and that of Quebec is 2 since its
depth is two levels less than the deepest leaf nodes.

For each attribute in the input relation, the algorithm keeps track of a generalization level,
an integer representing how many times the attribute has been generalized.  Each generalization
level is initially set to 0.  As the need for generalization is detected, the level is incremented.

We define an access function, get_generalized_concept, which takes as input any concept
and a generalization level and returns a generalized concept at the appropriate level of generality.
If the generalization level exceeds the distance_to_max of an input concept, the path array is
accessed according to the difference of these two values and the concept at that index is returned.
Otherwise, the input concept is returned.  For example, for the hierarchy shown in Figure 1, the
call get_generalized_concept(B.C., 1) will return B.C. because B.C.’s distance_to_max does not
exceed the generalization level.  However, get_generalized_concept(B.C., 2) will return Western.

When input attribute values are read from the database, they are converted to concepts and
stored as such.  As the input relation is generalized, the generalization level is incremented.  Since
concepts are only accessed by the get_generalized_concept function, this inherently generalizes
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Figure 1. An Augmented Concept Hierarchy for the Attribute PROVINCE
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the values already stored without having to replace the concepts themselves.  It also saves GDBR
from having to scan the input relation a second time to replace leaf values with generalized
concepts as both LCHR and AOI do.

3.2 Encounter Ordering

To avoid sorting the generalized relation, we define an encounter ordering on the input
concepts.  Each node in the concept hierarchy is given an ordinal field which is initialized to 0.
For each attribute in the input relation, we also keep a distinct_value_count, an integer
representing how many distinct concept values have been encountered for that attribute at the
current level of generalization.  Each distinct_value_count is initialized to 0 at the start of a
generalization task.  When a tuple is read from the database, each attribute value is converted to a
concept and the ordinal of that concept is examined.  If its value is 0, the distinct_value_count
variable is incremented and the result is assigned to the concept as its ordinal.  In essence,
therefore, we both define an order on the input concepts in terms of a concept’s first encounter
and keep track of how many distinct values have been encountered.

3.3 Progressive Generalization

The GDBR algorithm progressively generalizes the input relation as the data is read.  As
tuples are retrieved from the database and each new concept is encountered, the
distinct_value_count variable for that attribute is incremented and compared to the attribute’s
threshold.  If the attribute threshold has not been exceeded, the concept is stored in a
distinct_values array which keeps a record of all concepts encountered at the current
generalization level.  When the number of distinct values exceeds the attribute threshold, the
concepts in this array are repeatedly generalized until the total number of concepts, including the
one newly encountered, again falls within the bounds of the attribute threshold.  The
distinct_values array and distinct_value_count are then adjusted to reflect this level of generality.

3.4 Duplicate Elimination

To handle duplicate tuples efficiently, we construct the prime relation as an m dimensional
array where m is the number of attributes in the input relation.  The size of each dimension is
determined by the attribute threshold for each attribute.  Tuples are “inserted” into the prime
relation using the ordinal values of the tuple’s component concepts as indices into the appropriate
dimension of the array.  Inserting simply means compiling statistics about the inserted tuple, that
is, incrementing a counter tracking the number of tuples inserted in that cell and possibly summing
values of numerical attributes.  Other summarization operations may also be performed.

Since we generalize concepts as soon as the attribute threshold is exceeded and before the
tuple is inserted into the prime relation, we will always be able to insert any tuple into the prime
relation.  This means, however, that when any attribute threshold is exceeded and a
distinct_values array is adjusted, we may also need to rearrange some of the contents of the prime
relation to reflect the changes of some concepts’ indices.  Immediately after a tuple has been
inserted,  the prime relation accurately reflects the data read in.  Upon reading the last tuple,
processing is complete and no further scanning, sorting or reorganizing is necessary.
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4. GDBR Algorithm

In this section, we describe the GDBR algorithm (Algorithm 1) which is discussed in more
detail in [4] and [5].  We assume that a discovery task has been defined and the database
initialized to retrieve input data.  We also assume that the tuple arrives from the database retrieval
process with its attribute values converted into leaf concepts from the appropriate hierarchies.
For simplicity, we also assume that the attribute threshold is the same for every attribute.  The
algorithm can be easily extended to allow different attribute thresholds for each attribute.

The allocate_distinct_values_array and allocate_prime_relation procedures dynamically
allocate these structures.  The prime relation minimally stores a pointer to the distinct_values
array and an integer count for each possible combination of concept values.  The get_next_tuple

Algorithm: GDBR - Generalizes a Relation to the Attribute Threshold
Input: attr_count - the number of attributes in the input relation

attr_threshold - the attribute threshold
hierarchies - an array of concept hierarchies matching the input relation’s attributes

Output:  the prime relation
procedure generalize_database_relation (

attr_count : integer,
attr_threshold : integer,
hierarchies : array[attr_count] of ConceptHierarchy )

var
i : integer;
distinct_values : array[attr_count, attr_threshold] of ConceptNode;
distinct_value_counts : array[attr_count] of integer;
concept : ConceptNode;
tuple : Tuple;
prime_relation : Relation;

{ dynamically allocate distinct_values array and prime relation }
distinct_values := allocate_distinct_values_array( attr_count, attr_threshold );
prime_relation := allocate_prime_relation( attr_count, attr_threshold );
prime_relation.distinct_values = distinct_values;
while ( tuple := get_next_tuple() )

for i := 1 to attr_count do
concept := get_generalized_concept( tuple.attribute[i] );
if ( concept.ordinal = 0 ) then  { concept has not been seen yet }

distinct_value_counts[i] = distinct_value_counts[i] + 1;
if ( distinct_value_counts[i] > attr_threshold ) then

distinct_value_counts[i] := generalize_concepts( distinct_values[i], concept );
generalize_relation( prime_relation, i );

else
concept.ordinal := distinct_value_counts[i];
distinct_values[concept.ordinal ] := concept;

end  { if }
end { if }

end { for }
insert_tuple( prime_relation, tuple );

end { while }
return prime_relation;

end { generalize_database_relation }
Algorithm 1. GDBR
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procedure retrieves a tuple from the database and converts its attribute values to leaf concepts
from the appropriate concept hierarchies.  The get_generalized_concept procedure retrieves a
generalized concept at the current level of generality as described in Section 3.1.  The
generalize_concepts procedure takes as input the array of concepts encountered so far and the
new concept that caused the attribute threshold to be exceeded.  It generalizes the concepts the
minimum number of levels necessary to insert the new concept into the array and still be within
the attribute threshold.  It then returns the number of distinct values in the array after successful
adjustment.  The generalize_relation procedure takes the prime relation and the current attribute
index as arguments.  It moves any tuples whose concepts have had a change of ordinal to the
position the new ordinal determines.  The insert_tuple procedure inserts the tuple into the prime
relation as described in Section 3.4.

5. Time and Space Analyses

In this section, we present the time and space analyses of AOI, LCHR and GDBR.  The
analysis of AOI is summarized from [10] and discussed in more detail in [5].  The GDBR analysis
is also presented in more detail in [5].

5.1 Time Analyses

5.1.1 Time Analysis of AOI

Theorem 1 (Han, [10]): The worst-case time complexity of [AOI] is O(np), where n is the
number of tuples of the initial relation R, and p is the number of tuples of the prime relation P.

Proof Sketch:

The O(np) time analysis is derived primarily from the insertion of n generalized tuples into
the prime relation of size p.  Based on the above theorem and a prototypical implementation of
AOI (DBLearn, [1]) which we received from the author, we have concluded that the prime
relation is constructed in unsorted order and a linear search of the relation is required to match an
inserted tuple with a tuple in the prime relation.  The maximum number of comparisons for each
insertion is therefore p for p tuples in the prime relation and O(np) for n inserted tuples.         n

We note that the actual value of p can be calculated from the number of attributes in the
input relation and the attribute thresholds for each.  If a common attribute threshold t is used, the
maximum size of the prime relation will be tm for m attributes.  If a distinct attribute threshold, ti,

is used for each attribute mi, the worst case size of the prime relation will be p = ti

i

m

=
∏

1

.  We

restrict the value of ti to the total number of leaf nodes in the i th concept hierarchy.  For discrete
valued attributes, this represents the number of distinct attribute values that may be encountered
in the data.  For continuous valued attributes such as numbers or times, this represents the number
of ranges of values that are defined as leaf nodes in the matching concept hierarchy.  This
restriction on ti  limits the size of p so that it will not grow unreasonably large.  In addition, given
a fixed number of attributes, p is a bounded value.
5.1.2 Time Analysis of LCHR

Theorem 2: The worst-case time complexity of LCHR is O(n log n) where n is the number of
input tuples.
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Proof Sketch:

The difference between LCHR and AOI is due to the removal of duplicate tuples and the
construction of the prime relation.  LCHR replaces each attribute value in the input relation with a
generalized value, sorts the result and removes duplicates with another complete pass.  Since the
lower bound of sorting by comparison of adjacent elements is O(n log n), LCHR is O(n log n).  n
5.1.3 Time Analysis of GDBR

Theorem 3 (From [5]): The worst-case time complexity for GDBR is O(n) where n is the number
of input tuples, and where the number of attributes, the attribute thresholds, and the depths of all
concept hierarchies are small.

Proof Sketch:

We define n as the number of input tuples, m as the number of attributes in the input
relation, t as the maximum attribute threshold and d as the depth of the deepest concept hierarchy.
The basic loop of the GDBR algorithm runs only n times for an input relation of size n with m
iterations to loop through the attributes in each tuple.  All operations in these loops are bounded
by a small constant measure of work except for the generalize_concepts and generalize_relation
procedures.

There are m distinct_values arrays, each holding t concepts.  Each array can only be
generalized a maximum of d times with a small constant c for the work to generalize each
concept.  So the total work done by the generalize_concepts function is bounded by cmdt.  Again,
these values are extremely small in comparison to n and so may be ignored.

A prime relation of size p is generalized a maximum of md times with a small constant of c
as a measure of work to generalize each concept.  The upper bound for the generalize_relation
function is therefore cmdp.

The total work for the algorithm, therefore, is mn + cmdp.  If c, m and d are small in
relation to n and p, GDBR is O(n + p).  We have already noted in Section 5.1 that p is a bounded
value.  In contrast, n is unbounded, so for large n, p < n.  Overall, therefore, GDBR is O(n).      n
5.1.4 Proof of GDBR’s Optimality

Theorem 4: An O(n) algorithm is optimal for relation generalization and therefore GDBR is
optimal.

Proof Sketch:

That O(n) is optimal is easily established by a simple adversary argument.  We need to show
that every tuple in the relation must be examined at least once by the algorithm.  We define an
adversary that supplies input tuples to GDBR.  Assuming for simplicity a common attribute
threshold of t, the adversary will supply tuples with differing distinct attribute values for the first t
tuples.  Subsequently, it will randomly supply any of the attribute values it has already supplied up
until the nth tuple.  For the nth tuple, it will supply formerly unencountered attribute values for
each attribute, causing the attribute threshold to be exceeded for each and the prime relation to be
generalized.  Should the nth tuple not be examined, the prime relation would contain values of
insufficient generality and therefore be an incorrect generalization.  Thus the lower bound of
relation generalization is O(n) and GDBR is optimal.         n
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5.2 Space Analyses

AOI and LCHR may be implemented in two different ways.  In the first, all input is stored
only in the database, and most processing is done with standard database operations.  This is a
disk-based implementation.  Alternatively, the input can be read into main memory, and standard
programming techniques can be used to manipulate the data.  This is a memory-based
implementation.  While standard database operations are relatively efficient, they inherently rely
on access to data stored on disk.  In contrast, access to data stored in main memory is much
faster.  For this reason, we have implemented memory-based versions of AOI and LCHR only.

Both AOI and LCHR require that the data be scanned twice, once for calculating statistics
and once for generalization.  AOI does not need to store the input in memory for its
generalization process, and so can simply read the data twice from the database.  Our experience,
however, is that the database retrieval time is the largest factor in discovery tasks, so reading from
the database twice is a very costly solution, especially for large input.  Our version of AOI and the
original DBLearn prototype, stores the input in memory to avoid reading the database twice.
Since LCHR sorts the generalized relation, it must store the relation in memory unless a much
slower external sort is used.  Implemented in this way, both AOI and LCHR require O(n) storage
for the input relation when storing references to distinct attribute values and O(p) storage for the
prime relation.  Other storage requirements by the algorithms are few and constant in relation to
the size of the input, and so are insignificant.  The total requirements therefore are O(n + p), or
O(n) since p is small in relation to n.  If AOI opts to read data twice, storage requirements will
only be O(p), but overall times will increase greatly due to extra database access.

GDBR requires only O(p) space for the prime relation since each tuple is examined only
once, immediately inserted into the prime relation and then discarded.  This saves the O(n) space
requirement of both AOI and LCHR.  Unlike AOI and LCHR, however, the prime relation of size
p is allocated in a block and therefore is a maximum, worst case size from the start.  As noted in
Section 5.1.1, however, p is very small in comparison to n.

Should GDBR be used to generalize relations for input to other automated processes and
the number of attributes and size of attribute thresholds increase greatly, the size of the prime
relation would also expand greatly.  Since GDBR allocates this structure to be maximum size, this
could put GDBR at a space disadvantage to AOI or LCHR which dynamically build the prime
relation as needed.  If this were the case, however, the worst case size of the prime relation is still
the same for each algorithm, and so the storage requirements would be similar.

6. Empirical Tests of AOI, LCHR and GDBR

We implemented efficient versions of GDBR, AOI and LCHR and ran empirical timing tests
for varied input sizes and attribute thresholds.  In this section, we present the results of those
tests.  In Section 6.1 we describe how the tests were structured.  In Section 6.2 we present the
results of tests that varied input size while keeping attribute thresholds constant.  In Section 6.3
we present the results of tests that varied attribute thresholds for a fixed input size.

Our implementation of AOI and LCHR closely followed the algorithms presented in [10]
and [3] respectively and originated from a prototypical implementation of DBLEARN [1]
supplied to us by J. Han.  Every effort was made to make the implementations as fast as possible
while remaining consistent with the published algorithms.  For example, the DBLEARN prototype
was extensively rewritten to enhance memory efficiency and speed [7].
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6.1 Testing Methods

We benchmarked the three algorithms to specifically time the generalization process
separate from database retrieval and the conversion of database attribute values to leaf concepts.
To be able to effectively compare the algorithms, however, some modifications to GDBR were
necessary.  AOI and LCHR require that the whole relation be read into memory before
generalization.  The input is read, therefore, and then the actual generalization process timed
separately.  GDBR, however, is an on-line algorithm.  This makes timing just the generalization
part impossible since built in timing functions are not precise enough to time the generalization of
one tuple each time it is retrieved from the database.  We therefore separated the data retrieval
portions of GDBR from the actual generalization operations.  The input relation was retrieved
from the database in blocks of tuples, converted to leaf concepts and stored in memory.  This
structure was then generalized by GDBR on a tuple by tuple basis as though it were being
retrieved from a database.

For GDBR and AOI, we ran each test ten times and computed the average time.  This was
easily accomplished since neither algorithm is destructive to the input relation, and the same input
was used multiple times.  LCHR, however, is destructive to the input since each ungeneralized
concept is replaced by a generalized concept, and the generalized relation is then sorted in place.
To run the test multiple times, the data must be retrieved ten times separately, or the input relation
must be duplicated between each generalization.  As we will see in Sections 6.2 and 6.3, however,
LCHR times were much greater than the GDBR and AOI.  In this light, running the test multiple
times to get a slightly more precise measurement was in our opinion unnecessary, and LCHR was
timed only once for an approximate measure.

We ran the tests on an IBM compatible PC with 32 Megabytes of RAM and an Intel 66
MHz 80486DX2 processor.  The operating system was IBM’s OS/2 and the database was IBM’s
DB2/2 relational DBMS.  The data was commercial data supplied by a corporate sponsor.

6.2 Tests varying input size

The first set of three tests varied the number of tuples read from the database from 100,000
to 500,000 in 100,000 tuple increments.  Only input relations with two or three attributes were
generalized since these are typical of the tasks we have been running in actual knowledge
discovery sessions.  The input relations contained both discrete and continuous (numerical)
attributes.  In Tests 1 and 3, the numerical attributes were simply generalized without summing
their values.  In Test 2, the same input relation was used as in Test 1, but a numerical attribute
was summed to see the impact of the summation computations.  A constant attribute threshold of
4 was used for all attributes.

Test 1 involved an input relation with three attributes, two discrete product codes and a

Table 1. Test 1 Timing Results

GDBR AOI LCHR
100K 0.53 0.93 6.28
200K 1.07 1.88 13.19
300K 1.62 2.85 20.56
400K 2.13 26.49 54.84
500K 2.73 97.93 678.44
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dollar amount.  The input relation was generalized without any summation of the dollar amounts.
The numerical timing results are presented in Table 1, and a graph of these, shown using a
logarithmic scale, in Figure 2.  For all timing tables in this section, the algorithms are listed in the
top row and the input size in the left hand column.  Cells of the table represent generalization
times in seconds.

We note first of all that LCHR takes substantially longer than the other two algorithms,
taking from 12 to 248 times as long as GDBR and about 7 times as long as AOI.  LCHR was
slower primarily due to sorting the input relation, which we timed to take approximately 95% of
its overall time.  Implementationally, the tuples were stored in array of pointers and the C library
function qsort was used to sort this array.  While this function is a general purpose function and
may not be as efficient as a sort written specifically for this task, it is still very efficient.  Our
efforts to implement a faster specific sort were unsuccessful.  GDBR ranges from 2 to 36 times
faster than AOI.

The times for AOI and LCHR increase in an approximately linear manner until 400,000 or
more tuples are input.  Then times increase non-linearly when the input sizes exceed memory
limitations and disk swapping occurs.  The amount of increase will vary somewhat depending on
the relative RAM and disk speeds of a given system.  This increase, however, emphasizes the
primary disadvantage of the unbounded space requirements of AOI and LCHR when large input
relations are generalized.  On the other hand, GDBR uses a relatively small, constant amount of
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Table 2. Test 2 timing results

GDBR AOI LCHR
100K 0.59 0.99 6.09
200K 1.18 2.00 14.19
300K 1.84 3.03 20.75
400K 2.37 26.00 56.78
500K 3.01 98.70 645.38
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memory, independent of input size.  We would therefore expect to see the times for GDBR
continue to increase in a linear fashion, regardless of input size.

Test 2 used the same input as Test 1 except that it summed the attribute that represents
dollar amounts.  The results, shown in Table 2, are very similar to Test 1 except that the
summation operations added about a constant .06 seconds per 100,000 input tuples for GDBR
and AOI.  Since LCHR was timed only once for an approximate time, the observed variations in
its times can be attributed to the inherent imprecision of one timing result.

Test 3 (Table 3) involved an input relation with two attributes, a product code and a dollar
amount.  Like Test 1, it did not sum dollar amounts.  Since memory was not exceeded by either
AOI or LCHR, their time increases are linear and are relatively proportional to those of  GDBR.
Under no memory limitations, AOI is approximately 1½ times slower than GDBR.

6.3 Tests varying attribute thresholds

The second set of tests were run on fixed sized input relations (250,000 tuples), and varied
attribute thresholds.  This set was designed to test especially AOI and GDBR since their times are
related to the size of the prime relation.  The number of tuples in the prime relation is in turn
related to the attribute thresholds.

Two tests in this category, Tests 4 and 5, are sufficient to indicate general trends.  The
results of Test 4 are presented in Table 4 and Figure 3.  The left hand column of Table 4
represents the attribute thresholds for the three attributes of the input relation.

The primary observation we draw from Test 4 is that times for GDBR remain relatively
constant, LCHR increases only marginally, but AOI increases steadily as attribute thresholds
increase.  AOI’s increase is due to the search of the prime relation when each tuple is inserted.  As
the attribute thresholds increase, the prime relation grows in size and takes longer to search for
each insertion point.  From the trends indicated in Table 4, we would expect that AOI’s  time

Table 3. Test 3 timing results

GDBR AOI LCHR
100K 0.36 0.51 4.38
200K 0.70 1.02 9.56
300K 1.05 1.54 14.84
400K 1.40 2.04 20.00
500K 1.75 2.53 25.91

Table 4. Test 4 timing results

GDBR AOI LCHR
1, 1, 1 1.33 1.82 16.06
2, 2, 2 1.35 1.94 16.44
4, 4, 4 1.35 2.37 16.41
8, 8, 8 1.35 2.80 17.09
8, 16, 8 1.35 3.74 17.41
8, 16, 16 1.36 4.68 17.25
8, 32, 16 1.35 7.74 17.41
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would eventually exceed that of LCHR when attribute thresholds get large enough.  In current
practice, however, this may never happen since attribute thresholds are generally low.

Overall, GDBR ranges from 1.4 to 6 times as fast as AOI and 12 to 13 times as fast as
LCHR in these tests.  AOI ranges from 9 times faster than LCHR with low attribute thresholds
down to only about twice as fast with higher thresholds.

The results of Test 5, which used an input relation with two attributes and did not sum any
numerical attributes, are given in Table 5, and parallel the patterns observed in Test 4.  Attribute
thresholds, however, are somewhat smaller and therefore the increases in AOI are not as
dramatic.

In summary, empirical tests on large input relations clearly show that GDBR consistently
outperforms both AOI and LCHR.  GDBR ranges from being only marginally faster to 36 times
faster than AOI, and about 12 to 250 times faster than LCHR.  The primary advantages of GDBR
are derived from its optimality and its small, constant memory requirements.  When large input
relations are generalized, the O(n) memory requirements of AOI and LCHR cause memory to be
exceeded and disk swapping to begin.  This in turn causes a non-linear increase in time, degrading
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Figure 3. Test 4 Time Results for Generalization of Three Attributes, Varying
Attribute Thresholds

Table 5. Test 5 timing results

GDBR AOI LCHR
1, 1 0.88 1.18 11.56
2, 2 0.88 1.22 12.09
4, 4 0.89 1.26 12.19
8, 4 0.90 1.38 12.22
8, 8 0.88 1.40 12.31
8, 16 0.89 1.53 12.53
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the performance of both AOI and LCHR.  GDBR, however, increases only linearly with increased
input size, and so its times remain very small.  Increasing attribute thresholds also does not affect
the times of GDBR significantly, while the times for AOI clearly increase as thresholds increase.

7. Algorithm Improvements

While the times for LCHR are substantially greater than both AOI and GDBR, the times for
AOI are more acceptable when memory limitations are not encountered.  The memory excesses of
the AOI algorithm can be improved.  As described in [10], AOI stores each individual input tuple
in ungeneralized form before any generalization begins.  The size of the input relation is therefore
O(n) for n input tuples.  When the input relation grows large, memory is eventually exceeded and
disk swapping begins.  Many of these tuples, however, are duplicated even at the lowest level of
generality.  When generalization occurs, all duplicate tuples are combined and a count of the
number of tuples contributing to the combined tuple is tracked by a votes variable.  The AOI
algorithm can be modified to store the input relation not as individual input tuples but as unique
minimally generalized input tuples.  When an input tuple is read from the database, the structure in
which the input tuples are stored is searched for a match.  If one is not found, the input tuple is
inserted as a new tuple with a vote of 1.  If a match is found, the vote of the matched tuple is
incremented and any summary information is updated.  In this way only one storage structure is
needed for each unique tuple.  The input relation could be stored as an ordered structure so that
the search would not be too expensive.

The precise effect of these changes to the run time of AOI is unclear.  However, in our
experience, we have found that the number of distinct tuples read from a database is much less
than the total number of tuples read.  As such, AOI would be much less likely to exceed memory
limitations and would therefore not suffer the increased time penalty seen in Table 1 and Figure 2.

This change to the AOI algorithm will increase its usefulness in comparison to GDBR.
Since GDBR is an on-line algorithm and does not store the input relation, the input must be read
again if overgeneralization occurs and the user desires a less general result.  This database access
can be very time consuming.  AOI, however, stores the input in memory.  If overgeneralization
occurs, the input can simply be regeneralized without another access to the database.

Currently, GDBR and AOI have been tested on input relations with relatively few attributes,
usually only two or three.  This is primarily because the summaries produced by attribute-oriented
generalization become hard to understand when more than three attributes are included in the
generalized relation.  However, the results of the generalization of more attributes may be useful
as input to other machine learning methods, in which case generalizing more attributes may be
advantageous.  More research is needed to determine the usefulness of the generalization of more
attributes and the affect that more attributes would have on the methods presented in this paper.

8. Conclusion

We have noted that the GDBR algorithm is O(n) and as such is optimal.  Its space
requirements are also constant and very modest at O(p) where p is the size of the output prime
relation.  These two factors combine to enhance its performance over a wide variety of input
conditions.  We empirically demonstrated this on relatively large input sets drawn from
commercial databases, varying both the attribute thresholds and the input relation size to ensure
the validity of the results.  While GDBR is fast, however, modifications to the AOI algorithm will
cause to have greater flexibility than GDBR, though the effect of these modification on
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generalization time may be detrimental.
As fast and memory efficient algorithms, GDBR and an improved AOI will greatly enhance

the potential for automated knowledge discovery from existing, large commercial databases.  The
algorithms provide a suitable basis for designing a software tool for knowledge discovery.  Where
a number of concept hierarchies exist for a given database, we foresee creating processes which
explore the various possible relationships in the database in an automated fashion.  The faster the
algorithm runs and the more memory efficient it is, the more thoroughly we can explore the
possibilities available.
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