
Gaizauskas, Robert, Cunningham, Hamish, Wilks, Yorick, Rodgers, Peter
and Humphreys, Kevin (1996) GATE -- an Environment to Support Research
and Development in Natural Language Engineering. In: Proceedings of
the 8th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI-96). . pp. 58-66. IEEE Computer Society

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21334/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21334/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

GATE: An Environment to Support Research and Development
in Natural Language Engineering

Robert Gaizauskas, Hamish Cunningham, Yorick Wilks, Peter Rodgers, Kevin Humphreys
Department of Computer Science

University of Sheffield
frobertg,hamish,yorick,peterr,kwhg@dcs.shef.ac.uk

Abstract

We describe a software environment to support research
and development in natural language (NL) engineering.
This environment – GATE (General Architecture for Text
Engineering) – aims to advance research in the area of
machine processing of natural languages by providing a
software infrastructure on top of which heterogeneous NL
component modules may be evaluated and refined individ-
ually or may be combined into larger application systems.
Thus, GATE aims to support both researchers and develop-
ers working on component technologies (e.g. parsing, tag-
ging, morphological analysis) and those working on devel-
oping end-user applications (e.g. information extraction,
text summarisation, document generation, machine trans-
lation, and second language learning). GATE will pro-
mote reuse of component technology, permit specialisation
and collaboration in large-scale projects, and allow for the
comparison and evaluation of alternative technologies. The
first release of GATE is now available.

1. Introduction

For a variety of reasons, that subfield of artificial in-
telligence known as natural language processing (NLP)
has, over the past few years, spawned a related engineer-
ing discipline called language engineering (LE), whose ori-
entation is towards the application of NL techniques to
solving large-scale, real-world language processing prob-
lems in a robust and predictable way. These problems in-
clude information extraction, text summarisation, document
generation, machine translation, second language learning,
amongst others. In many cases, the technologies being de-
veloped are assistive, rather than fully automatic, aiming to
enhance or supplement a human's expertise rather than at-
tempting to replace it.

The reasons for the growth of language engineering in-
clude:

� computer hardware advances which have increased
processor speeds and memory capacity, while reduc-
ing prices;

� the increasing availability of large-scale, language-
related, on-line resources, such as dictionaries, the-
sauri, and 'designer' corpora – corpora selected for
representativeness and perhaps annotated with descrip-
tive information;

� the demand for applications in a world where elec-
tronic text has grown exponentially in volume and
availability, and where electronic communications and
mobility have increased the importance of multi-
lingual communication;

� maturing NL technology which is now able, for some
tasks, to achieve high levels of accuracy repeatedly on
real data.

Aside from the host of fundamental theoretical problems
that remain to be answered in NLP, language engineering
faces a variety of problems of its own. Two features of the
current situation are of prime importance; they constrain
how the field can develop and must be acknowledged and
addressed. First, there is no theory of language which is
universally accepted, and no computational model of even a
part of the process of language understanding which stands
uncontested. Second, building intelligent application sys-
tems, systems which model or reproduce enough human
language processing capability to be useful, is a large-scale
engineering effort which, given political and economic re-
alities, must rely on the efforts of many small groups of re-
searchers, spatially and temporally distributed, with no col-
laborative master plan.

The first point means that any attempt to push re-
searchers into a theoretical or representational straight-
jacket is premature, unhealthy and doomed to failure. The
second means that no research team alone is likely to have
the resources to build from scratch an entire state-of-the-art
LE application system. Note the tension here: the first point

identifies a centrifugal tendency, pushing researchers into
ever greater theoretical diversity; the second, a centripetal
tendency forcing them together.

Given this state of affairs, what is the best practical sup-
port that can be given to advance the field? Clearly, the pres-
sure to build on the efforts of others demands that LE tools
or component technologies – parsers, taggers, morphologi-
cal analysers, discourse planning modules, etc, – be readily
available for experimentation and reuse. But the pressure
towards theoretical diversity means that there is no point at-
tempting to gain agreement, in the short term, on what set of
component technologies should be developed or on the in-
formational content or syntax of representations that these
components should require or produce.

Our response to these considerations has been to design
and implement a software environment called GATE – Gen-
eral Architecture for Text Engineering [5] – which attempts
to meet the following objectives:

1. support information interchange between LE modules
at the highest common level possible without prescrib-
ing theoretical approach (though it allows modules
which share theoretical presuppositions to pass data in
a mutually accepted common form);

2. support the integration of modules written in any
source language, available either in source or binary
form, and be available on any common platform;

3. support the evaluation and refinement of LE compo-
nent modules, and of systems built from them, via a
uniform, easy-to-use graphical interface which in ad-
dition offers facilities for managing test corpora and
ancillary linguistic resources.

The rest of this paper motivates and describes the design
of GATE. Section 2 describes related work and motivates
the underlying data model chosen for GATE. In section 3 we
detail the design of GATE. Section 4 illustrates how GATE
can be used by describing how we have taken a pre-existing
information extraction system and embedded it in GATE. In
Section 5 we discuss future work and make some conclud-
ing remarks.

2. Managing Information about Text

Research in NLP and computational linguistics has led to
the development of algorithms for various tasks which are
viewed as component tasks in the overall project of build-
ing a computational model of language processing. Part-
of-speech (POS) tagging, morphological analysis, and pars-
ing are prototypes of such subtasks. The information these
algorithms consume and produce depends on a theoretical
conception of the nature of the task they are trying to per-
form. For example, parsing is the process of determining

the syntactic structure of a sentence; but there are many
views of what structural relations should be sought (e.g.
dependency relations vs. phrase structure) and even given
broad agreement about these, there are myriads of grammat-
ical theories each with its own set of categories and features
which may or may not map in any simple way onto any
other's.

One recent approach to providing a general environment
for research and development in LE is ALEP – the Ad-
vanced Language Engineering Platform [15] – a project
sponsored by the Commission of the European Community
(CEC). ALEP aims to provide “the NL research and engi-
neering community in Europe with an open, versatile, and
general-purpose development environment” – superficially
a similar goal to ours. The approaches are quite different,
however. ALEP, while in principle open, is primarily an
advanced system for developing and manipulating feature
structure knowledge-bases under unification. Also provided
are several parsing algorithms, algorithms for transfer, syn-
thesis and generation [14]. As such, it is a system for de-
veloping particular types of data resource (e.g. grammars,
lexicons) and for doing a particular set of tasks in LE in a
particular way. ALEP does not aim for complete genericity
(or it would need also to supply algorithms for Baum-Welch
estimation, fast regular expression matching, etc.). Supply-
ing a generic system to do every LE task is clearly impossi-
ble, and prone to instant obsolescence in a rapidly changing
field.

In our view ALEP, despite claiming to use a theory-
neutral formalism (an HPSG-like formalism), is still too
committed to a particular approach to linguistic analysis
and representation. It is clearly of high utility to those in
the LE community to whom these theories and formalisms
are relevant; but it excludes, or at least does not actively
support, all those who are not, including an increasing num-
ber of researchers committed to statistical, corpus-based ap-
proaches. GATE, as will be seen below, is more like a shell,
a backplane into which the whole spectrum of LE modules
and databases can be plugged. Components used within
GATE will typically exist already – our emphasis is reuse,
not reimplementation. Our project is to provide a flexi-
ble and efficient way to combine LE components to make
LE systems (whether experimental or for delivered applica-
tions) – not to provide 'the one true system', or even 'the
one true development environment'. Indeed, ALEP-based
systems might well provide components operating within
GATE. Seen this way, the ALEP enterprise is orthogonal to
ours – there is no significant overlap or conflict.

In our view the level at which we can assume common-
ality of information, or of representation of information, be-
tween LE modules is very low, if we are to build an envi-
ronment which is broad enough to support the full range
of LE tools and accept that we cannot impose standards

on a research community in flux. What does seem to be a
highest common denominator is this: modules that process
text, or process the output of other modules that process
text, produce further information about the text or portions
of it. For example, part-of-speech tags, phrase structure
trees, logical forms, discourse models can all be seen in
this light. It would seem, therefore, that we are on safe
common ground if we start only by committing to provide
a mechanism which manages arbitrary information about
text. There are two methods by which this may be done.
First, one may embed the information in the text at the rel-
evant points. Second, one may associate the information
with the text by building a separate database which stores
this information and relates it to the text using pointers into
the text. The next two subsections discuss systems that have
adopted these two approaches respectively. In the final sub-
section we compare the two and indicate why we have cho-
sen the second.

2.1. SGML/MULTEXT

MULTEXT [2, 17] is another EC project, whose objec-
tive is to produce tools for multilingual corpus annotation
and sample corpora marked-up according to the same stan-
dards used to drive the tool development. Annotation tools
under development perform text segmentation, POS tag-
ging, morphological analysis and parallel text alignment.
The project has defined an architecture centred on a model
of the data passed between the various phases of processing
implemented by the tools.

MULTEXT is based on SGML, the Standard Gener-
alised Markup Language [9]. SGML works by adding extra
information to texts in a standard format – the first of the
two methods we mentioned above. For example, the (rather
short) news article

Reuter
Dog bites man. Newshound implicated.

might appear in SGML as

<DOC>
<HEADERS>Reuter</HEADERS>
<SENT>Dog bites man.</SENT>
<SENT>Newshound implicated.</SENT>
</DOC>

Markup is between chevrons, '<' and '>'; slashes signify
the end of a marked-up entity. The language is information-
neutral (the tags 'DOC', 'SENT' etc. are not part of
the language definition) and is encoded in the character
set of the source text (e.g. ASCII). Of course arbitrarily
more detailed information may be stored about characters,
words, or sentences in the text using these conventions.
For example we might code part-of-speech information as
<POS type=VBZ>bites</POS>.

The MULTEXT architecture is based on a commitment
to TEI-style (the Text Encoding Initiative [16]) SGML en-
coding of information about text. The TEI defines standard
tag sets for a range of purposes including many relevant to
LE systems. Tools in a MULTEXT system communicate
via interfaces specified as SGML document type definitions
(DTDs – essentially tag set descriptions), using character
streams on pipes – an arrangement modelled after UNIX-
style shell programming.

MULTEXT endorses the view that SGML is an appropri-
ate and flexible language for the splitting and recombination
of text analysis elements. A tool selects what information
it requires from its input SGML stream and adds informa-
tion as new SGML markup. An advantage here is a degree
of data-structure independence: so long as the necessary in-
formation is present in its input, a tool can ignore changes
to other markup that inhabits the same stream – unknown
SGML is simply passed through unchanged (so, for exam-
ple, a semantic interpretation module might examine phrase
structure markup, but ignore POS tags). A disadvantage
is that although graph-structured data may be expressed in
SGML, doing so is complex (either via concurrent markup,
the specification of multiple legal markup trees in the DTD,
or by rather ugly nesting tricks to cope with overlapping,
so-called “milestone tags”). Graph-structured information
might be present in the output of a parser, for example, rep-
resenting competing analyses of areas of text.

Another feature of MULTEXT is a set of abstract data
types (ADTs) for all tool I/O [2] supported by a single
shared API (Application Program(mers') Interface) for ac-
cess to the types. An executive (the tool shell) glues tools
together in particular configurations according to user spec-
ifications. The shell may extract sub-trees from SGML doc-
uments to reduce the I/O load where tools only require a
subset of a marked-up document.

The ADT set forms an object-oriented model, in the
sense of using inheritance and data encapsulation, of the
data present in a marked-up document. Example classes
include Sentence, SentenceBlock (sequence of sentences),
LexicalWord (word plus definition from a lexicon). The
ADT model reflects the type of processing available in the
tool set – there is a type TaggedSentence, for example, but
not a ParsedSentence.

MULTEXT is implemented for the UNIX platform. Ac-
cess to tools is as unitary programs and via the tool shell;
the SGML query language is supported by a C API.

2.2. TIPSTER

The ARPA-sponsored TIPSTER programme in the US,
now entering its third phase, has also produced a data-driven
architecture for NLP systems [10]. Like MULTEXT, TIP-
STER addresses specific forms of language processing, in
this case information extraction and document detection (or

information retrieval – IR). As will become clear below,
however, TIPSTER's approach is not restricted to particular
NL tasks.

Whereas in MULTEXT all information about a text is en-
coded in SGML, which is added by the tools, in TIPSTER
a text remains unchanged while information is stored in a
separate database – this is the second of the two methods for
storing information about texts we mentioned in the intro-
duction to this section. Information is stored in the database
in the form of annotations. Annotations associate arbitrary
information (attributes), with portions of documents (iden-
tified by sets of start/end byte offsets or spans). Attributes
may be the result of linguistic analysis, e.g. POS tags or
textual unit type. In this way the information built up about
a text by NLP (or IR) modules is kept separate from the
texts themselves. In place of an SGML DTD an annotation
type declaration defines the information present in annota-
tion sets. Figure 1 shows an example from [10].

Text
Sarah savored the soup.
0...|5...|10..|15..|20

Annotations
Id Type Span Attributes

Start End
1 token 0 5 pos=NP
2 token 6 13 pos=VBD
3 token 14 17 pos=DT
4 token 18 22 pos=NN
5 token 22 23
6 name 0 5 name type=person
7 sentence 0 23

Figure 1. TIPSTER annotations example

The definition of annotations in TIPSTER forms part of
an object-oriented model that deals with inter-textual infor-
mation as well as single texts. Documents are grouped into
collections, each with a database storing annotations and
document attributes such as identifiers, headlines etc. Col-
lections are the first-class entities in the architecture. The
model also describes elements of IE and IR systems relating
to their use, with classes representing queries and informa-
tion needs.

The TIPSTER architecture is designed to be portable
to a range of operating environments, so it does not de-
fine implementation technologies. Particular implementa-
tions make their own decisions regarding issues such as
parallelism, user interface, or delivery platform. An im-
plementation in C and Tcl [13] from CRL (the Comput-
ing Research Lab, New Mexico State University) imple-
ments client-server operation (using Tcl-dp), a server data-
base manager fielding requests from client modules. This
implementation is available now and includes both C and

Tcl APIs. It is not currently portable beyond UNIX, though
Tcl/Tk is becoming available on Windows and Macintosh.
GATE uses a simpler, file-based implementation written
in C++ and Tcl/Tk. A version for 32-bit PC Windows is
planned.

2.3. Comparison of MULTEXT and TIPSTER

Both projects propose architectures appropriate for LE,
but there are a number of significant differences. We dis-
cuss four here, then note the possibility of complimentary
interoperation of the two.

1. MULTEXT adds new information to documents by
augmenting an SGML stream; TIPSTER stores infor-
mation remotely in a dedicated database. This has
several implications. Firstly, TIPSTER can support
documents on read-only media (e.g. Internet mater-
ial, or CD-ROMs, which may be used for bulk stor-
age by organisations with large archiving needs, even
though access will then be slower than from hard disk).
Secondly, TIPSTER avoids the difficulties referred to
earlier of representing graph-structured information in
SGML. From the point of view of efficiency, the orig-
inal MULTEXT model of interposing SGML between
all modules implies a generation and parsing overhead
in each module. Later versions have replaced this
model with a pre-parsed representation of SGML to
reduce this overhead. This representation will presum-
ably be stored in intermediate files, which implies an
overhead from the I/O involved in continually reading
and writing all the data associated with a document
to file. There would seem no reason why these files
should not be replaced by a database implementation,
however, with potential performance benefits from the
ability to do I/O on subsets of information about docu-
ments (and from the high level of optimisation present
in modern database technology).

2. A related issue is storage overhead. TIPSTER is mini-
mal in this respect, as there is no inherent need to du-
plicate the source text. MULTEXT potentially has to
duplicate the source text at each intermediary stage, al-
though this might be ameliorated by shifting to a data-
base implementation.

3. There is no easy way in an SGML-based system to dif-
ferentiate sets of results (i.e. sets of markup) by e.g.
the program or user that originated them. In general,
storing information about the information present in an
SGML system (or meta-information) is messy. This is
a problem for MULTEXT but not for TIPSTER. A re-
lated point is that TIPSTER can easily support multi-
level access control via a database's protection mecha-
nisms – this is again not straightforward in SGML.

4. Distributed control is easy to implement in a database-
centred system like TIPSTER – the DB can act as a
blackboard, and implementations can take advantage
of well-understood access control (locking) technol-
ogy. How to do distributed control in MULTEXT is
not obvious.

Interestingly, a TIPSTER system could function as a mod-
ule in a MULTEXT system, or vice-versa. A TIPSTER
storage system could write data in SGML for processing by
MULTEXT tools, and convert the SGML results back into
native format.

We believe the above comparison demonstrates that there
are significant advantages to the TIPSTER model and it is
this model that we have chosen for GATE. Note that we be-
lieve that SGML and the TEI must remain central to any se-
rious text processing strategy. The points above do not con-
tradict this view, but indicate that SGML should not form
the central representation format of every text processing
system. Input from SGML text and TEI conformant output
are becoming increasingly necessary for LE applications as
more and more publishing adopts these standards. This does
not mean, however, that flat-file SGML is an appropriate
format for an architecture for LE systems. This observa-
tion is born out by the fact that TIPSTER started with an
SGML/TEI architecture but rejected it in favour of the cur-
rent database model, and that MULTEXT has gone halfway
to this style by passing pre-parsed SGML between compo-
nents.

3. GATE Design

Corresponding to the three key objectives identified at
the end of section 1, GATE comprises three principal el-
ements (see figure 2): GDM, the GATE Document Man-
ager, based on the TIPSTER document manager; CREOLE,
a Collection of REusable Objects for Language Engineer-
ing: a set of LE modules integrated with the system; and
GGI, the GATE Graphical Interface, a development tool for
LE R&D, providing integrated access to the services of the
other components and adding visualisation and debugging
tools.

Working with GATE the researcher will from the outset
reuse existing components, and the common APIs of GDM
and CREOLE mean only one integration mechanism must
be learnt. And as CREOLE expands, more and more mod-
ules will be available from external sources.

3.1. GDM

The GDM provides a central repository or server that
stores all information an LE system generates about the
texts it processes. All communication between the compo-
nents of an LE system goes through GDM, which insulates

CREOLE - a Collection of REusable Objects
 for Langauge Engineering

GDM - the GATE Document Manager
GGI - the GATE Graphical Interface

GDM

CREOLE GGI

Figure 2. The three elements of GATE

these components from direct contact with each other and
provides them with a uniform API for manipulating the data
they produce and consume.

The basic concepts of the data model underlying the
GDM have been explained in the discussion of the Tipster
model in section 2.2 above. The TIPSTER architecture has
been fully specified [10] and its specification should be con-
sulted for further details, in particular for definitions of the
API. The GDM is fully conformant with a core subset of
this specification

3.2. CREOLE

All the real work of analysing texts in a GATE-based
LE system is done by CREOLE modules or objects (we use
the terms module and object rather loosely to mean inter-
faces to resources which may be predominantly algorithmic
or predominantly data, or a mixture of both). Typically, a
CREOLE object will be a wrapper around a pre-existing LE
module or database – a tagger or parser, a lexicon or ngram
index, for example. Alternatively objects may be developed
from scratch for the architecture – in either case the ob-
ject provides a standardised API to the underlying resources
which allows access via GGI and I/O via GDM. The CRE-
OLE APIs may also be used for programming new objects.

When the user initiates a particular CREOLE object via
GGI (or when a programmer does the same via the GATE
API when building an LE application) the object is run, ob-
taining the information it needs (document source, anno-
tations from other objects) via calls to the GDM API. Its
results are then stored in the GDM database and become
available for examination via GGI or to be the input to other
CREOLE objects.

There are two ways to provide the CREOLE wrapper
functions. Packages written in C, or in languages which
obey C linkage conventions, can be compiled into GATE
directly as a Tcl package (see [Ous94]). This is tight cou-
pling. Alternatively, the underlying implementation of ser-
vices can be via an executable (loose coupling). This exe-
cutable is then called by the CREOLE wrapper code. In ei-

ther case the implementation of CREOLE services is com-
pletely transparent to GATE. Note that the loose coupling
route means modules supplied either in source form or bi-
nary form can be integrated into GATE, the latter possibil-
ity reducing problems of redistributing LE software to third
parties.

CREOLE wrappers encapsulate information about the
preconditions for a module to run (data that must be present
in the GDM database) and post-conditions (data that will re-
sult). This information is needed by GGI – see below. Aside
from the information needed for GGI to provide access to a
module, GATE compatibility equals TIPSTER compatibil-
ity – i.e. there will be very little overhead in making any
TIPSTER module run in GATE.

In addition to the macro requirements on CREOLE inte-
gration described above, GDM imposes constraints on the
I/O format of CREOLE objects, namely that all information
must be associated with byte offsets and conform to the an-
notations model of the TIPSTER architecture. The principal
overhead in this process is making the components being in-
tegrated use byte offsets, if they do not already do so.

As we noted above, CREOLE objects may be data-
orientated. It is our intention to integrate as large a set of LE
data resources as possible within GATE in order to reduce
the overhead of installing and understanding the software
interfaces of these resources. For example, the Wordnet the-
saurus [6] will be given a CREOLE wrapper encapsulating
the C API as a GATE service. Grammars, lexica, gazetteers
– all are candidates for CREOLE integration, and as the set
expands GATE can become a standard resource repository
for LE data as well as LE processing modules.

3.3. GGI

The GGI is a graphical tool that encapsulates the GDM
and CREOLE resources in a fashion suitable for interac-
tive building and testing of LE components and systems.
The philosophy is to provide a rich set of tools including,
but not limited to, the CREOLE modules. So, for example,
access to a KWIC (keyword in context) tool and an inter-
face to WordNet is included, as well as taggers, parsers,
etc. from CREOLE. The GGI also has functions for creat-
ing, viewing and editing the collections of documents which
are managed by the GDM and that form the corpora which
LE modules and systems in GATE use as input data. Fi-
nally, the GGI has facilities to display the results of module
or system execution – new annotations associated with the
document. These annotations can be viewed either in raw
form using a generic annotation viewer or in an annotation-
specific way, if special annotation viewers are available. For
example, named entity annotations which identify and clas-
sify proper names (e.g. organization names, person names,
location names) can be shown by colour-coded highlight-
ing of relevant words; phrase structure annotations could be

shown by graphical presentation of parse trees.

The main function of the GGI is to provide a graphi-
cal launchpad for the various LE subsystems available in
GATE. To that end, the main panel of the GGI top-level
display shows the particular tasks which may be performed
by modules or systems within the GATE system (e.g. pars-
ing). Having chosen a task, an intermediate level display
appears, presenting the user with a selection of icons, one
for each of the one or more specific modules or systems ca-
pable of performing the selected task (e.g. a specific chart
parser, LR parser, etc.). Once a particular module or system
is selected, a final window appears displaying a connected
graph of the one or more modules that need to be run for
the selected module or system to achieve the task. In this
graph, the boxes denoting modules are actually active but-
tons: clicking on them will, if conditions are right, cause
the module to be executed.

Figure 3 is an example of such a display for the VIE in-
formation extraction system. The paths through the graph
indicate the dependencies amongst the various modules
making up this application. Execution takes place from
left to right and dependencies may be read from right to
left. Each nodule at the left of a module box indicates
a dependency on results of previous processing, results
which may be generated by running any one of the mod-
ules connected to the nodule. Thus, in the example, the
final buChartmodule may only be run if the results of the
List Lookup module and the Brill Tagger mod-
ule and either the tagged Morph module or the Morph
module are available. They in turn have earlier dependen-
cies.

At any point in time, the state of execution of the system,
or, more accurately, the availability of data from various
modules, is depicted through colour-coding of the module
boxes. Figure 3 shows the module window with the buChart
task half complete. Light grey modules (green, in the real
display) can be executed. Modules that require input from
others not yet executed, and so cannot be executed yet, are
shown with a white background (amber, in reality). The
modules that have already been executed (or those whose
output data is available – possibly through earlier execution,
or even through direct import into the GDM) are shown in
dark grey (red). After execution, the results of completed
modules are available for viewing, via mouse button oper-
ations over the module box area, and are displayed using
either the default raw annotation viewer, or an annotation-
specific viewer if available, as described above. In addition,
modules can be 'reset', i.e. their results removed from the
GDM, to allow the user to pick another path through the
graph, or re-execute having altered some tailorable data-
resource (such as a grammar or lexicon) interpreted by the
module at run-time. (Modules running as external executa-
bles might also be recompiled between runs.)

Figure 3. The GATE VIE System

Of course, before any processing can be done a docu-
ment collection and, optionally, a document have to be se-
lected (it is not mandatory to select a document, as tasks can
be performed on entire collections). This is done through
the drop-down File menu on the menu-bar. The collec-
tion and document selected are displayed on a bar at the
bottom of the module graph window.

The GGI is implemented in Tcl/Tk, with access to CRE-
OLE objects and to collections and documents via C++-
implemented Tcl commands (using the GDM API where
appropriate).

4. VIE: An Application In GATE

To illustrate the process of converting pre-existing LE
systems into GATE compatible systems we use as an ex-
ample the creation of the VIE (Vanilla Information Ex-
traction) system from the LaSIE (Large-Scale Informa-
tion Extraction) system [8], Sheffield's entry in the ARPA-
sponsored Message Understanding Conference 6 (MUC-6)
system evaluations. LaSIE module interfaces were not stan-
dardised when originally produced and its CREOLEization
gives a good indication of the ease of integrating other LE
tools into GATE. The resulting system, VIE, is distributed
with the GATE system.

4.1. LaSIE

LaSIE was designed as a research system for investigat-
ing approaches to information extraction1 and to be entered

1Information extraction (IE) is a term which has come to be applied
to the activity of automatically extracting pre-specified sorts of informa-

into the MUC-6 conference [1]. As such it is a standalone
system that is aimed at specific tasks and while based on a
modular design, none of its modules were specifically de-
signed with reuse in mind, nor was there any attempt to
standardise data formats passed between modules. Modules
were written in a variety of programming languages, includ-
ing C, C++, Flex, Perl and Prolog. In this regard LaSIE is
probably typical of existing LE systems and modules.

The high-level tasks which LaSIE performs include the
four MUC-6 tasks (carried out on Wall Street Journal arti-
cles):

� named entity (NE) recognition, the recognition and
classification of definite entities such as names, dates,
places;

� coreference (CO) resolution, the identification of iden-
tity relations between entities (including anaphoric ref-
erences to them);

� template element (TE) construction, a fixed-format,
database-like enumeration of organisations and per-
sons;

� scenario template (ST) construction, the detection of
specific relations holding between template elements
relevant to a particular information need (in this case
personnel joining and leaving companies) and con-

tion from short, natural language texts – typically newswire articles (see,
e.g., [12]). For instance, one might scan business newswire texts for an-
nouncements of joint ventures and extract the names and nationalities of
the participating companies, the activity of the venture, the start date of
the venture, its capitalisation, and so on. Put another way, IE may be seen
as the activity of populating a structured information source (or database)
from an unstructured, or free text, information source.

struction of a fixed-format structure recording the en-
tities and details of the relation.

Document
Lexical
Preprocessing

Initial Charts +

Tokenized Text
Parsing

Semantics

Discourse
Interpretation Discourse

Model

Results
Generation

Coref
Result

NL
Summary

Scenario
Template

Template
Elements

Result
NE

Figure 4. LaSIE architecture

The high level structure of LaSIE is illustrated in Figure
4. The system is a pipelined architecture which processes
a text sentence-at-a-time and consists of three principal
processing stages: lexical preprocessing, parsing plus se-
mantic interpretation, and discourse interpretation. For fur-
ther details of the system see [8, 7].

4.2. The CREOLEisation of LaSIE

Each of the stages depicted in the high-level LaSIE ar-
chitecture diagram is implemented through a collection of
modules, each of which must be CREOLEised in order to
be integrated into the GATE system. As described in sec-
tion 3.2, CREOLEisation of existing LE modules involves
providing them with a wrapper so that the modules com-
municate via the GDM, by accessing TIPSTER-compliant
document annotations and updating them with new infor-
mation.

The major work in converting LaSIE to VIE involved
defining useful module boundaries, unpicking the connec-
tions between them, and then writing functions to convert
module output into annotations relating to text spans and to
convert GDM input from annotations relating to text spans
back into the module's native input format.

The complete VIE system comprises ten modules, each
of which is a CREOLE object integrated into GATE. The
CREOLEisation took approximately two person months,
though an accurate estimate is difficult, because GATE
functionality was itself changing during this time. The re-
sulting system has all the functionality of the original LaSIE
system and comparable performance. However, the inter-
face makes it much easier to use. And, of course, it is now
possible to swap in modules, such as a different parser, with
significantly less effort than would have been the case be-
fore.

5. Concluding Remarks

5.1. Current State

In addition to the CREOLEisation of LaSIE into GATE,
other modules have recently been integrated, including the
LDOCE lexical database, the Plink shift-reduce parser [11],
and the SemanTag part-of-speech tagger [4]. The effort re-
quired to integrate an existing module varies depending on
the modifications needed to communicate in terms of byte
offset annotations. In most cases this simply involves the
addition of byte offset positions to the module's input and
their preservation during the module's operation. The cur-
rent CREOLE wrappers share significant functionality, al-
lowing the rapid production of new wrappers, and a higher
level of reusable (Tcl) wrapper code is planned. Modules'
input/output requirements are specified in a formal `module
registration' language, and inclusion in the interface's mod-
ule dependency graphs is achieved via declarations in the
GGI.

Version 1.0 of GATE is now available as a beta release.
We are carrying out further testing of the system ourselves
and are expecting feedback from those sites which have
agreed to experiment with the beta release. The result will
be a general release of version 1 by autumn 1996. We are al-
ready planning version 2 which will incorporate some of the
ideas mentioned in the next paragraph. At this time GATE
will only run on UNIX platforms. GATE itself requires only
public domain software, but VIE currently requires Quintus
or Sicstus Prolog.

5.2. Future Work

There are a vast number of extensions and refinements
that could be undertaken. Amongst the higher priorities are:

� enhancing the underlying GDM database technology
to use an SQL-accessible relational database package;

� porting the system to PC platforms;

� extending the range and functionality of annotation
viewers;

� extending the range of auxiliary tools and data re-
sources available;

� automatically generating the module dependency
graphs from configuration information supplied with
each CREOLE wrapper – i.e. there should be no
information hard-coded into GATE regarding differ-
ent modules. This can be achieved, for example, by
each object registering its name, version, input require-
ments, result type, results viewer, and so on.

But of course the highest priority will be extending the
CREOLE set, by CREOLEising modules which are avail-
able and for which there is a high demand. At first we will

carry out this work ourselves, as resources permit. Even-
tually the system must become simple enough for users to
configure themselves.

5.3. Final Remarks

The recent completion of this work means a full assess-
ment of the strengths and weaknesses of GATE is not yet
possible. The implementation of VIE in GATE, however,
provides an existence proof that the original conception is
workable. We believe that the environment provided by
GATE now will allow us to make significant strides in as-
sessing alternative LE technologies and in rapidly assem-
bling LE prototype systems. Thus, to return to the themes
of our introduction, GATE will not commit us to a particu-
lar linguistic theory or formalism, but it will enable us, and
anyone who wishes to make use of it, to build, in a prag-
matic way, on the diverse efforts of others.

Of course, GATE does not solve all the problems in-
volved in plugging diverse LE modules together. There are
two barriers to such integration: incompatibility of repre-
sentation of information about text; and incompatibility of
type of information used and produced by different mod-
ules.

GATE enforces a separation between these two and pro-
vides a solution to the former based on the work of the TIP-
STER architecture group. Because GATE places no con-
straints on the linguistic formalisms or information con-
tent used by CREOLE modules, the latter problem must
be solved by dedicated translation functions – e.g. tagset-
to-tagset mapping – and, in some cases, by extra process-
ing – e.g. adding a semantic processor to complement a
bracketing parser. As more of this work is done we can
expect the overhead involved to fall, as all results will be
available as CREOLE modules. We are confident that in-
tegration is possible (partly because we believe that differ-
ences between representation formalisms tend to be exag-
gerated) – and others share this view, e.g. the MICROKOS-
MOS project [3], which seeks to integrate many types of
knowledge source in a usable whole, as well as the Lexi-
CadCam experience at New Mexico [18] which sought to
provide core lexical information as needed in a range of
user-specified formats.

Acknowledgements

The research reported here has been supported by grants
from the U.K. Department of Trade and Industry (Grant
Ref. YAE/8/5/1002) and the Engineering and Physical Sci-
ence Research Council (Grant # GR/K25267). The authors
would like to thank: Jim Cowie, Remi Zajac, and Ted Dun-
ning of the Computer Research Laboratory (CRL), New
Mexico State University for making the CRL Tipster Doc-
ument Manager available to us and for discussions and ad-

vice; Afzal Ballim of the Polytechnic of Lausanne for help
with MULTEXT and SGML.

References

[1] Advanced Research Projects Agency. Proceedings of the
Sixth Message Understanding Conference (MUC-6). Mor-
gan Kaufmann, 1995.

[2] A. Ballim. Abstract Data Types for MULTEXT Tool I/O.
LRE 62-050 Deliverable 1.2.1, 1995.

[3] S. Beale, S. Nirenburg, and K. Mahesh. Semantic Analysis
in the Mikrokosmos Machine Translation Project. In Pro-
ceedings of the Second Symposium on Natural Language
Processing (SNLP-95), 1995.

[4] G. Cooke. The SemanTag project. Further details at
http://www.rt66.com/gcooke/SemanTag, 1996.

[5] H. Cunningham, R. Gaizauskas, and Y. Wilks. A Gen-
eral Architecture for Text Engineering (GATE) – a new
approach to Language Engineering R&D. Technical
Report CS – 95 – 21, Department of Computer Sci-
ence, University of Sheffield, 1995. Also available as
http://xxx.lanl.gov/cmp-lg/9601009.

[6] M. G.A., R. Beckwith, C. Fellbaum, D. Gross, and K. Miller.
Introduction to WordNet: On-line. Distributed with the
WordNet Software., 1993.

[7] R. Gaizauskas and K. Humphreys. Quantative Evaluation of
Coreference Algorithms in an Information Extraction Sys-
tem. In DAARC96 - Discourse Anaphora and Anaphor Res-
olution Colloquium. Lancaster University, 1996.

[8] R. Gaizauskas, T. Wakao, K. Humphreys, H. Cunningham,
and Y. Wilks. Description of the LaSIE system as used for
MUC-6. In Proceedings of the Sixth Message Understand-
ing Conference (MUC-6). Morgan Kaufmann, 1995.

[9] C. F. Goldfarb. The SGML Handbook. Oxford University
Press, 1990.

[10] R. Grishman. TIPSTER Architecture Design Document
Version 1.52 (Tinman Architecture). Technical report, De-
partment of Computer Science, New York University, 1995.
Available at http://www.cs.nyu.edu/tipster.

[11] C. Huyck. Plink: An intelligent natural language parser (cse-
tr-218-94). Technical report, Computer Science and Engi-
neering Division, The University of Michigan, 1994.

[12] P. Jacobs, editor. Text-Based Intelligent Systems: Current
Research and Practice in Information Extraction and Re-
trieval. Lawrence Erlbaum, Hillsdale, NJ, 1992.

[13] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[14] J. Schütz. Developing Lingware in ALEP. ALEP User
Group News, CEC Luxemburg, 1(1), Oct. 1994.

[15] N. K. Simkins. An Open Architecture for Language Engi-
neering. In First Language Engineering Convention, Paris,
1994.

[16] C. Sperberg-McQueen and L. Burnard. Guidelines for Elec-
tronic Text Encoding and Interchange (TEI P3). ACH, ACL,
ALLC, 1994.

[17] H. Thompson. MULTEXT Workpackage 2 Milestone B De-
liverable Overview. LRE 62-050 Develiverable 2, 1995.

[18] Y. Wilks, L. Guthrie, and B. Slator. Electric Words. MIT
Press, Cambridge, MA, 1996.

