
Enhancing Behavioral Fidelity Within Distributed Virtual
Environments

Sheila B. Banks, Eugene Santos Jr., and Martin R. Stytz
ArtiJicialIntelligenceLaboratory
VirtualEnvironmentsLaboratory

DepartmentofElectricalandComputerEngineering
Air Force Institute of Technology
Wright- Patterson AFB, OH 45433

sbanks@afit.af .mil, mstytz@afit .af.mil, eugene@eng2 .uconn .edu

Abstract
Foracomputer-generated force (CGF) application to

be useful in training environments, it must exhibit
complex, realistic behavior within the battlespace. To
achieve this level ofjdelity, it must operate at multiple
skill levels and exhibit competency at assigned
missions. CGF applications must also have adaptable
decisions mechanisms and behaviors even when
operating under uncertainty and the application must
learn from past experience. Furthermore, simply correct
performance of individual entity behaviors is not
suflcient. Issues related to complex inter-entity
behavioral interactions, such as the need to maintain
formation and share information, must also be
considered.
To achieve these necessary capabilities, an extensible
software architecture, an expandable knowledge base,
and an adaptable decision making mechanism are
required. Our labs have addressedhese issues in the
context of the Automated Wingman (AW) project. The
AW is based on fuzzy logic, the Common Object
DataBase (CODB) software architecture, and a
hierarchicaknowledge structure. Decision making is
founded on multi-layered, fuzzy logic controlled
situational analyses combined with adversarial game tree
techniques.

1. Introduction
Computer generated forces (CGFs) [5] are software

agents that are computer representations of military
forces that model human behavior and automatically
execute a finite set of actions in response to actions and
activities in their environment. CGFs of various
complexity have been created for many different
platforms [9] and CGFs can serve to augment friendly
forces or populate enemy formations. In either role,
they improve the fidelity of a distributed virtual
environment (DVE) by increasing the number of
entities participating in a simulation.

The need for real-time performance combined with
realism for training and analysis drives a number of
requirements for CGFs. CGF requirements include the
need for modifiability, attainment of high fidelity
human behavior representations, development of
adaptable decision mechanisms and behaviors, and
automated incorporation of past reasoning into the
decision process. These high level requirements drive
additional requirements such as multiple skill levels for
classes of entities, graceful degradation of reasoning
capability under system stress, an easily expandable
modular knowledge structure, and adaptive mission
planning. For example, the capability for multiple
skill levels would provide pilot behaviors for aircraft
entities at different skill levels, such as rookie, expert,
and ace levels of pilots within the same battlespace.
Additionally, the entity should have a complete set of
behaviors for the type of missions it must perform, but
not all behaviors for these missions need to be crafted to
the same level of fidelity and quality. The CGF should
be able to respond acceptably to unforeseen
circumstances and deal with uncertain information. In
addition to the individual entity requirements, issues
related to complex inter-entity behavioral interactions
must also be considered. The CGF should exhibit
complex, realistic behavior patterns within the
battlespace and be able to adaptively change its mission
parameters during the course of a mission in response to
events. Finally, these capabilities should be embedded
in an extensible, explicable software architecture that
has well defined locations for reasoning and knowledge
storage. Current CGF applications lack the ability to
achieve all of these requirements within a single,
integrated system.

In this paper, we describe our progress toward
achieving a CGF entity that satisfies the requirements
presented above. Our CGF architecture is applicable to
the development of any computer generatedforce to be
operated in complex distributed virtual environments.

5 14
US. Government Work Not Protected by US. Copyright

http://af.mil

Our CGF application is presented by first introducing,
in Section Two, the background topics that are relevant
to the development of CGFs. Section Three identifies
our CGF architecture and the design of an actual CGF,
the Automated Wingman (AW). Section Four describes
the decision making component of the Automated
Wingman within our CGF architecture and Section Five
concludes the paper with current research results and
suggestions for future improvements.

2. Background
In this section we discuss Distributed Interactive

Simulation (DIS), the Common Object DataBase
(CODB) architecture, and current aircraft CGF projects
in relation to the AW. Presentatioin of this material is
motivated by the need to understand the CGF
operational environment, the rationale for the CGF
architecture we propose, and the decision-making
methodology we employ.

2.1 Distributed Interactive Simulation

Our CGF, the Automated Wingman, operates in a
DVE [5] that employs the distributed interactive
simulation (DIS) suite of protocols, IEEE 1278-1993
[3]. These protocols enable communication between
individual simulator computer systems at distributed
locations. DIS achieves an interactive representation of
a virtual environment by the interconnection of the
distributed hosts. Each host determines what is
actually perceived of its entities and only communicates
changes in the state of entities for which it is
responsible. The DIS approach to DVEs requires
participating sites to meet several requirements. These
requirements consist of the following: (1) autonomous
operation, (2) object and event based simulation, (3)
state change information broadcast, and (4) dead
reckoning capability. In the DIS protocols, the DVE
contains actors and entities that interact through the
asynchronous broadcast of event and state information.
Stytz presents additional information concerning DIS
and DVEs [5] .

2.2 Common Object DataElase (CODB)

The Automated Wingman software architecture is
founded on the Common Object DataBase (CODB)
architecture [6]. The Common Object DataBase is a
data-handling architecture that uses structured classes,
datacontainers, and a central runtime data repository to
manage and transmit data between application objects.
This architecture reduces the coupling in a simulation
by reducing the amount of information that a system
component object class must maintain about other
system component classes. As a result, an application

component object must only access the container in the
CODB where the information it needs resides.
2 3 Current CGF background and projects

The major structured components of an aircraft CGF
include the following: vehicle dynamics, artificial
intelligence (AI) reasoning, behavior modeling, and
software architecture. CGF vehicle dynamics are
important because the CGF should move through the
virtual environment accurately whether it is human or
computer-controlled. The vehicle dynamics for CGFs
should not allow a human to identify it as a CGF by
virtue of either exceptionally good or poor dynamic
behavior.

The artificial intelligence reasoning component
insures that the CGF pursues its goals, responds in a
proper, human-like manner based upon its knowledge
base, keeps the performance of the CGF within human
and sensor limits, develops plans based upon its
knowledge base, and manages other tasks. Fielded
systems, like TAC-AIR SOAR [SI and ModSAF [l , 21
address these problems at different levels of fidelity.
TAC-AIR SOAR, which builds upon the Soar
architecture [4] for general intelligence and reasoning, is
the most successful of the current aircraft CGFs.
However, TAC-AIR SOAR does not accommodate
uncertainty in its decision making process.

The central task in knowledge base construction is
human behavior modeling. Human behavior modeling
is the task of making the behavior and reactions of a
CGF seem realistic by developing models that yield a
reasonable analog of the output of the human decision-
making process. Human behavior modeling requires the
acquisition of domain-specific knowledge about human
mental models and information brought to the decision-
making process, as well as the key factors in the
decision process. The human behavior modeling
subcomponent of CGFs might normally be considered
as part of the artificial intelligence component.
However, separating it from the AI reasoning
component serves to highlight its importance and the
need to make behavior modeling design decisions
independently of behavior reasoning mechanism design
decisions.

A flexible CGF software architecture ensures that
current CGF development efforts are extensible to future
CGF requirements. The ability to modify the
implemented CGF to include additional behavioral
requirements directly dependupon software architecture
flexibility .
3. CGF architecture

Our motivation for the development of a general
CGF architecture for the AW was to provide a basis for

515

the design of broad classes of CGFs. While each class
of CGF has its own unique characteristics and
performance requirements, there are many factors
common to all classes and these can be successfully
abstracted and reused across all classes of CGFs. Our
goal is to provide a general architecture for CGFs,
which naturally accounts for “variety” in a given type of
CGF. Our architecture is based on highly modular
components wherein interdependenciesare well-defined
and minimized and that allows us to pursue an
evolutionary and exploratory approach to knowledge
engineering.

3.1 CGF architectural requirements

The architecture we developed is based on several
principles [7]. The first is that future architectures
should focus on reducing programmer costs, even at the
possible expense of marginal runtime processing
inefficiencies. The second principle is that the
development cycle for a CGF, as in most research and
development projects, must include a series of revisions
to the requirements. These changes range from
changing data formats to introduction of new behaviors
into the system. A third principle is that the push to
attain improved performanceand the strain of meeting
delivery deadlines increases the entropy of any design,
until the original design concept becomes blurred. The
most obvious results of entropy are the use of global
variables, global functions, and the disappearance of
private data items. A fourth principle is that the
components of the airframe model (aerodynamics model,
avionics systems, and weapons packages) should be
rapidly modifiable. Therefore, these components should
be realized as separate objects that have a clean, robust
interface to the remainder of the system. The final
principle is that expanding system requirements will
cause the knowledge base and reasoning system to be
modified and adapted to new requirements throughout
the life of the project and in the subsequently fielded
system. As a result, the knowledge and reasoning
components should be structured so that the knowledge
base and reasoning system are clearly separated from the
remainder of the system.
3.2 CGF component architecture

The essence of the architecture problem domain is
the following: given that a need exists to build a CGF,
what design architecture and methodology can be applied
to take the CGF from concept to implementation,
regardlessof the type of CGF? Figure 2 presents the
baseline architecture and key CGF components that we
propose to answer this question. A CGF is essentially
comprised of two types of components: a Physical

Dynamics Component (PDC) and an Active Decisions
Component (ADC). The PDC is made up of the
components necessary to model the CGF’s physical
makeup, such as entity propagation models, sensor
models, weapons models, and defensive elements
models. The ADC is composed of the components that
use the information from the PDC and the DVE to
make decisions, and is broken down into three
subcomponents: a Strategic Decision Engine (SDE), a
Tactical Decision Engine (TDE), and a Critical Decision
Engine (CDE). Each of the decision engines operates at
a different level of the decision making process and are
presented further in Section 3.4.

Although not considered a component equal to the
ADC or PDC, the CGF architecture has another
important structure. This is the CGF Router, which is
the interface between the Distributed Virtual
Environment (DVE) and the ADC and PDC.

I CGF Router I

t
DVE

Figure 2. Generic CGF architecture:
PDC, ADC, and CGF Router

3 3 Automated Wingman (AW)
component architecture

Our AW system architecture (see Figure 3) used the
principles in Section 3.1 to refine the CGF architectural
definition in Figure 2. Within the architecture we use
containers, which are data structures for moving large
amounts of structured data between system components,
to manage and control inter-component communication.
The main CGF components are specified as objects.
These objects are the Operator Skills Component
(OSC), the Active Decisions Component (ADC), the
Physical Dynamics Component (PDC), the Common
Object DataBase (CODB), the World State Manager
(WSM), and the Environment Database. Each of these

5 16

Aotipe
Decisions

Component

Database

Figure

+fld Control
Cornxnon ObJed

Database
4.

shared data& I containerizationmethods

-

I Inouts 113 r

World State

m Daemon Daemon

3. AW system ;architecture incorporating the Common Object DataBase

objects are, in turn, hierarchically defined as a set of
objects that use containers to coimmunicate. The
CODB holds all public data and all system components
may access the CODB for data from other system
components. The World State Manager maintains a
complete description of the state of distributed virtual
environment as communicated using DIS-formatted
PDUs.
3.4 CGF software and decision architecture

The AW architecture consists of three components
(Figure 3): an Operator Skills Component (OSC), an
Active Decisions Component (ADC!), and a Physical
Dynamics Component (PDC). The PDC encapsulates
all the physical attributes and properties of the CGF. In
the AW, this component includes the aerodynamics
model, entity-specific properties, aircraft capabilities,
weapons load, sensors, damage assessment, and physical
status. In addition, the PDC computes physical state

changes such as computing the current AW position in
the virtual environment. The OSC consists of those
portions of the CGF that vary between individual
entities within a type and class, and models the skills
and ability of the operator of the entity. For an aircraft
entity, the components of the OSC include the
simulated pilot’s ability to maintain situation awareness
and to execute tactical and flight skills. The ADC
encompasses the intelligent decision making processes
and the knowledge necessary to properly drive them,
which includes the overall mission, goals and
objectives, plan generation, reaction time, and crisis
management ability. The ADC must accomplish many
of its activities in real-time.

We chose to separate the components of the CGF
architecture in this manner to insure that modifications
are isolated and will not propagate throughout the
system. The PDC only holds the basic entity maneuver
information and is completely unaware of the status of

517

the other system components. Likewise, the ADC is
solely responsible for decision making and only knows
about the physical component's status based upon the
data communicated within the system software
architecture. The OSC is more closely tied to the ADC
than the PDC because the ADC is responsible for
computing control outputs for the entity based upon the
modeled operator's skills. The OSC describes the
operator's ability for the decision making component so
that the decision can be appropriately constrained by the
pilot's abilities. The division of capabilities between
these basic components lessens the system level impact
of any changes in the PDC, OSC, or ADC.

The OSC and PDC contain all the information and
status required to portray an aircraft model and its
operator's ability. The PDC encapsulates the entity
state information and the OSC contains a representation
for all the operator skill variables. The key aspect of
these two components is that these subsystems are
completely parameterizable, and hence rapidly
reconfigured and reused. We isolate entity control skills
in the OSC because this separates the ability to
parameterize the operator's capabilities from the
decision making mechanisms. This parameterization
allows any number of CGFs of a given type to be
generatedusing a given ADC but yet each entity can
have its own unique set of operator skills. The OSC
models the operator's skills as a hierarchy of
capabilities and allows us to compose more complex
skills from elementary skills and to compose the higher
level skills using a weighting of the appropriate
elementary skills. The PDC and OSC do not, however,
perform decision making based upon the information
they store. The decision making task is solely the
responsibility of the ADC.

The ADC contains a fuzzy planner, based upon fuzzy
logic [8, lo], that allows certain subgoals to remain
unsatisfied but yet allow the supergoal to be satisfied.
This decision making flexibility permits a wide variety
of possible behaviors and provides decision-making
elasticity, allowing the CGF to achieve its mission in
the face of uncertainty. Also, the fuzzy approach
provides a method for optimization when various
subgoals are applicable but only one is desired. This use
of fuzzy logic adds another behavioral distinction that
can be exploited to create a diverse mix of entities. The
ADC is composed of the strategic decision engine
(SDE), the tactical decision engine (TDE), and the
critical decision engine (CDE).

The SDE is concerned with high level functions such
as understanding and implementing mission level goals,
communicating with other players, interpreting the
surrounding environment, and revising mission goals
and subgoals. The SDE handles strategic matters related

to accomplishing mission goals by continuously re-
evaluating the completion status of mission objectives
and re-planning in a deliberative fashion to achieve the
objectives. To execute its plans, the SDE then requests
the TDE to carry out the near term (tactical) objectives.

The TDE's role is to make decisions about the
moment to moment operations of the entity. This
entails receiving specific taskings from the SDE
(subgoals), assessing DVE state, and responding to
these situations according to the knowledge base of the
particular entity. These responses include activities
such as determining which maneuvers to make in a
given situation, determining when to employ ordnance,
and when to implement other application specific
elements such as electromagnetic counter measures.

The CDE supplies the survival instinct for the
virtual entity and takes over control of the entity in
emergency situations where termination of the entity is
imminent. The CDE is a purely reactive reasoning
system that deals with critical situations the AW might
encounter. In operation, the CDE monitors the world
state until a critical situation is detected. The CDE then
assumes control of the AW until the crisis has passed.

3.5 CGF knowledge hierarchy

The essence of our approach to defining a CGF
knowledge hierarchy lies in applying the concept of
separation of concerns to the domain of CGFs. As
defined in the practice of software engineering, applying
separation of concerns in a system design means
separating the "how" from the "what" in the system.
We believe that this technique is useful in creating
modular CGFs because it assists in separating an
entity's decision making ability from its physical
ability. The separation of concerns is also a useful
technique for decomposing the entity's decision making
process into manageable subcomponents.

We used the concept of separation of concerns to aid
in defining and refining the roles of the decision
engines. To accomplish this, semantic Areas Of
Concern (AOC) were used. An AOC is a question that
must be answeredto understand the role of a decision
engine. The purpose of the AOC is twofold: first, they
help the knowledge engineer identify the kinds of
knowledge and behaviors to be modeledat the different
levels of decision making, and second, they help the
software engineer organize the various decision making
processes into encapsulated interchangeable modules.

The AOC were established as a result of modeling the
considerations that confront a present day war fighter.
For example, perhaps the single most fundamental
consideration is the mission. From this flows a series
of follow-on questions, such as "How do I perform my
mission?", and "What is my current task within the

518

Table 1. Key questions for AOC

Decision
Engine
Component

SDE

TDE

CDE

determination
Key Definitional Questions

What’s my mission?
How do I perform my mission?
Am I able to accomplish my

mission?
0 What’s my cuirrent task within the
mission?

How do I communicate with other
entities and actors?

How do I perceive the outside
world?
* How do I deal with a lack of
appropriate information?

What are the target types that I’m
designed for?

What are my responsibilities?
What kinds of maneuvers am I

capable of?
What kinds of weapons do I know

how to use?
How do I chocxe which maneuver

to apply in a given situation?
How do I chcose which type of

weapon to employ in a given
situation?

How do I know when to employ
ordnance?

How do I know that the weapon
was effective?
*How am I aware of my
environment?
*How does the local DVE state
affect my decision making?
* What is my itasking within the
mission?

Am I in any immediate danger?
If I am in danger, what maneuvers

do I know how 1.0 do to escape the
danger?

How would I decide which
maneuver to mak.e?

What kinds of countermeasures do
I know how to use?
* How do I decide when to use a
countermeasure?

mission”? To be most useful, the: AOC should be as
domain independent as possible.

To make the AOC as simple and direct as possible,
they are written in a first person perspective from the
CGF’s point of view. They are designedso that by
answering these questions in the context of a specific
type of CGF within a specified domain, the bulk of the
work for identifying the CGFs behaviors will be
accomplished. The key AOC are shown in Table 1.

4. CGF comparative decision
mechanism

In addition to the primary decision engines that
utilize fuzzy logic as the basis for decision making, the
ADC makes use of a comparative decision process to
perform “what-if‘ comparisons. One of the
requirements for the Automated Wingman was to be
able to choose the “best” maneuver to employ in a real-
time engagement. This capability was achieved by
modifying a two player, time stepped game tree [l 13
into a two player, asynchronous game tree (see Figure
4.) This approach allows the CGF to analyze the
situation by determining opponent versus AW
maneuver combinations, and then scores the resulting,
relative orientations of the two aircraft according to
what the algorithm expects to happen during the course
of a fuzzily determined time period. The algorithm also
operates within dynamically determined time constraints
based on aircraft positions and velocities as well as
expected weapon ranges and velocities. The algorithm
analyzes, in a breadth first search, as many maneuver
combination as possible within the given time
constraints and presents the best possible choice for
implementation. The process of selecting the maneuver
combination is a discrete choice, not a fuzzy one. We
adapted the game tree concept to a dynamic environment
so that the CGF could compare and evaluate potential
maneuvering decisions with regards to concurrent
adversarial maneuvers over time. As a result, the
complete ADC decision process requires the integration
of multiple fuzzy decisions engines with a non-fuzzy
comparative game tree. Our game tree approach is
describedbelow .

Game trees are useful a decision mechanism when
possible moves between opponents are known and
resulting positions can be enumerated. The resulting
positions can then be weighed, and decisions made based
by selecting the path through the tree that results in the
most advantageous weighting. Game trees are not
naturally applied to situations where resulting positions
between players are anything other than discrete.
However, if sets of otherwise non-discrete possible
player positions are described in discrete ways, then it is
possible to use a game tree to make the best possible

5 19

Bandit Maneuvers
(defensive)

aneuver

Evaluation snaps
list, each node
looking x seconds
into future.

Figure 4. Asynchronous game tree example
e used this technique for the Automated

A CGF-type independent knowledge representation
for the game tree was developed to represent possible
player moves. This representation allows the
k n ~ ~ ~ ~ d g ~ ~ o be separatedfrom the algorithm used to
act on the knowledge. As a result, we can use the same

gorithm for any CGF regardless of its CGF
represent the moves, or maneuvers, as

directional graphs within a three-dimensional space. We
represent the maneuvers in this space by taking the
fundamental shape of the maneuver and then rotating
and scaling the maneuver using standard formulas,
which allows us to achieve any desired permutation of
the basic maneuver. We specify the maneuver using x,
y, and z coordinates and the values for CGF heading,
pitch, and roll. Given these six attributes, it is possible
to describe the location and orientation of a CGF with
regards to the coordinate system origin. By considering
CGF velocity, applying a specific maneuver
representation, and then rotating and scaling the
maneuver based on the velocity, we can predict the
location and orientation of the CGF at a future time.

Given that we used this approach to model maneuver
decision making in the highly dynamic and time critical
domain of combat aircraft operations, we needed a
mechanism Eo determine the maximum elapsed time
that the game tree algorithm could consume while
searching for a solution. To establish the maximum
time, we calculate the minimum time it would take the
AW to intercept the target from the current position.
This minimum intercept time is then dividedby a user
specified value, the result being the maximum
allowable time the algorithm can use to make a
decision. The user specified divisor prevents the

Lists

algorithm from consuming the entire time to intercept
to make a decision. By giving the user control of this
value, it allows flexible scaling of the performance of
the CGF’s decision making. In addition to the division
value, an absolute minimum timing value is also
specified in case the calculated decision time is very
short (less than one second), this allows the algorithm
to ovemde the calculation and use the minimum
specified decision time.

The game tree is constructed by using the target’s
known maneuvers for a defensive approach as the first
tier nodes, and then combining all the wingman’s
maneuvers for an offensive approach as the second tier
nodes. As a result, the ply of the basic tree never
exceeds two (not including the depth of the evaluation
branches discussed in later). Since the algorithm was
written to accept any number of maneuvers when
constructing the tree, the names of the known
maneuvers as well as their data files are established at
program startup by an initialization file. The CGF does
not accept dynamically defined maneuvers after program
Start.

To permit it to operate on fuzzy logic variables, the
game tree algorithm uses the values of variables defined
over fuzzy term sets as iterative multipliers to determine
how far ahead the CGF can accurately predict both it’s
and the opponent’s position and orientation. For our
tests, the evaluations of the fuzzy values resulted in
look-aheadvalues of one, two, or three seconds. As a
result, on each breadth-wise pass through the game tree,
an AW with a look-ahead value of three seconds would
get to look three seconds into the future of the current
maneuver combination. Hence, after two passes of the
tree, an AW with a look-ahead of three would be six
seconds into the maneuver, whereas an AW with a look-

520

ahead of one would only be two seconds into the
maneuver. Thus we are able to establish better
foresight performance for an AW with a higher operator
skill rating.

By knowing the maneuvers and the aircraft
velocities, we can create “snapshots” of future player
positions and orientations calculated using the look-
ahead value to determine the number of passes through
the game tree. These snapshots are then used to
represent the discrete player positions required for
evaluation of the game tree. Moving breadth-wise
through the game tree, player positions are evaluated
one maneuver pairing at a time, so long as there is a
combination remaining and sufficient time to make the
evaluation. A single evaluation involves fuzzifying the
coordinate locations, and then allowing the inferencing
engine to evaluate all the applicalble rules. We use a
standard, center of gravity defuzzification technique to
derive a player positional score.
5. Future work and coiiclusions

The AW currently presents a believable but limited
portrayal of pilot behaviors within a DVE. Future
work should expand the range of behaviors available to
the AW. One aspect of this effort should be the design,
implementation, and testing of the parameterization of
multiple skill levels. Another aspect of the skill levels
development activity must be to expand the AW’s
knowledge base by employing techniques for learning
and knowledge-base modeling to provide a capability for
achieving multiple levels of CGF ability/skills.
However, simply possessing the capabilities for
multiple skill levels within the diecision component is
insufficient for our purposes. A theory for designing
entities with multiple skill levels, techniques for
reusing skills among multiple skill levels, techniques
for degrading skills without ireaccomplishing the
knowledge-base design, and an approach for modeling
skill levels in humans are all required. Based on our
results with the AW software and knowledge base
architectures, a promising area for research is the
investigation of the capability of these architectures to
instantiate multiple and differing cllasses of CGFs.

The Automated Wingman has achieved a basic
capability for believable operation within military
DVEs and has demonstrated that fuzzy logic in
combination with an adversarial game tree approach to
decision making can achieve an acceptable range of
behaviors for a CGF. The AW is based upon a generic
CGF knowledge base and software that permits us to
scale the software components and the knowledge base
in response to new requirements as well as allowing us
to undertake a rapid prototyping approach to CGF
development. We have demonstrated the ability to adapt

a static game tree to the highly dynamic, asynchronous
environment typically found with combat fighter aircraft
computer generatedforces. The positive results of our
initial tests showed that such an asynchronous game
tree could in fact perform well in such an environment
when the maximum processing time per decision cycle
is constrained.

References
Calder, R.B., Smith, J.E., Courtemanche, A.J., Mar,
J.M.F., and Ceranowicz, A.Z. “ModSAF Behavior
Simulation and Control,” Proceedings of the Third
Conference on Computer-Generated Forces and
Behavioral Representation, Orlando, FL, pp. 347-
356, 1993.
Ceranowicz, A. “ModSAF Capabilities, A Progress
Report,” Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, Orlando, FL,, pp. 3-8, 4 - 6 May,
1994.
IEEE Std 1278-1993. IEEE Standards Coordinating
Committee of the IEEE Computer Society. “IEEE
Standard for Information Technology - Protocols for
Distributed Interactive Simulation Applications“.
Technical Report IEEE Std 1278-1993, March 1993.
Laird, J. E., Newell, A., and Rosenbloom, P.S.
“SOAR An Architecture for General Intelligence,”
Artificial Intelligence, Vol. 33, pp. 1-64, 1987.
Stytz, M. R. “Distributed Virtual Environments,”
IEEEComputer Graphics and Applications, Vol. 16,
no. 3, pp. 19 - 31, May, 1996.
Stytz, M. R., Adams, T., Garcia, B., Sheasby, S. M.,
and Zurita, B. “Developments in Rapid Prototyping
and Software Architecture for Distributed Virtual
Environments,” IEEESojiivare, Vol. 14, no. 5, pp.
83-92, Sep. - Oct., 1997.
Stytz, M. R., Banks, S. B., and Santos, E.
“Requirements for Intelligent Aircraft Entities in
Distributed Environments,” Proceedings of the 18th
lnterservicellndustry Training Systems and Education
Conference, Orlando, Florida, publication on CD-
ROM, 3 - 5 December, 1996.
Schwartz, D. G. “A System for Reasoning with
Imprecise Linguistic Information,” International
Journal of Approximate Reasoning, Vol. 8 , pp. 463-
468, 1991.
Tambe, M., Johnson, W. L., Jones, R.M., Koss, F.,
Laird, J. E., Rosenblmm, P. S., and Schwamb, K.
“Intelligent Agents for Interactive Simulation
Environments,” AI Magazine, Vol. 16, no. 1, pp. 15-
40, Spring, 1995.

[lo] Zadeh, L,A. ‘The Concept of a Linguistic Variable
and its Application to Approximate Reasoning,”
Information Sciences, Vol. 8, pp. 199-249 and 301-
357, 1975.

[1 I] Giamtano, J. and Riley, G. (1994) Expert Systems:
Principles and Programing, PWS Kent, Boston.

521

