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Abstract 
Foracomputer-generated force (CGF) application to 

be useful in training environments, it must exhibit 
complex, realistic behavior within the battlespace. To 
achieve this level ofjdelity, it must operate at multiple 
skill levels and exhibit competency at assigned 
missions. CGF applications must also have adaptable 
decisions mechanisms and behaviors even when 
operating under uncertainty and the application must 
learn from past experience. Furthermore, simply correct 
performance of individual entity behaviors is not 
suflcient. Issues related to complex inter-entity 
behavioral interactions, such as the need to maintain 
formation and share information, must also be 
considered. 
To achieve these necessary capabilities, an extensible 
software architecture, an expandable knowledge base, 
and an adaptable decision making mechanism are 
required. Our labs have addressedhese issues in the 
context of the Automated Wingman (AW) project. The 
AW is based on fuzzy logic, the Common Object 
DataBase (CODB) software architecture, and a 
hierarchicaknowledge structure. Decision making is 
founded on multi-layered, fuzzy logic controlled 
situational analyses combined with adversarial game tree 
techniques. 

1. Introduction 
Computer generated forces (CGFs) [5] are software 

agents that are computer representations of military 
forces that model human behavior and automatically 
execute a finite set of actions in response to actions and 
activities in their environment. CGFs of various 
complexity have been created for many different 
platforms [9] and CGFs can serve to augment friendly 
forces or populate enemy formations. In either role, 
they improve the fidelity of a distributed virtual 
environment (DVE) by increasing the number of 
entities participating in a simulation. 

The need for real-time performance combined with 
realism for training and analysis drives a number of 
requirements for CGFs. CGF requirements include the 
need for modifiability, attainment of high fidelity 
human behavior representations, development of 
adaptable decision mechanisms and behaviors, and 
automated incorporation of past reasoning into the 
decision process. These high level requirements drive 
additional requirements such as multiple skill levels for 
classes of entities, graceful degradation of reasoning 
capability under system stress, an easily expandable 
modular knowledge structure, and adaptive mission 
planning. For example, the capability for multiple 
skill levels would provide pilot behaviors for aircraft 
entities at different skill levels, such as rookie, expert, 
and ace levels of pilots within the same battlespace. 
Additionally, the entity should have a complete set of 
behaviors for the type of missions it must perform, but 
not all behaviors for these missions need to be crafted to 
the same level of fidelity and quality. The CGF should 
be able to respond acceptably to unforeseen 
circumstances and deal with uncertain information. In 
addition to the individual entity requirements, issues 
related to complex inter-entity behavioral interactions 
must also be considered. The CGF should exhibit 
complex, realistic behavior patterns within the 
battlespace and be able to adaptively change its mission 
parameters during the course of a mission in response to 
events. Finally, these capabilities should be embedded 
in an extensible, explicable software architecture that 
has well defined locations for reasoning and knowledge 
storage. Current CGF applications lack the ability to 
achieve all of these requirements within a single, 
integrated system. 

In this paper, we describe our progress toward 
achieving a CGF entity that satisfies the requirements 
presented above. Our CGF architecture is applicable to 
the development of any computer generatedforce to be 
operated in complex distributed virtual environments. 
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Our CGF application is presented by first introducing, 
in Section Two, the background topics that are relevant 
to the development of CGFs. Section Three identifies 
our CGF architecture and the design of an actual CGF, 
the Automated Wingman (AW). Section Four describes 
the decision making component of the Automated 
Wingman within our CGF architecture and Section Five 
concludes the paper with current research results and 
suggestions for future improvements. 

2. Background 
In this section we discuss Distributed Interactive 

Simulation (DIS), the Common Object DataBase 
(CODB) architecture, and current aircraft CGF projects 
in relation to the AW. Presentatioin of this material is 
motivated by the need to understand the CGF 
operational environment, the rationale for the CGF 
architecture we propose, and the decision-making 
methodology we employ. 

2.1 Distributed Interactive Simulation 

Our CGF, the Automated Wingman, operates in a 
DVE [5] that employs the distributed interactive 
simulation (DIS) suite of protocols, IEEE 1278-1993 
[3]. These protocols enable communication between 
individual simulator computer systems at distributed 
locations. DIS achieves an interactive representation of 
a virtual environment by the interconnection of the 
distributed hosts. Each host determines what is 
actually perceived of its entities and only communicates 
changes in the state of entities for which it is 
responsible. The DIS approach to DVEs requires 
participating sites to meet several requirements. These 
requirements consist of the following: (1) autonomous 
operation, (2) object and event based simulation, (3) 
state change information broadcast, and (4) dead 
reckoning capability. In the DIS protocols, the DVE 
contains actors and entities that interact through the 
asynchronous broadcast of event and state information. 
Stytz presents additional information concerning DIS 
and DVEs [5 ] .  

2.2 Common Object DataElase (CODB) 

The Automated Wingman software architecture is 
founded on the Common Object DataBase (CODB) 
architecture [6]. The Common Object DataBase is a 
data-handling architecture that uses structured classes, 
datacontainers, and a central runtime data repository to 
manage and transmit data between application objects. 
This architecture reduces the coupling in a simulation 
by reducing the amount of information that a system 
component object class must maintain about other 
system component classes. As a result, an application 

component object must only access the container in the 
CODB where the information it needs resides. 
2 3  Current CGF background and projects 

The major structured components of an aircraft CGF 
include the following: vehicle dynamics, artificial 
intelligence (AI) reasoning, behavior modeling, and 
software architecture. CGF vehicle dynamics are 
important because the CGF should move through the 
virtual environment accurately whether it is human or 
computer-controlled. The vehicle dynamics for CGFs 
should not allow a human to identify it as a CGF by 
virtue of either exceptionally good or poor dynamic 
behavior. 

The artificial intelligence reasoning component 
insures that the CGF pursues its goals, responds in a 
proper, human-like manner based upon its knowledge 
base, keeps the performance of the CGF within human 
and sensor limits, develops plans based upon its 
knowledge base, and manages other tasks. Fielded 
systems, like TAC-AIR SOAR [SI and ModSAF [l , 21 
address these problems at different levels of fidelity. 
TAC-AIR SOAR, which builds upon the Soar 
architecture [4] for general intelligence and reasoning, is 
the most successful of the current aircraft CGFs. 
However, TAC-AIR SOAR does not accommodate 
uncertainty in its decision making process. 

The central task in knowledge base construction is 
human behavior modeling. Human behavior modeling 
is the task of making the behavior and reactions of a 
CGF seem realistic by developing models that yield a 
reasonable analog of the output of the human decision- 
making process. Human behavior modeling requires the 
acquisition of domain-specific knowledge about human 
mental models and information brought to the decision- 
making process, as well as the key factors in the 
decision process. The human behavior modeling 
subcomponent of CGFs might normally be considered 
as part of the artificial intelligence component. 
However, separating it from the AI reasoning 
component serves to highlight its importance and the 
need to make behavior modeling design decisions 
independently of behavior reasoning mechanism design 
decisions. 

A flexible CGF software architecture ensures that 
current CGF development efforts are extensible to future 
CGF requirements. The ability to modify the 
implemented CGF to include additional behavioral 
requirements directly dependupon software architecture 
flexibility . 
3. CGF architecture 

Our motivation for the development of a general 
CGF architecture for the AW was to provide a basis for 
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the design of broad classes of CGFs. While each class 
of CGF has its own unique characteristics and 
performance requirements, there are many factors 
common to all classes and these can be successfully 
abstracted and reused across all classes of CGFs. Our 
goal is to provide a general architecture for CGFs, 
which naturally accounts for “variety” in a given type of 
CGF. Our architecture is based on highly modular 
components wherein interdependenciesare well-defined 
and minimized and that allows us to pursue an 
evolutionary and exploratory approach to knowledge 
engineering. 

3.1 CGF architectural requirements 

The architecture we developed is based on several 
principles [7]. The first is that future architectures 
should focus on reducing programmer costs, even at the 
possible expense of marginal runtime processing 
inefficiencies. The second principle is that the 
development cycle for a CGF, as in most research and 
development projects, must include a series of revisions 
to the requirements. These changes range from 
changing data formats to introduction of new behaviors 
into the system. A third principle is that the push to 
attain improved performanceand the strain of meeting 
delivery deadlines increases the entropy of any design, 
until the original design concept becomes blurred. The 
most obvious results of entropy are the use of global 
variables, global functions, and the disappearance of 
private data items. A fourth principle is that the 
components of the airframe model (aerodynamics model, 
avionics systems, and weapons packages) should be 
rapidly modifiable. Therefore, these components should 
be realized as separate objects that have a clean, robust 
interface to the remainder of the system. The final 
principle is that expanding system requirements will 
cause the knowledge base and reasoning system to be 
modified and adapted to new requirements throughout 
the life of the project and in the subsequently fielded 
system. As a result, the knowledge and reasoning 
components should be structured so that the knowledge 
base and reasoning system are clearly separated from the 
remainder of the system. 
3.2 CGF component architecture 

The essence of the architecture problem domain is 
the following: given that a need exists to build a CGF, 
what design architecture and methodology can be applied 
to take the CGF from concept to implementation, 
regardlessof the type of CGF? Figure 2 presents the 
baseline architecture and key CGF components that we 
propose to answer this question. A CGF is essentially 
comprised of two types of components: a Physical 

Dynamics Component (PDC) and an Active Decisions 
Component (ADC). The PDC is made up of the 
components necessary to model the CGF’s physical 
makeup, such as entity propagation models, sensor 
models, weapons models, and defensive elements 
models. The ADC is composed of the components that 
use the information from the PDC and the DVE to 
make decisions, and is broken down into three 
subcomponents: a Strategic Decision Engine (SDE), a 
Tactical Decision Engine (TDE), and a Critical Decision 
Engine (CDE). Each of the decision engines operates at 
a different level of the decision making process and are 
presented further in Section 3.4. 

Although not considered a component equal to the 
ADC or PDC, the CGF architecture has another 
important structure. This is the CGF Router, which is 
the interface between the Distributed Virtual 
Environment (DVE) and the ADC and PDC. 

I CGF Router I 

t 
DVE 

Figure 2. Generic CGF architecture: 
PDC, ADC, and CGF Router 

3 3  Automated Wingman (AW) 
component architecture 

Our AW system architecture (see Figure 3) used the 
principles in Section 3.1 to refine the CGF architectural 
definition in Figure 2. Within the architecture we use 
containers, which are data structures for moving large 
amounts of structured data between system components, 
to manage and control inter-component communication. 
The main CGF components are specified as objects. 
These objects are the Operator Skills Component 
(OSC), the Active Decisions Component (ADC), the 
Physical Dynamics Component (PDC), the Common 
Object DataBase (CODB), the World State Manager 
(WSM), and the Environment Database. Each of these 
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objects are, in turn, hierarchically defined as a set of 
objects that use containers to coimmunicate. The 
CODB holds all public data and all system components 
may access the CODB for data from other system 
components. The World State Manager maintains a 
complete description of the state of distributed virtual 
environment as communicated using DIS-formatted 
PDUs. 
3.4 CGF software and decision architecture 

The AW architecture consists of three components 
(Figure 3): an Operator Skills Component (OSC), an 
Active Decisions Component (ADC!), and a Physical 
Dynamics Component (PDC). The PDC encapsulates 
all the physical attributes and properties of the CGF. In 
the AW, this component includes the aerodynamics 
model, entity-specific properties, aircraft capabilities, 
weapons load, sensors, damage assessment, and physical 
status. In addition, the PDC computes physical state 

changes such as computing the current AW position in 
the virtual environment. The OSC consists of those 
portions of the CGF that vary between individual 
entities within a type and class, and models the skills 
and ability of the operator of the entity. For an aircraft 
entity, the components of the OSC include the 
simulated pilot’s ability to maintain situation awareness 
and to execute tactical and flight skills. The ADC 
encompasses the intelligent decision making processes 
and the knowledge necessary to properly drive them, 
which includes the overall mission, goals and 
objectives, plan generation, reaction time, and crisis 
management ability. The ADC must accomplish many 
of its activities in real-time. 

We chose to separate the components of the CGF 
architecture in this manner to insure that modifications 
are isolated and will not propagate throughout the 
system. The PDC only holds the basic entity maneuver 
information and is completely unaware of the status of 
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the other system components. Likewise, the ADC is 
solely responsible for decision making and only knows 
about the physical component's status based upon the 
data communicated within the system software 
architecture. The OSC is more closely tied to the ADC 
than the PDC because the ADC is responsible for 
computing control outputs for the entity based upon the 
modeled operator's skills. The OSC describes the 
operator's ability for the decision making component so 
that the decision can be appropriately constrained by the 
pilot's abilities. The division of capabilities between 
these basic components lessens the system level impact 
of any changes in the PDC, OSC, or ADC. 

The OSC and PDC contain all the information and 
status required to portray an aircraft model and its 
operator's ability. The PDC encapsulates the entity 
state information and the OSC contains a representation 
for all the operator skill variables. The key aspect of 
these two components is that these subsystems are 
completely parameterizable, and hence rapidly 
reconfigured and reused. We isolate entity control skills 
in the OSC because this separates the ability to 
parameterize the operator's capabilities from the 
decision making mechanisms. This parameterization 
allows any number of CGFs of a given type to be 
generatedusing a given ADC but yet each entity can 
have its own unique set of operator skills. The OSC 
models the operator's skills as a hierarchy of 
capabilities and allows us to compose more complex 
skills from elementary skills and to compose the higher 
level skills using a weighting of the appropriate 
elementary skills. The PDC and OSC do not, however, 
perform decision making based upon the information 
they store. The decision making task is solely the 
responsibility of the ADC. 

The ADC contains a fuzzy planner, based upon fuzzy 
logic [8, lo], that allows certain subgoals to remain 
unsatisfied but yet allow the supergoal to be satisfied. 
This decision making flexibility permits a wide variety 
of possible behaviors and provides decision-making 
elasticity, allowing the CGF to achieve its mission in 
the face of uncertainty. Also, the fuzzy approach 
provides a method for optimization when various 
subgoals are applicable but only one is desired. This use 
of fuzzy logic adds another behavioral distinction that 
can be exploited to create a diverse mix of entities. The 
ADC is composed of the strategic decision engine 
(SDE), the tactical decision engine (TDE), and the 
critical decision engine (CDE). 

The SDE is concerned with high level functions such 
as understanding and implementing mission level goals, 
communicating with other players, interpreting the 
surrounding environment, and revising mission goals 
and subgoals. The SDE handles strategic matters related 

to accomplishing mission goals by continuously re- 
evaluating the completion status of mission objectives 
and re-planning in a deliberative fashion to achieve the 
objectives. To execute its plans, the SDE then requests 
the TDE to carry out the near term (tactical) objectives. 

The TDE's role is to make decisions about the 
moment to moment operations of the entity. This 
entails receiving specific taskings from the SDE 
(subgoals), assessing DVE state, and responding to 
these situations according to the knowledge base of the 
particular entity. These responses include activities 
such as determining which maneuvers to make in a 
given situation, determining when to employ ordnance, 
and when to implement other application specific 
elements such as electromagnetic counter measures. 

The CDE supplies the survival instinct for the 
virtual entity and takes over control of the entity in 
emergency situations where termination of the entity is 
imminent. The CDE is a purely reactive reasoning 
system that deals with critical situations the AW might 
encounter. In operation, the CDE monitors the world 
state until a critical situation is detected. The CDE then 
assumes control of the AW until the crisis has passed. 

3.5 CGF knowledge hierarchy 

The essence of our approach to defining a CGF 
knowledge hierarchy lies in applying the concept of 
separation of concerns to the domain of CGFs. As 
defined in the practice of software engineering, applying 
separation of concerns in a system design means 
separating the "how" from the "what" in the system. 
We believe that this technique is useful in creating 
modular CGFs because it assists in separating an 
entity's decision making ability from its physical 
ability. The separation of concerns is also a useful 
technique for decomposing the entity's decision making 
process into manageable subcomponents. 

We used the concept of separation of concerns to aid 
in defining and refining the roles of the decision 
engines. To accomplish this, semantic Areas Of 
Concern (AOC) were used. An AOC is a question that 
must be answeredto understand the role of a decision 
engine. The purpose of the AOC is twofold: first, they 
help the knowledge engineer identify the kinds of 
knowledge and behaviors to be modeledat the different 
levels of decision making, and second, they help the 
software engineer organize the various decision making 
processes into encapsulated interchangeable modules. 

The AOC were established as a result of modeling the 
considerations that confront a present day war fighter. 
For example, perhaps the single most fundamental 
consideration is the mission. From this flows a series 
of follow-on questions, such as "How do I perform my 
mission?", and "What is my current task within the 
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Table 1. Key questions for AOC 

Decision 
Engine 
Component 

SDE 

TDE 

CDE 

determination 
Key Definitional Questions 

What’s my mission? 
How do I perform my mission? 
Am I able to accomplish my 

mission? 
0 What’s my cuirrent task within the 
mission? 

How do I communicate with other 
entities and actors? 

How do I perceive the outside 
world? 
* How do I deal with a lack of 
appropriate information? 

What are the target types that I’m 
designed for? 

What are my responsibilities? 
What kinds of maneuvers am I 

capable of? 
What kinds of weapons do I know 

how to use? 
How do I chocxe which maneuver 

to apply in a given situation? 
How do I chcose which type of 

weapon to employ in a given 
situation? 

How do I know when to employ 
ordnance? 

How do I know that the weapon 
was effective? 
*How am I aware of my 
environment? 
*How does the local DVE state 
affect my decision making? 
* What is my itasking within the 
mission? 

Am I in any immediate danger? 
If I am in danger, what maneuvers 

do I know how 1.0 do to escape the 
danger? 

How would I decide which 
maneuver to mak.e? 

What kinds of countermeasures do 
I know how to use? 
* How do I decide when to use a 
countermeasure? 

mission”? To be most useful, the: AOC should be as 
domain independent as possible. 

To make the AOC as simple and direct as possible, 
they are written in a first person perspective from the 
CGF’s point of view. They are designedso that by 
answering these questions in the context of a specific 
type of CGF within a specified domain, the bulk of the 
work for identifying the CGFs behaviors will be 
accomplished. The key AOC are shown in Table 1. 

4. CGF comparative decision 
mechanism 

In addition to the primary decision engines that 
utilize fuzzy logic as the basis for decision making, the 
ADC makes use of a comparative decision process to 
perform “what-if‘ comparisons. One of the 
requirements for the Automated Wingman was to be 
able to choose the “best” maneuver to employ in a real- 
time engagement. This capability was achieved by 
modifying a two player, time stepped game tree [l 13 
into a two player, asynchronous game tree (see Figure 
4.) This approach allows the CGF to analyze the 
situation by determining opponent versus AW 
maneuver combinations, and then scores the resulting, 
relative orientations of the two aircraft according to 
what the algorithm expects to  happen during the course 
of a fuzzily determined time period. The algorithm also 
operates within dynamically determined time constraints 
based on aircraft positions and velocities as well as 
expected weapon ranges and velocities. The algorithm 
analyzes, in a breadth first search, as many maneuver 
combination as possible within the given time 
constraints and presents the best possible choice for 
implementation. The process of selecting the maneuver 
combination is a discrete choice, not a fuzzy one. We 
adapted the game tree concept to a dynamic environment 
so that the CGF could compare and evaluate potential 
maneuvering decisions with regards to concurrent 
adversarial maneuvers over time. As a result, the 
complete ADC decision process requires the integration 
of multiple fuzzy decisions engines with a non-fuzzy 
comparative game tree. Our game tree approach is 
describedbelow . 

Game trees are useful a decision mechanism when 
possible moves between opponents are known and 
resulting positions can be enumerated. The resulting 
positions can then be weighed, and decisions made based 
by selecting the path through the tree that results in the 
most advantageous weighting. Game trees are not 
naturally applied to situations where resulting positions 
between players are anything other than discrete. 
However, if sets of otherwise non-discrete possible 
player positions are described in discrete ways, then it is 
possible to use a game tree to make the best possible 
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Bandit Maneuvers 
(defensive) 

aneuver 

Evaluation snaps 
list, each node 
looking x seconds 
into future. 

Figure 4. Asynchronous game tree example 
e used this technique for the Automated 

A CGF-type independent knowledge representation 
for the game tree was developed to represent possible 
player moves. This representation allows the 
k n ~ ~ ~ ~ d g ~ ~ o  be separatedfrom the algorithm used to 
act on the knowledge. As a result, we can use the same 

gorithm for any CGF regardless of its CGF 
represent the moves, or maneuvers, as 

directional graphs within a three-dimensional space. We 
represent the maneuvers in this space by taking the 
fundamental shape of the maneuver and then rotating 
and scaling the maneuver using standard formulas, 
which allows us to achieve any desired permutation of 
the basic maneuver. We specify the maneuver using x, 
y, and z coordinates and the values for CGF heading, 
pitch, and roll. Given these six attributes, it is possible 
to describe the location and orientation of a CGF with 
regards to the coordinate system origin. By considering 
CGF velocity, applying a specific maneuver 
representation, and then rotating and scaling the 
maneuver based on the velocity, we can predict the 
location and orientation of the CGF at a future time. 

Given that we used this approach to model maneuver 
decision making in the highly dynamic and time critical 
domain of combat aircraft operations, we needed a 
mechanism Eo determine the maximum elapsed time 
that the game tree algorithm could consume while 
searching for a solution. To establish the maximum 
time, we calculate the minimum time it would take the 
AW to intercept the target from the current position. 
This minimum intercept time is then dividedby a user 
specified value, the result being the maximum 
allowable time the algorithm can use to make a 
decision. The user specified divisor prevents the 

Lists 

algorithm from consuming the entire time to intercept 
to make a decision. By giving the user control of this 
value, it allows flexible scaling of the performance of 
the CGF’s decision making. In addition to the division 
value, an absolute minimum timing value is also 
specified in case the calculated decision time is very 
short (less than one second), this allows the algorithm 
to ovemde the calculation and use the minimum 
specified decision time. 

The game tree is constructed by using the target’s 
known maneuvers for a defensive approach as the first 
tier nodes, and then combining all the wingman’s 
maneuvers for an offensive approach as the second tier 
nodes. As a result, the ply of the basic tree never 
exceeds two (not including the depth of the evaluation 
branches discussed in later). Since the algorithm was 
written to accept any number of maneuvers when 
constructing the tree, the names of the known 
maneuvers as well as their data files are established at 
program startup by an initialization file. The CGF does 
not accept dynamically defined maneuvers after program 
Start. 

To permit it to operate on fuzzy logic variables, the 
game tree algorithm uses the values of variables defined 
over fuzzy term sets as iterative multipliers to determine 
how far ahead the CGF can accurately predict both it’s 
and the opponent’s position and orientation. For our 
tests, the evaluations of the fuzzy values resulted in 
look-aheadvalues of one, two, or three seconds. As a 
result, on each breadth-wise pass through the game tree, 
an AW with a look-ahead value of three seconds would 
get to look three seconds into the future of the current 
maneuver combination. Hence, after two passes of the 
tree, an AW with a look-ahead of three would be six 
seconds into the maneuver, whereas an AW with a look- 
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ahead of one would only be two seconds into the 
maneuver. Thus we are able to establish better 
foresight performance for an AW with a higher operator 
skill rating. 

By knowing the maneuvers and the aircraft 
velocities, we can create “snapshots” of future player 
positions and orientations calculated using the look- 
ahead value to determine the number of passes through 
the game tree. These snapshots are then used to 
represent the discrete player positions required for 
evaluation of the game tree. Moving breadth-wise 
through the game tree, player positions are evaluated 
one maneuver pairing at a time, so long as there is a 
combination remaining and sufficient time to make the 
evaluation. A single evaluation involves fuzzifying the 
coordinate locations, and then allowing the inferencing 
engine to evaluate all the applicalble rules. We use a 
standard, center of gravity defuzzification technique to 
derive a player positional score. 
5. Future work and coiiclusions 

The AW currently presents a believable but limited 
portrayal of pilot behaviors within a DVE. Future 
work should expand the range of behaviors available to 
the AW. One aspect of this effort should be the design, 
implementation, and testing of the parameterization of 
multiple skill levels. Another aspect of the skill levels 
development activity must be to expand the AW’s 
knowledge base by employing techniques for learning 
and knowledge-base modeling to provide a capability for 
achieving multiple levels of CGF ability/skills. 
However, simply possessing the capabilities for 
multiple skill levels within the diecision component is 
insufficient for our purposes. A theory for designing 
entities with multiple skill levels, techniques for 
reusing skills among multiple skill levels, techniques 
for degrading skills without ireaccomplishing the 
knowledge-base design, and an approach for modeling 
skill levels in humans are all required. Based on our 
results with the AW software and knowledge base 
architectures, a promising area for research is the 
investigation of the capability of these architectures to 
instantiate multiple and differing cllasses of CGFs. 

The Automated Wingman has achieved a basic 
capability for believable operation within military 
DVEs and has demonstrated that fuzzy logic in 
combination with an adversarial game tree approach to 
decision making can achieve an acceptable range of 
behaviors for a CGF. The AW is based upon a generic 
CGF knowledge base and software that permits us to 
scale the software components and the knowledge base 
in response to new requirements as well as allowing us 
to undertake a rapid prototyping approach to CGF 
development. We have demonstrated the ability to adapt 

a static game tree to the highly dynamic, asynchronous 
environment typically found with combat fighter aircraft 
computer generatedforces. The positive results of our 
initial tests showed that such an asynchronous game 
tree could in fact perform well in such an environment 
when the maximum processing time per decision cycle 
is constrained. 
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