
Gathering Requirements from Remote Users

T. Leonard, V. Berzins, LUQI, and M. J. Holden

Luqi@cs.nps.navy.mil

Abstract
We describe a distributed requirements

engineering environment using computer aided software
engineering tools linked together through the Internet.
We created this distributed requirements engineering
environment using Microsoft's Personal Web Server
(PWS), MicrosoftS Open Database Connectivity (ODBC)
technology, Netscape Communicator, MicrosoftS
Internet Explorer, Microsoft's Access97 database, and a
set of PERL scripts that are executed by users of the
environment to perform database operations. We show
how we added basic security features to the Internet
accessible database.

1. Introduction

This paper shows how Front Loaded Accurate
Requirements Engineering (FLARE) Teams are a means
to realize accurate requirements early in project
development and a means to ensure that requirements are
satisfied in the implementation domain by automated
systems [l]. These Teams can use Internet technologies
to enhance the effectiveness of the set of CASE tools [21
that they use to manage requirements. Ideally, the set of
requirements should be managed throughout the
evolution of the system to provide the rationale for the
system's behavior [3].

We show how to extend formal and informal
specifications with audio and video file representations of
requirements [4,5]. This is valuable because video allows
developers to quickly gain a conceptual understanding of
the problem domain, breaks the mind-numbing
monotony often experienced when reading formal textual
specifications and graphical diagrams and effectively
provides an abstract representation of objects found
within specifications.

Additionally, we demonstrate how Internet
technologies can help managers improve their task
assignment methods by incorporating team members'
assessments of the difficulty of implementing software
components into the decision process. The products

produced by the FLARE Teams are used to make this
possible.

2. CASE environment enhancement using
internet technologies

The number of computer aided software engineering
tools and environments available to assist FLARE Teams
is extensive. Queen's University in Kingston, Ontario
publishes a partial CASE tool list that has nearly 400
tools listed [6]. Using a small subset of available CASE
tools commonly used at the Naval Postgraduate School,
we show how to enhance a CASE environment with
Internet technologies.

Researchers at the Naval Postgraduate School have
developed a CASE tool called Computer-aided
Prototyping System (CAPS) [7] . This tool provides a
capability to develop prototypes using the prototype
system description language (PSDL) [SI. Once
completed, CAPS promises to provide a robust
environment that will facilitate the management of
requirements throughout the life of a system.

By design, the prototypes produced using CAPS are
demonstrated to users. Users evaluate the prototypes,
and developers use the information obtained from the
user's evaluation to refine the requirements of the
software system [9]. CAPS would produce the best
results if a developer personally presented a prototype to
a user, but this would be expensive in terms of travel and
set up time, especially if multiple meetings between a
developer and user were needed. By using audio and
video conferencing techniques over the Internet, similar
to those described by Macedonia and Brutzman [lo], we
can remove this limitation. Additionally, the developer's
ability to interact with the user at any time, provided the
user has access to an Internet enabled computer with
video conferencing capabilities, would enhance the
engineering environment created by CAPS and tools
similar to it. This enhancement would be achieved by
allowing the developer to resolve ambiguous
requirements with users while they are still actively
involved in the process of developing a prototype or
model. It also would reduce the cost of travel by

462
U.S. Government Work Not Protected by U.S. Copyright

mailto:Luqi@cs.nps.navy.mil

eliminating the requirement of having the developers and
users co-located during the presentation of a new or
changed prototype. Applications exist on the market that
make this possible with a modest, under $1,000.00,
investment in additional equipment and software [I 1,12
I .

The use of Internet video conferencing to augment a
software-engineering environment is available today as
are other Internet technologies providing comparable
enhancements. One of these additional Internet
technologies is "intelligent browsing" [131. It is now
possible for a Software Engineer to use intelligent agents
to retrieve information from the Internet [14]. These
tools can aid Software Engineers in their efforts to
understand the problem domain and to find appropriate
solutions to requirements in the implementation domain.
Enhanced with intelligent agents and Internet video
conferencing, this Software Engineering environment
should improve significantly the production of quality
software in a timely manner.

3. Augmentation of formal and informal
specifications with video

Where appropriate, FLARE Teams will augment
requirement specifications with video representations of
the requirements. This can be helpful because certain
requirements can be better understood by developers if
they can observe users during the performance of the
activities that generate the requirements [4]. For
example, most software developers are not experts in
infantry fighting procedures and have no concept of the
actual tactics, techniques and procedures used by infantry
forces to accomplish their assigned mission. This lack of
understanding of the problem domain is further
complicated by preconceived ideas formulated by
software developers as they are exposed to the
entertainment industry's dramatization of infantry
soldiers and their fighting techniques. Problem domain
objects and concepts such as foxhdes, fields of fire,
accuracy, timeliness and cover have very specific
meanings to infantry soldiers. Typical Software
Engineers do not necessarily share these meanings.
Software Engineers can represent leach of them with
formal or informal methods. However, would a Software
Engineer located in Silicon Valley, when given a formal
or informal representation of the requirements elicited
from this problem domain, be able to design a system
that would satisfy the needs of the user without direct
knowledge of the user's context? The requirements
produced from this type of problem domain, a domain
that is foreign to most Software Engineers, is an ideal
situation to use video to augment requirements. In this

section, we show how the addition of a type "video",
similar to that of a textual comment, to formal and
informal specification aind design languages will increase
developers understanding of the problem domain.

3.1. The new memory paradigm

In the use of video to augment the representation of
requirements, we would like to have easy and quick
access to it. The cost of existing magnetic storage has
recently dropped to affcirdable levels, making storage of
video on fast hard disk drives feasible. Figure 1 depicts
the dramatic reduction in memory prices that have taken
place during the ten-year period between 1987 and 1997.
It is now economically feasible to augment requirement
specifications with video that is retrievable by anyone in
the software development group on demand. This
capability is the crux of bringing the application domain
to the design and implementation domains. Another
storage technology, digital versatile disk (DVD),
introduced to the masses in 1997, provides additional
space to store audio and video files [15].

figure 1. Dropping memory prices. In 1987, the cost of
secondary magnetic storage, hard drives, was about
$20.00 a megabyte (mib) [16: p. 891, and primary
memory, random access memory (ram), was about
$400.00 a mb [17: p. 3091. In January of 1992 this
dropped to about $10.00 a mb for hard drive storage and
$42.00 a mb for ram [IBi: p. 3561. In January of 1997,
both types of memory were at an all-time low. hard
drive storage sold for about $.I5 a mb [19: p. 1521, and
ram for about $10.00 a mb [20: p. 1531. The prices
shown for the year 2002 are based on a 30% yearly
reduction in memory prices [21]

The same technology that allows analyzing "a golf
swing from up to nine different camera angles" [22] can
be used to provide on-deimand video to increase software
and systems developers' understanding of the problem

463

domain. Adding a type "Video" to specification and
design languages provides an easy way to incorporate the
use of video into the software engineering process.

3.2. Using video with formal methods

We use the Spec Language [l] to illustrate how
FLARE Teams would incorporate video into the
development process. This technique requires the
representation of the Spec model in HTML format [23]
and the use of an Internet browser to access the model.
When appropriate, we use comments in Spec models
stating that a video clip is available and we hyperlink
these comments to video clips. This is attractive because
it allows the designer to quickly augment a model with
video using comments. Figure 2 shows how to
implement this method. When an engineer reads the
specification using an Internet browser, the engineer can
click on the comment to view a video clip of the object
being defined.

DEFINITION bunker -- Concept for describing shelters. - - Click
here to view video clip

security and cover.
INHERIT fortification - - The module "fortification" defines types

Figure 2. The bold text on the first line is linked to a
video file describing a bunker.

4. Programmer input into the work tasking
process

Once designers have identified modules that require
implementation, management must produce a
programmer work schedule [24]. The products produced
by FLARE Teams enable programmers to gain a better
understanding of problem domain concepts and objects.
This increased understanding makes programmers' input
into the module assignment process used by managers
more valuable.

Each programmer knows their programming abilities
and can estimate the time to complete a programming
task. We show how managers can assign tasks to
programmers based on these estimates. We use Internet
technologies to produce an interactive module evaluation
environment where each uncommitted programmer rates
unassigned modules by perceived level of difficulty. This
process allows managers to produce an optimal
programmer work schedule, minimizing the cost of
implementing all unassigned modules, measured in terms
of time, where a shorter implementation time is better.

We have developed an Internet form that executes a
PEFU script located on a server to access a Microsoft
Access database using Microsoft's ODBC technology to
capture programmers' assessments of tasks (Figure 3).
[25,26,27,28,29,30]

The method used to gather input requires that each
programmer estimate the number of days it would take to
implement the module listed on the form. Each
programmer is required to repeat the process until they
meet one of the following three criteria. They have
identified a module that they can implement in minimal
time, and the system schedules the programmer to
implement it; the programmer has evaluated all modules
that have not been scheduled; or management stops the
process because they have determined a suitable working
schedule.

Once the Send button is pressed, the input provided is
automatically transferred to a central location where it is
processed. The scheduling process can be automated
using techniques similar to those of the Evolution
Control System (ECS) [3 11, incorporating programmer
input into the system. The modified ECS can enforce
various policies ranging from scheduling a task
immediately if a programmer estimates they can
complete it in .5 days, to waiting until each programmer
has evaluated all modules in an attempt to develop an
optimal schedule.

/Add Comments Here ... 2l

Figure 3. Form used to capture programmers'
assessment of the time needed to implement a module.
V. Benins developed the spec language definition [I : p.
4241.

This system can be used to assess schedule risk.
Modules with a wide variance in programmer estimates
are more likely to cause problems than the modules

464

where most of the programmers agree on the time it
would take to implement. This system gives managers
the ability to base decisions on this information. For
example, programmers who continuously have a large
variance between estimates and actual implementation
time may require additional training on understanding
specifications.

Incorporating programmers' assessments into the
process also allows management to assign tasks to
programmers in a way that takes advantage of each
programmer's personal expertise and preferences. Each
programmer has one or more classes of problems they
can easily solve due to their accumulated experiences and
habits. Incorporating their input into the module
scheduling process would most likely increase their
productivity because they would be assigned modules
based on their completion time estimates. Additionally,
this system can be utilized to focus recruiting efforts.
Consider a situation in which the entire set of
programmers rated tasks C, D, and E as taking the
maximum allowable time to impleiment. Management
might focus more of their recruiting efforts on finding
individuals that rate these tasks as taking less time to
implement, thereby increasing the efficiency of the entire
organization and minimizing costs.

5. FLARE: a requirements engineering en-
vironment

We stated that traditional software engineering
environments could be easily enhamced using Internet
technologies. We offer evidence for this by introducing a
CASE tool called FLARE that uses the technologies
presented in Section I1 to create a distributed
requirements engineering environment. FLARE is
designed to enhance the software development process by
offering a means to inexpensively manage requirements
and facilitate communication of requirement related
issues between all interested parties in the software
development process. The FLARE Team discussed in
Section I would use this tool.

5.1. FLARE's components

FLARE is composed of the following programs that
use the Internet to exchange information. This coupling
produces a synergistic effect by combining the distinct
features of each program to produce a requirements
engineering environment.

5.1.1. Microsoft's Access 97. An inexpensive database
designed to function on Windows 95 or Windows NT,

this database makes it relatively easy to manipulate the
requirements engineering information entered into the
FLARE environment. It also produces reports in HTML
format, enabling users of FLARE to easily publish
information that has been manipulated by database
methods to the Internet. [32]

5.1.2. An access database file. This database file
contains the tables, queries, forms, reports, and macros
that constitute the management aspects of FLARE. [33]

5.1.3. A set of PERL scripts running on a PWS. Users
of the environment acce.ss the environment's database by
executing PERL scripts; located on an Internet server.
The PERL scripts ar'e called using FLARE's user
interface (Figure 4) th;at is accessed from an Internet
browser.

5.1.4. A set of JavaSkript enhanced HTML Files.
When accessed with an Internet browser, this set of files
creates the user interface for the FLARE environment.
The essential elements of these files are embedded
JavaScript [34] and Forms [35]. JavaScript enables the
pull-down menus found in the user interface to function.
The ability to input and transmit information is made
possible by using Forms embedded in FLARE's HTML
files.

5.1.5. A JavaScript enabled Internet browser. The
browser is the shell that the user interface of FLARE runs
in. It must be JavaScript enabled to allow the pull-down
menus to operate. We used Microsoft's Internet Explorer
[32] and Netscape's Communicator [36] to test the user
interface.

5.1.6. Microsoft's PWS. We chose this web server to
use in the environment because Microsoft freely
distributes it.Microsoft's PWS.

5.2. FLARE's user interface

Figure 4 shows the initial user interface of FLARE.
Each of the four pull-down menus represents a phase in
the software life cycle. Each menu shares the "Mission
Needs Statement" option. We chose to include this in
each phase to emphasize the needs of the customer. The
arrow between the "REQUIREMENTS" and "DESIGN"
menus symbolizes communication between the two
phases in the form of rlequirements specifications. The
arrow between the "DESIGN" and "IMPLE-
MENTATION" phases symbolizes communication
between the phases in the form of a formal or informal
design specification. The arrow between the

465

"MAINTENANCE" and "REQUIREMENTS" phases
symbolizes the transition caused by new or changing
requirements. The "TESTING" icon in the center of the
interface with arrows radiating in the four directions
symbolizes the testing that must be built into each phase
of the development cycle.

/REQUIREMENTS 9

llMPLEMENTATON il

Figure 4. FLARE user interface.

file of a foxhole was available at link 1. We choose to
label these fields 'links" because the FLARE Team could
use any file type to augment the requirements.

View Requirements: This option allows engineers to
view all approved requirements. Figure 6 shows the
HTML page that the database generates automatically
when given the "Save as HTML" command found on the
menu bar of the Access database.

Ask a Req. Question: This option allows a way to
i

~

Figure 6. Database generated html Page.

system. It is similar in appearance to the form in Figure
5. Upon activation of the send button, the question is
automatically imported into the database where a FLARE
Team member using the form shown in Figure 7 can
answer it.

We describe the functionality of each menu option in
the following subsections.

5.2.1. Requirements pull-down menu. Enter
Requirement: This option allows a Software Engineer to

Figure 7. Question response form.

Figure 5. Requirements entry form

input a new requirement into the FLARE environment.
Figure 5 shows the format of the form. The four link
fields at the bottom of the form are provided to allow
FLARE Team members to include logical links to video
or other file representations of requirements. If an
engineer entered a requirement that contained the
problem domain object "foxhole", and the engineer had a
30 second video clip of a foxhole, then the engineer could
add a comment in the requirement indicating that a video

View Requirements Questions: This option allows
users to view questions that have been asked along with
the answers provided by engineers using the form shown
in Figure 7.

We focus on intelligent assistance for organizing
questions and answers rather than on intelligent agents
for answering questions directly because the domain
addressed by the questions has not been accurately
formalized - otherwise there would be no need for a
requirements determination process. The desired
assistance is in locating similar previous questions and
the associated answers derived from human expert

466

sources. Our initial approach for providing this
assistance is to use a concept similarity lattice to define a
distance between questions. This enalbles computing the
nearest neighbors of a given question among the
questions previously asked. We are exploring the use of
a domain-specific core vocabulary to organize the
questions more accurately than would be possible using a
generic lexicon. The core vocabulary corresponds to the
jargon of the problem domain. Locating repeated words
in documents from the application area and filtering out
noise words such as articles and prepositions can identify
the core vocabulary. This vocabulary must be formalized
into a concept hierarchy by knowledge engineers.

Mission Needs Statement: This option allows
engineers to review the mission needs statement that
prompted the development of the software system.

5.2.2. Design pull-down Menu. Enter Specification:
This option allows a Software Engineer to input a
specification that satisfies a requirement. Figure 8 shows
the format of the form used. Note the fields labeled
“Requirement ID.” These fields facilitate requirements
management. When a specification is entered into the
system, the engineer should also enter the requirements
that are associated with the specificatilon.

The link fields on the form allow engineers to enter
informal design specifications into the FLARE
environment. An engineer would enter a comment in the
text area of the Specification Entry Form indicating that

Enter Arroelatrd Requarmentr snd Ad&+” Lu*r

Lmkl]“E--
~ m k z fNoNEGK”--

Figure 8. Specification entry form.

a hyperlink to a graphical model or specification exists.
An informal specification would likely be in the form of a
graphical model such as those found in the Unified
Modeling Language [37].

Remaining Menu Options: The rnenu options View
Specifications, Ask a Specification Question, View
Specification Questions, and Mission Needs Statement

are very similar to those found in subsection B-1 above
and do not require further explanation.

5.2.3. Implement pull-down menu. Enter Estimates:
The functionality of this option is thoroughly described in
Section IV.
Remaining Menu Options: The menu options View
Specifications, View Requirements, Ask an
Implementation Question, View Implementation
Questions, and Mission Needs Statement are very similar
to those found in Subsection B-1 above and do not
require further explanation.

5.2.4. Maintenance Pulll-Down Menu. Enter a Bug
Report: This option allows a Software Engineer to input
an error found in the implementation into the flare
system.

Enter Change Request: This option allows a Software
Engineer to input a new or changed requirement into the
FLARE environment.

Remaining Menu 0pl.ions: The menu options View
Bug Reports, View Change Requests, Ask a Maintenance
Question, View Maintenance Questions, and Mission
Needs Statement are very similar to those found in
subsection B-1 above and do not require further
explanation.

5.3. FLARE database

The database portion, of FLARE’S environment is
implemented with Microsoft’s Access database. The
conceptual schema for this database is shown in the

Figure 9. Entity relationship model.

entity relationship model [38] in Figure 9. The data

467

requirements of the FLARE system are the storage of
user needs and limitations, the storage of the required
software system capabilities needed by users to solve their
problems and the storage of implementation domain
information. The required implementation domain
information consists of storage of engineer, programmer
and design information. FLARE draws a distinction
between programmers and engineers because they
perform completely different functions and have different
responsibilities. This structure supports FLARE Teams
by providing a means to manage the information
gathered during requirements elicitation. Users have
needs, and FLARE Teams are responsible for
determining the requirements of software systems that
will satisfy these needs. Programmers and other
engineers will use the products produced by FLARE
Teams stored in the FLARE database to achieve their
respective tasks.

5.3.1. Scheduling Algorithm. We developed and
implemented a scheduling algo-rithm that automatically
assigns tasks to programmers. The algorithm uses
programmer's estimates (see Section IV) of the difficulty
of translating a design specification module into a
programming language implementation. The algorithm
uses a greedy strategy [39:p.329]. It picks the lowest
estimated time to implement a module and assigns that
module to the programmer who made the estimate. The
algorithm does not produce optimal results in all cases,
yet provides a close approximation; this is acceptable
given that the heuristic in which the algorithm
determines a schedule is based on imprecise estimates.

implement. The application's insecurity made it less than
optimal for any purpose other than using it as a teaching
or experimentation tool. This section details the steps
taken to implement a basic level of security features in
the system making it usable by a broader class of people.

We introduced basic security features into the
distributed database environment, addressing the four
major areas of network security: "Secrecy or
Confidentially; Accuracy or integrity; Authenticity; and
Availability." [40: p. 2021

6.1. Securing the database

This section shows how we added basic security
features to the distributed database environment. The
features that we added will keep most unauthorized
people from adding, deleting and modifying database
records. The features that accomplish this are:
identification and authentication; execute, read and write
restrictions placed on the server; restricted ftp services,
and physical security of the server that has the distributed
database located on it. [41]

6.1.1. Identification and authentication. We used a
simple database table to implement identification and
authentication. In order for users to add, delete, or
modify records they must now enter a proper "userID and
password" pair. Users must possess a valid userID and
password pair to access the database. The userIDs and
passwords entered by users should be sent over the
Internet encrypted. (Figure 10)

6. Security

The initial distributed Internet database application
was totally insecure. It was composed of freely available
programs that were downloaded from the Internet. We
were pleased with the availability of programs that
allowed us to quickly create the distributed database
environment, but recognize that in the context of
security, we are completely at the mercy of the people
who developed the components. The products could
contain Trojan Horses or undiscovered viruses.

Three of the five components we used have binary
files that potentially could contain viruses or Trojan
Horses. The PEFU library files are too large for us to
ensure that they do not contain back doors. The
Microsoft products were free of cost, but the licenses
specifically state that it is a violation of the license
agreements to reverse engineer the code. This makes it
impossible for us to make any claims about the security
of the system regardless of the security methods that we

Enter Requirement ID, Your UserlD and Your Password

Delete A Requirement

d--

=Main Page.

ID Date morted reauirements

133 1997-wo6

132 1 9 9 7 ~ 0 6

28 38 The system must prevent unadhonzed users from addng, delebng, or

25 56 The system must allow users to enter requirements from any locahon that has
modifying requirements

an Internet connection

Figure I O . Requirement deletion form with
identification and authentication features.

6.1.2. Execute, read and write restrictions. The PWS
allows administrators to configure the permissions on
directories. We use this to restrict what files users of our

468

Internet database can read, write, and execute. We use
the same procedures Microsoft recommends for users of
Active Server Pages.

We placed all HTML files used to provide a portion of
the database's user interface in a directory that is readable
but does not allow users to write files or execute
programs. The directory is readable because users of the
system need to read the HTML files in their Internet
browsers to display our pages.

We placed all the P E E scripts in a directory that is
executable but does not allow users to read or write files.
Since the directory is executable, users can execute the
PERL scripts that perform the database queries. Read
permissions are denied because users do not need to view
the scripts to perform database operations. If users were
to read the PERL scripts, they could possibly find ways to
gain unauthorized access to the #data stored in the
database or system files.

6.1.3. Restricted FTP services. Thle PWS has an Fll'
server. We configured it so that users are not allowed to
access the directories containing thle database, HTML
and PERL script files.

6.1.4. Physical security of the database Server. The
computer which stores the environmlent's files offers no
built in security because it is running on Microsoft's
Windows 95 operating system. We have placed the
computer behind locked doors with liimited access. This
provides a reasonable level of assurance that
unauthorized people will not be able to modify the files
stored on the computer. It does not prevent personnel
who routinely work in the area from making
unauthorized modifications to the environment's files.

6.2. Additional threats and vulnerabilities

6.2.1. Denial of service attacks. The system does not
have any mechanisms to deter or prevent a denial of
service attack. Our environment is particularly
susceptible to this type of attack. It is not behind a
firewall, and it uses the PWS, which has a 64
simultaneous user limit.

6.2.2. Normal hardware failures. The Internet database
is stored on magnetic hard drives. A hard drive failure
would cause a catastrophic data loss. As usual, backups
will mitigate this loss.

6.2.3. Accidental data loss. The: database allows
authorized users to delete a record accidentally. In
addition, the computer that runs the Ihternet database is
used for other purposes than just as a server for our

Internet database.
accidentally delete the database file.

Other users of the computer could

6.3. Countermeasures

We find the most important countermeasures to the
threats listed above are an aggressive backup policy and
user training. The data stored in the database is the most
important element of the distributed environment.
Continuous backups using the replication features found
in Access are warranted. This countermeasure provides a
degree of protection for the other vulnerabilities we
listed. User training is an important countermeasure
because the system currently allows any user with a valid
userID and password pair to delete or modify database
records. Users of the system must be trained to limit
deletions and modifications, and to take extra care when
doing so.

Countermeasures to denial of service attacks are
expensive. Firewalls are a way to counter this type of
attack [40,41]. Users of the environment should
determine when such countermeasures would be cost
effective to implement.

7. Conclusions and future work

Matching related statements has other practical and
important applications in software engineering, including
comparing incoming problem reports to previously
received ones to determine whether the reported problem
is new or has been reported previously.

As a decision support aid for managers, software
engineers and other stakeholders in software
development projects, this tool can significantly reduce
time spent in preparing and delivering answers to routine
questions as well as improve the correlation between
stakeholder identified requirements and final production
software. The tool and the approach are not limited to
the domain of software engineering - any endeavor with
frequent interaction between producer and consumer can
benefit from its use.

We developed the initial version of a CASE tool
FLARE quickly (2 months). FLARE is a requirements
engineering environment composed of commercial off
the shelf (COTS) software tools tied together by the
Internet. Our experience indicates that tools of this kind
can be useful for collecting requirements from
stakeholders at a variety of physical locations.

FLARE'S requirements tracing features could be
improved. Even though each requirement receives a
unique identification number, FLARE does not
automatically track this requirement throughout the

469

development process, rather it relies on engineers
"tagging" each new product with the appropriate
requirement identification number. Automation of this
tagging process would eliminate possibilities of entering
incorrect tags, and could potentially allow engineers t o
look at any object produced in the development process
and extract the associated requirement information.

Microsoft's Access database provides the ability to
automatically generate W M L files based on the
information submitted by the software engineering team.
These files arc crude. A more sophisticated HTML file
generator would be useful.

T h e greedy strategy used by the module assignment
algorithm does not guarantee an optimal solution
although it is good enough for initial use. Better
algorithms should be explored.

More refined models of who is authorized to modify or
delete which parts of the database would help to further
improve security with respect to data integrity and
protection from data losses.

A demonstration of the FLARE tool can be down-
loaded from or run directly on the World-Wide Web at
URL: http://web.nps.navy.mil/-aeleonar/Welcome.html

[l] Valetto, G. and Kaiser, G., "Enveloping Sophisticated Tools
into Computer-Aided Software Engineering Environments," in
Proceedings 7th International Workshop on Computer-Aded
Software Engineering, IEEE Computer Soc. Press, Los
Alamitos, Calif., 1995, pp. 40-48.

[2] Berzins, V. and Luqi, Software Engineering with
Abstractions, Addison-Wesley Publishing Company, Reading,
MA, 1991.

[3] Ramesh, B., Powers, T., Stubbs, C. and Edwards, M.
"Implementing Requirements traceability: A Case Study," in
Proceedings Second IEEE International Symposium on
Requirements Engineering, IEEE Computer Soc. Press, Los
Alamitos, Calif., 1995, pp. 89-95.

[4] Brun-Cottan F. and Wall, P., "Using Video to Re-Present
the User," Communications of the ACM, Vol. 38, No. 5, May
1995, pp. 61-71.

[5] Kaiya, H., Saeki, M. and Ochimizu, K., "Design of a Hyper
Media Tool to support Requirements Elicitation Meetings," in
Proceedings 7th International Workshop on Computer-Aded
Software Engineering, IEEE Computer Soc. Press, Los
Alamitos, Calif., 1995, pp. 250-259.

[6] CASE tool index, Queen's University in Kingston, Ontario,
available from
http://www.qucis.queensu.ca/Software-Engineering/tools.html
Internet; accessed 22 March 1997.

[7] Luqi, Ketabchi, M., "A Computer-Aided Prototyping
System," IEEE Computer Technology Series, Computer-Aided
Software Engineering (CASE), Editor: E. Chikofsky, 1988,
pp. 89-95.

[8] Luqi, Berzins, V. and Yeh, R., "A Prototyping Language for
Real-Time Software," IEEE Transactions on Software
Engineering, Vol. 14, No. 10, October 1988, pp. 1409-1423.

[9] Luqi, "Software Evolution Through Rapid Prototyping,"
IEEE Computer, May 1989, pp. 13-25.

[lo] Macedonia M. and Brutzman, D., "MBone Provides Audio
and Video Across the Internet," available from:
ftp://taurus.cs.nps.navy.miI/pub/mbmg/mbone.html Internet;
accessed 22 March 1997.

[l 1 1 Progressive Networks, "Real Audio and Video," available
from: http://www.real.com/rvnba.html Internet; accessed 22
March 1997.

[12] Intel, "Internet Video Phone with Proshare Technology,"
available from:
http://connectedpc.com/iaweb/cpc/iivphone/index. htm
Internet; accessed 22 March 1997.

[13] OLeary, D., "The Internet, Intranets, and the AI
Renaissance," Computer, January 1997, pp. 71-78.

[141 Autonomy Corporation, "Autonomy Agents," available
from: http://www.agentware.com Internet: accessed 23 March
1997.

[15] Poor, A., "DVD and CD-ROM: 21st Century Storage," PC
Magazine Online, available from:
http://www.pcmag.com/features/cdrom/-open.htm Intemet:
accessed 23 March 1997.

[161 Computer Mail Order, advertisement, Byte, McGraw-Hill,
Peterborough, NH January 1987.

[I71 Turner Hall Publishing, advertisement, Byte, McGraw-
Hill, Peterborough, NH January 1987.

[18] Nevada Computer, advertisement, Byte, McGraw-Hill,
Peterborough, NH January 1992.

[191 Computerlane, advertisement, Byte, McGraw-Hill, Peter-
borough, NH January 1997.

[20] First Source International, advertisement, Byte, McGraw-
Hill, Peterborough, NH January 1997.

[21] Crothers, B., "Memory Prices Creep Back Up," CNET,
Inc., available from:
http://www.news.com/News/Item/0,4,8426,00.html Internet:
accessed 12 May 1997, quoting Handy from Dataquest,
available from: http://www.dataquest.com Internet: accessed 12
May 1997.

470

http://web.nps.navy.mil/-aeleonar/Welcome.html
http://www.qucis.queensu.ca/Software-Engineering/tools.html
ftp://taurus.cs.nps.navy.miI/pub/mbmg/mbone.html
http://www.real.com/rvnba.html
http://connectedpc.com/iaweb/cpc/iivphone/index
http://www.agentware.com
http://www.pcmag.com/features/cdrom/-open.htm
http://www.news.com/News/Item/0,4,8426,00.html
http://www.dataquest.com

[22] Toshiba Corp., "A revolution is coming and it will change
everything you think about Home Entertainment," available
from http://www.toshiba.com/tacp/SD/javahome.html Internet:
accessed 23 March 1997.

[23J NCSA, "A Beginner's Guide to HTML," available from:
h ttp://www.ncsa.uiuc.edu/General/Internet/WWW/~MLPrime
rAll.htm1 Internet: accessed 23 March 1997.

[24] Luqi, "A Graph Model for Software Evolution," in IEEE
Computer Society Press tutorial, Software Merging and Slicing,
collected by V. Berzins, May 1995, pp. 202-212.

[25]University of Kansas, "An Instantaneous Introduction to
CGI Scripts and HTML Forms," available from:
ht tp: / /~~~.~~.ukan~.edu/ info/forms/forr~s- intro.html hternet:
accessed 23 March 1997.

[26J Per1 Institute, Online Manual, available from
http://www .per1 .org/CPAN/doc/manual/litml/pod/index. html
Internet: accessed 26 May 1997.

[27] Activeware, Release Download Page, available from
http://www.activeware.com/Download/download.htm Internet:
accessed 27 May 1997.

[28] Microsoft Corporation, Access developer web site,
available from
http://www.microsoft.com/accessdev/doc:s/bapp97/chapters/ba2
1-6.htm Internet: accessed 27 May 1997.

[29] Microsoft Corp., Open Database Connectivity, available
from
http://www.microsoft.com/ODBC/downl'oad/DMDownload.htm
Internet: accessed 26 May 1997.

[30] Roth, D., Module Description Page, available from
http://www.roth.net/odbc/odbc.html#MdDesc Internet: access
28 May 1997.

[31 J Badr, S. and Luqi, "Automation Support for Concurrent
Software Engineering," Proceeding of the 6th International
Conference on Software Engineering and Knowledge
Engineering, Jurmala, Latvia, June 1994, pp. 46-53.

[32] Microsoft Corporation, available from: http://www.micro-
soft.com Internet: accessed lMarch 1997.

[33] Leonard, A., "Flare Download !Site," available from:
http://www.cs.nps.navy.miI/misc/flare/Readme.html Internet:
accessed 14 April 1997.

[34] Netscape Corporation, "JavaScript Authoring Guide,"
available from:
h ttp://home.netscape.com/eng/mozilla/Gold/handbook/javascrip
t/index.html Internet: accessed 16 April 1997.

[35] Web Communications, "WWW Fill--Out Forms," available
form: http://www.webcom.com/-webcom/html/tutor/forms
Internet: accessed 16 April 1997.

[36] Netscape Corporation, available from:
http://home.netscape.com Internet: accessed 16 April 1997

[37] Rational Rose Inc., Unified Modeling Language version
1 .O, available from
http://www.rational.com/ot/uml/l .O/index.html Internet:
accessed 3 April 1997.

[38] Elmasri, R. and Navathe, S. B., Fundamentals of Database
Systems, The BenjamiKummings Publishing Company,
Redwood City, CA 1994.

[39] Cormen, T. H., Leiserson, C. E. and Rivest, R. L.,
Introduction to Algorithms, MIT Press, Cambridge, 1990.

[40] Russel, D. and Gangemi, G. T. Sr., Computer Security
Basics, OReilly & Associates, Inc., Sebastopol, CA 1991.

[41] Garfinkel, S. and Spalfford, G., Proactical Unix & Internet
Security, O'Reilly & Associates, Inc., Sebastopol, CA 1996.

471

http://www.toshiba.com/tacp/SD/javahome.html
http://www
http://www.activeware.com/Download/download.htm
http://www.microsoft.com/accessdev/doc:s/bapp97/chapters/ba2
http://www.microsoft.com/ODBC/downl'oad/DMDownload.htm
http://www.roth.net/odbc/odbc.html#MdDesc
http://www.micro
http://soft.com
http://www.cs.nps.navy.miI/misc/flare/Readme.html
http://www.webcom.com/-webcom/html/tutor/forms
http://home.netscape.com
http://www.rational.com/ot/uml/l

