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Abstract 

Two important and active areas of current research are data mining and the World Wide 
Web. A natural combination of the two areas, sometimes referred to as Web mining, has 
been the focus of several recent research projects and papers. As with any emerging research 
area there is no established vocabulary, leading to confusion when comparing research efforts. 
Different terms for the same concept or different definitions being attached to the same word 
are commonplace. The term Web mining has been used in two distinct ways. The first, which is 
referred to as Web content mining in this paper, describes the process of information or resource 
discovery from millions of sources across the World Wide Web. The second, which we call Web 
usage mining, is the process of mining Web access logs or other user information user browsing 
and access patterns on one or more Web localities. In this paper we define Web mining and, 
in particular, present an overview of the various research issues, techniques, and development 
efforts in Web content mining and Web usage mining. We focus mainly on the problems and 
proposed techniques associated with Web usage mining as an emerging research area. We also 
present a general architecture for Web usage mining and briefly describe the WEBMINER, a 
system based on the proposed architecture. We conclude this paper by listing issues that need 
the attention of the research community. 

Keywords: data mining, world wide web, association rules, sequential patterns, web mining, 
access patterns, path analysis. 
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1 Introduction 

With the explosive growth of information sources available on the World Wide Web, it has become 
increasingly necessary for users to utilize automated tools in order to find, extract, filter, and 
evaluate the desired information and resources. In addition, with the transformation of the Web 
into the primary tool for electronic commerce, it is imperative for organizations and companies, 
who have invested millions in Internet and Intranet technologies, to track and analyze user access 
patterns. These factors give rise to the necessity of creating server-side and client-side intelligent 
systems that can effectively mine for knowledge both across the Internet and in particular Web 
localities. 

Web mining can be broadly defined as the discovery and analysis of useful information from 
the World Wide Web. This broad definition on the one hand describes the automatic search and 
retrieval of information and resources available from millions of sites and on-line databases, i.e., 
Web content mining, and on the other hand, the discovery and analysis of user access patterns from 
one or more Web servers or on-line services, i.e., Web usage mining. 

In this paper, we provide an overview of tools, techniques, and problems associated with both 
of the dimensions above. Our primary focus, however, is on the second dimension, or Web usage 
mining. We present a taxonomy of Web mining to clarify our usage of the term, and place various 
aspects and components of Web mining in their proper context. 

There are several important issues, unique to the Web paradigm, that come into play if sophis­
ticated types of analyses are to be done on server side data collections. These include the necessity 
of integrating various data sources such as server access logs, referrer logs, user registration or 
profile information; resolving difficulties in the identification of users due to missing unique key 
attributes in collected data; and the importance of identifying user sessions or transactions from 
usage data, site topologies, and models of user behavior. We devote the main part of this paper to 
the discussion of issues and problems that characterize Web usage mining. Furthermore, we survey 
some of the emerging tools and techniques, and identify several future research directions. 

The rest of this paper is organized as follows: Sect.ion 2 presents a taxonomy of Web mining and a 
brief overview of research and development in each of its components. Section 3 identifies the major 
problems associated with Web usage mining and examines several techniques and approaches used 
for solving these problems. Section 4 describes the tools available for analyzing and interpreting 
discovered usage patterns. Section 5 presents a general architecture for Web usage mining and 
gives an overview of the WEBMINER, as system developed based on this architecture. Finally, 
sections 6 and 7 present future research directions and conclusions. 

2 A Taxonomy of Web Mining 

In this section we present a taxonomy of Web mining along its two primary dimensions, namely 
Web content mining and Web usage mining. We also describe and categorize some of the recent 
work and the related tools or techniques in each area. This taxonomy is depicted in Figure l. 

2.1 Web Content Mining 

The heterogeneity and the lack of structure that permeates much of the ever expanding information 
sources on the World Wide Web, such as hypertext documents, makes automated discovery, organi­
zation, and management of Web-based information difficult. Traditional search and indexing tools 
of the Internet and the World Wide Web such as Lycos, Alta Vista, WebCrawler, ALIWEB [Kos94], 
MetaCrawler, and others provide some comfort to users, but they do not generally provide structural 
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information nor categorize, filter, or interpret documents. A recent study provides a comprehensive 
and statistically thorough comparative evaluation of the most popular search tools [LS97]. 

In recent years these factors have prompted researchers to develop more intelligent tools for 
information retrieval, such as intelligent Web agents, as well as to extend database and data mining 
techniques to provide a higher level of organization for semi-structured data available on the Web. 
We summarize some of these efforts below. 

2.1.1 Agent-Based Approach 

The agent-based approach to Web mining involves the development of sophisticated AI systems 
that can act autonomously or semi-autonomously on behalf of a particular user, to discover and 
organize Web-based information. Generally, the agent-based Web mining systems can be placed 
into the following three categories: 

l. Intelligent Search Agents 
Several intelligent Web agents have been developed that search for relevant information us­
ing characteristics of a particular domain (and possibly a user profile) to organize and in­
terpret the discovered information. For example, agents such as Harvest [BDH+94], FAQ­
Finder [HBML95], Information Manifold [KLSS95], OCCAM [KW96], and ParaSite [Spe97] 
rely either on pre-specified and domain specific information about particular types of docu­
ments, or on hard coded models of the information sources to retrieve and interpret docu­
ments. Other agents, such as ShopBot [DEW96) and ILA (Internet Learning Agent) [PE95), 
attempt to interact with and learn the structure of unfamiliar information sources. ShopBot 
retrieves product information from a variety of vendor sites using only general information 
about the product domain. ILA, on the other hand, learns models of various information 
sources and translates these into its own internal concept hierarchy. 
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2. Information Filtering/ Categorization 
A number of Web agents use various information retrieval techniques [FBY92] and charac­
teristics of open hypertext Web documents to automatically retrieve, filter, and categorize 
them [CH97, BGMZ97, MS96, WP97, WVS+96]. For example, HyPursuit [WVS+96] uses se­
mantic information embedded in link structures as well as document content to create cluster 
hierarchies of hypertext documents, and structure an information space. BO (Bookmark Or­
ganizer) [MS96] combines hierarchical clustering techniques and user interaction to organize 
a collection of Web documents based on· conceptual information. 

3. Personalized Web Agents 
Another category of Web agents includes those that obtain or learn user preferences and 
discover Web information sources that correspond to these preferences, and possibly those 
of other individuals with similar interests (using collaborative filtering) . A few recent ex­
amples of such agents include the WebWatcher [AFJM95], PAINT [OPW94], Syskill & We­
bert [PMB96], and others [BSY95]. For. example, Syskill & Webert is a system that utilizes 
a user profile and learns to rate Web pages of interest using a Bayesian classifier. 

2.1.2 Database Approach 

The database approaches to Web mining have generally focused on techniques for integrating and 
organizing the heterogeneous and semi-structured data on the Web into more structured and high­
level collections of resources, such as in relational databases, and using standard database querying 
mechanisms and data mining techniques to access and analyze this information. 

l. Multilevel Databases 
Several researchers have proposed a multilevel database approach to organizing Web-based 
information. The main idea behind these proposal"> is that the lowest level of the database 
contains primitive semi-structured information stored in various Web repositories, such as 
hypertext documents. At the higher level(s) meta data or generalizations are extracted 
from lower levels and organized in structured collections such as relational or object-oriented 
databases. For example, Han, et. al. [ZH95] use a multi-layered database where each layer 
is obtained via generalization and transformation operations performed on the lower layers. 
Kholsa, et. al. [KKS96] propose the creation and maintenance of meta-databases at each 
information providing domain and the use of a global schema for the meta-database. King & 
Novak [KN96] propose the incremental integration of a portion of the schema from each infor­
mation source, rather than relying on a global heterogeneous data.base schema. ARANEUS 
system [PA97] extracts relevant information from hypertext documents and integrates these 
into higher-level derived Web Hypertexts which are generalizations of the notion of database 
views. 

2. Web Query Systems 
There have been many Web-base query systems and languages developed recently that at­
tempt to utilize st andard database query languages such as SQL, structural information a.bout 
Web documents, and even natural language processing for accommodating the types of queries 
that are used in World Wide Web searches. We mention a few examples of these Web-base 
query systems here. W3QL [KS95]: combines structure queries, based on the organization 
of hypertext documents, and content queries, based on information retrieval techniques. We­
bLog [LSS96]: Logic-based query language for restructuring extracted information from Web 
information sources. Lorel [QRS+95] and UnQL [BDS95, BDHS96]: query heterogeneous 
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and semi-structured information on the Web using a labeled graph data model. TSIMMIS 
[CGMH+94]: extracts data from heterogeneous and semi-structured information sources and 
correlates them to generate an integrated database representation of the extracted informa­
tion. 

2.2 Web Usage Mining 

Web usage mining is the type of Web mining activity that involves the automatic discovery of user 
access patterns from one or more Web servers. As more organizations rely on the Internet and the 
World Wide Web to conduct business, the traditional strategies and techniques for market analysis 
need to be revisited in this context. Organizations often generate and collect large volumes of 
data in their daily operations. Most of this information is usually generated automatically by Web 
servers and collected in server access logs. Other sources of user information include referrer logs 
which contains information about the referring pages for each page reference, and user registration 
or survey data gathered via tools such as CGI scripts. 

Analyzing such data can help these organizations to determine the life time value of customers, 
cross marketing .strategies across products, and effectiveness of promotional campaigns, among 
other things. Analysis of server access logs and user registration data can also provide valuable 
information on how to better structure a Web site in order to create a more effective presence for 
the organization. In organizations using intranet technologies, such analysis can shed light on more 
effective management of workgroup communication and organizational infrastructure. Finally, for 
organizations that sell advertising on the World Wide Web, analyzing user access patterns helps in 
targeting ads to specific groups of users. 

Most of the existing Web analysis tools [Inc96, eSI95, net96] provide mechanisms for reporting 
user activity in the servers and various forms of data filtering. Using such tools, for example, 
it is possible to determine the number of accesses to the server and the individual files within 
the organization's Web space, the times or time intervals of visits, and domain names and the 
URLs of users of the Web server. However, in general, these tools are designed to deal handle 
low to moderate traffic servers, and furthermore, they usually provide little or no analysis of data 
relationships among the accessed files and directories within the Web space. 

More sophisticated systems and techniques for discovery and analysis of patterns are now emerg­
ing. These tools can be placed into two main categories, as discussed below. 

2.2.1 Pattern Discovery Tools 

The emerging tools for user pattern discovery use sophisticated techniques from AI, data mining, 
psychology, and information theory, to mine for know ledge from collected data. For example, the 
WEBMINER system [MJHS96, CMS97] introduces a general architecture for Web usage mining. 
WEBMINER automatically discovers association rules and sequential patterns from server access 
logs. In [CPY96] algorithms are introduced for finding maximal forward references and large 
reference sequences. These can, in turn be used to perform various types of user traversal path 
analysis such as identifying the most traversed paths thorough a Web locality. Pirolli et. al. 
[PPR96] use information foraging theory [PC95] to combine path traversal patterns, Web page 
typing, and site topology information to categorize pages for easier access by users. In subsequent 
section we will discuss some of these proposed techniques in more detail. 
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2.2.2 Pattern Analysis Tools 

Once access patterns have been discovered, analysts need the appropriate tools and techniques to 
understand, visualize, and interpret these patterns. Examples of such tools include the Web Viz 
system [PB94] for visualizing path traversal patterns. Others have proposed using OLAP tech­
niques such as data cubes for the purpose of simplifying the analysis of usage statistics from server 
access logs (Dyr97]. The WEBMINER system [MJHS96] proposes an SQL-like query mechanism 
for querying the discovered knowledge (in the form of association rules and sequential patterns). 
These techniques and others are further discussed in the subsequent sections. 

3 Pattern Discovery from W eb Transactions 

As discussed in section 2.2, analysis of how users are accessing a site is critical for determining 
effect ive marketing strategies and optimizing the logical structure of the Web site. Because of 
many unique characteristics of the client-server model in the World Wide Web, including differences 
between the physical topology of Web repositories and user access paths, and the difficulty in 
identification of unique users as well as user sessions or transactions, it is necessary to develop a 
new framework to enable the mining process. Specifically, there are a number of issues in pre­
processing data for mining that must be addressed before the mining algorithms can be run. These 
include developing a model of access log data, developing techniques to clean/filter the raw data 
to eliminate outliers and/or irrelevant items, grouping individual page accesses into semantic units 
(i.e. transactions), integrat ion of various data sources such as user registration information, and 
specializing generic data mining algorithms to take advantage of the specific nature of access log 
data. 

3.1 Preprocessing Tasks 

3.1.1 Data Cleaning 

Techniques to clean a server log to eliminate irrelevant items are of importance for any type of . 
Web log analysis, not just data mining. The discovered associations or reported statistics are only 
useful if the data represented in the server log gives an accurate picture of the user accesses of the 
Web site. Elimination of irrelevant items can be reasonably accomplished by checking the suffix of 
the URL name. For instance, all log entries with filename suffixes such as, gif, jpeg, GIF, JPEG, 
jpg, JPG, and map can be removed. 

A related but much harder problem is determining if there are important accesses that are not 
recorded in the access log. Mechanisms such as local caches and proxy servers can severely distort 
the overall picture of user traversals through a Web site. A page that is listed only once in an access 
log may have in fact been referenced many times by multiple users. Current methods to try to 
overcome this problem include the use of cookies, cache busting, and explicit user registration. As 
detailed in [Pit97], none of these methods are without serious drawbacks. Cookies can be deleted by 
the user, cache busting defeats the speed advantage that caching was created to provide and can be 
disabled, and user registration is voluntary and users often provide false information. Methods for 
dealing with the caching problem include using site topology or referrer logs, along with temporal 
information to infer missing references. 

Another problem associated with proxy servers is that of user identification. Use of a machine 
name to uniquely identify users can result in several users being erroneously grouped together as 
one user. An algorithm presented in [PPR96] checks to see if each incoming request is reachable 
from the pages already visited. If a page is requested that is not direct ly linked to the previous 
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pages, multiple users arc assumed to exist on the same machine. In [CMS97), user session lengths 
determined automatically based on navigation patterns are used to identify users. Other heuristics 
involve using a combination of IP address, machine name, browser agent, and temporal information 
to identify users [Pit97). 

3.1.2 Transaction Identification 

Before any mining is done on Web usage data, sequences of page references must be grouped 
into logical units representing Web transactions or user sessions. A user session is all of the page 
references made by a user during a single visit to a site. Identifying user sessions is similar to the 
problem of identifying individual users, as discussed above. A transaction differs from a user session 
in that the size of a transaction can range from a single page reference to all of the page references in 
a user session, depending on the criteria used to identify transactions. Unlike traditional domains 
for data mining, such as point of sale databases, there is no convenient method of clustering page 
references into transactions smaller than an ent ire user session. This problem has been a<ldressed 
in [CMS97] and [CPY96]. 

[CMS97) assumes that each page reference is used for either navigation purposes to get to 
another page, or information content purposes. Two types of transactions are defined. The first 
type is navigation-content, where each transaction consists of a single content reference and all of 
the navigation references in the traversal path leading to the content reference. These transactions 
can be used to mine for path traversal patterns. The second type of transaction is content-only, 
which consists of all of the content references for a given user session. These transactions can be 
used to discover associat ions between the content pages of a site. A given page reference is classified 
as either navigational or content, based on the time spent on the page. This kind of "page typing" 
is further delineated in [PPR96], where various page types such as index pages, personal home 
pages, etc. are used in the discovery of user patterns. 

[CPY96] defines the concept of maximal f orward reference in order to identify transactions. 
Each transaction is defined to be the set of pages in the path from the first page in the log for a 
user up the page before a backward reference is made. A new transaction is started when the next 
forward reference is made. A forward reference is defined to be a page not already in the set of 
pages for the current transaction. Similarly, a backward reference is defined to be a page that is 
already contained in the set of pages for the current transaction. For example, an access sequence 
of A B C D C B E F E G would be broken into three transactions, i.e. A B C D, A B E F, and A B 
E G. The transactions created with this algorithm are similar to the navigation-content transactions 
of [CMS97] and can be used to mine for path traversal patterns. 

3.2 Discovery Techniques on Web Transactions 

Once user transactions or sessions have been identified as discussed in section 3.1.2, there are several 
kinds of access pattern mining that can be performed depending on the needs of the analyst. Some 
of these discovery techniques are discussed below. 

3.2.1 Path Analysis 

There are many different types of graphs that can be formed for performing path analysis, since 
a graph represents some relation defined on Web pages (or other objects). The most obvious is 
a graph representing the physical layout of a Web site, with Web pages as nodes and hypertext 
links between pages as directed edges. Other graphs could be formed based on the types of Web 
pages with edges representing similarity between pages, or creating edges that give the number of 
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users that go from one page to another [PPR96]. Most of the work to date involves determining 
frequent traversal patterns or large reference sequences from the physical layout type of graph. The 
navigation-content transactions of [CMS97], maximal forward reference transactions of [CPY96], or 
user sessions of [PPR96] can be used for path analysis. Path analysis could be used to determine 
most frequently visited paths in a Web site. Other examples of information that can be discovered 
through path analysis are: 

• 70% of clients who accessed /cornpany/products/file2 .html did so by starting at /company 
and proceeding through /company/whatsnew, /company/products, and 
/cornpany/products/file1.html; 

• 80% of clients who accessed the site started from /company/products; or 

• 65% of clients left the site after four or less page references. 

The first rule suggests that there is useful information in/ company /products/£ ile2 . html, but 
since users tend to take a circuitous route to the page, it is not clearly marked. The second rule 
simply states that the majority of users are accessing the site through a page other than the main 
page (assumed to be /company in this example) and it might be a good idea to include directory 
type information on this page if it is not there already. The last rule indicates an attrition rate for 
the site. Since many users don't browse further than four pages into the site, it would be prudent to 
ensure that important information is contained within four pages of the common site entry points. 

3.2.2 Association Rules 

Association rule discovery techniques [AS94, HS95, SON95, SA95] are generally applied to databases 
of transactions where each transaction consists of a set of items. In such a framework the problem 
is to discover all associations and correlations among data items where the presence of one set of 
items in a transaction implies (with a certain degree of confidence) the presence of other items. In 
the context of Web mining, this problem amounts to discovering the correlations among references 
to various files available on the server by a given client. Each transaction is comprised of a set of 
URLs accessed by a client in one visit to the server. For example, using association rule discovery 
techniques we can find correlations such as the following: 

• 40% of clients who accessed the Web page with URL /company/products/product1 .html, 
also accessed / company /products/product2. html; or 

• 30% of clients who accessed /company/ announcements/ special-offer. html, placed an on­
line order in /company/products/product 1. 

Since usually such transaction databases contain extremely large amounts of data, current 
association rule discovery techniques try to prune the search space according to support for items 
under consideration. Support is a measure based on the number of occurrences of user transactions 
within transaction logs. 

Discovery of such rules for organizations engaged in electronic commerce can help in the de­
velopment of effective marketing strategies. But, in addition, association rules discovered from 
WWW access logs can give an indication of how to best organize the organization's Web space. 
For example, if one discovers that 80% of the clients accessing /company/products and 
/company/products/file! .html also accessed /company/products/file2 .html, but only 30% of 
those who accessed /company/products also accessed / company /products/file2. html, then it is 
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likely that some information in file 1. html leads clients to access f ile2. html. This correlation 
might suggest that this information should be moved to a higher level (e.g., /company/products) 
to increase access to file2 .html. 

3.2.3 Sequential Patterns 

The problem of discovering sequential patterns [MTV95, SA96] is to find inter-transaction patterns 
such that the presence of a set of items is followed by another item in the time-stamp ordered 
transaction set. In '\1/eb server transaction logs, a visit by a client is recorded over a period of time. 
The time stamp associated with a transaction in this case will be a time interval which is determined 
and attached to the transaction during the data cleaning or transaction identification processes. 
The discovery of sequential patterns in Web server access logs allows Web-based organizations to 
predict user visit patterns and helps in targeting advertising aimed at groups of users based on 
these patterns. By analyzing this information, the Web mining system can determine temporal 
relationships among data items such as the following: 

• 30% of clients who visited /company/products/, had done a search in Yahoo, within the past 
week on keyword w; or 

• 60% of clients who placed an online order in /company/products/product! .html, also placed 
an online order in / company1/products/product4 within 15 days. 

Another important kind of data dependency that can be discovered, using the temporal char­
acteristics of the data, are similar time sequences. For example, we may be interested in finding 
common characteristics of all clients that visited a particular file within the time period [t1, t2]- Or, 
conversely, we may be interested in a time interval (within a day, or within a week, etc.) in which 
a particular file is most accessed. 

3.2.4 Clustering and Classification 

Discovering classification rules [MAR96, CS96, HCC93, WK91) allows one to develop a profile of 
items belonging to a particular group according to their common attributes. This profile can then 
be used to classify new data items that arc added to the database. In Web mining, classification 
techniques allow one to develop a profile for clients who access particular server files based on 
demographic information available on those clients, or based on their access patterns. For example 
classification on WWW access logs may lead to the discovery of relat ionships such as the following: 

• clients from state or government agencies who visit the site tend to be interested in the page 
/company/products/product1.html;or 

• 50% of clients who placed an online order in /company/products/product2, were in the 
20-25 age group and lived on the West Coast. 

In some cases, valuable information about clients can be gathered by the server automatically 
from the client browsers. This includes information available on the client side in the history files, 
cookie files, etc. Other methods used to obtain profile and demographic information on clients 
include user registration, online survey forms, and techniques such as "anonymous ticketing" [Inc96). 

Clustering analysis [KR90, Fis95, NH94] allows one to group together clients or data items that 
have similar characteristics. Clustering of client information or data items on Web transaction 
logs, can facilitate the development and execution of future marketing strategies, both online and 
off-line, such as automated return mail to clients falling within a certain cluster, or dynamically 
changing a particular site for a client, on a return visit, based on past classification of that client. 
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4 Analysis of Discovered Patterns 

Web site administrators are extremely interested in questions like "How are people using the site?", 
"Which pages are being accessed most frequently?", etc. These questions require the analysis of 
the structure of hyperlinks as well as the contents of the pages. The end products of such analysis 
might include 1) the frequency of visits per document, 2) most recent visit per document, 3) who 
is visiting which documents, 4) frequency of use of each hyperlink, and 5) most recent use of each 
hyperlink. 

The discovery of Web usage patterns, carried out by techniques described earlier, would not 
be very useful unless there were mechanisms and tools to help an analyst better understand them. 
Hence, in addition to developing techniques for mining usage patterns form Web logs, there is a need 
to develop techniques and tools for enabling the analysis of discovered patterns. These techniques 
are expected to draw upon from a number of fields including statistics, graphics and visualization, 
usability analysis, and database querying. In this section we provide a survey of the existing tools 
and techniques. Usage analysis of Web access behavior being a very new area, there is very little 
work in it, and correspondingly this survey is not very extensive. 

4.1 Visualization Techniques 

Visualization has been used very successfully in helping people understand various kinds of phe­
nomena, both real and abstract. Hence it is a natural choice for understanding the behavior of 
Web users. Pitkow, et al [PB94] have developed the Web Viz system for visualizing WWW access 
patterns. A Web path paradigm is proposed in which sets of server log entries are used to extract 
subsequences of Web traversal patterns called Web paths. Web Viz allows the analyst to selectively 
analyze the portion of the Web that is of interest by :filtering out the irrelevant portions. The Web 
is visualized as a directed graph with cycles, where nodes are pages and edges are (inter-page) 
hyper links. 

The visualization is composed of two windows, the Web Viz control window and the display 
window [PB94]. The first provides the analyst with controls to adjust the bindings, select a specific 
time to view, control the animation, and rearrange the layout. The second window's arrangement 
allows a document's access frequency to be represented by the width of the node representing it, 
while the node's color represents it recency of access. Link width and color have corresponding 
meanings. Temporal manipulation is achieved by either the slider of by playback controls. 

4.2 OLAP Techniques 

On-Line Analytical Processing (OLAP) is emerging as a very powerful paradigm for strategic 
analysis of databases in business settings. Some of the key characteristics of strategic analysis 
include 1) very large data volume, 2) explicit support for the temporal dimension, 3) support 
for various kinds of information aggregation, and 4) long-range analysis, where overall trends are 
more important than details of individual data items. While OLAP can be performed directly on 
top of relational databases, industry has developed specialized tools to make it more efficient and 
effective, e.g. [Adv97]. Also, the research community has recently demonstrated that the functional 
and performance needs of OLAP require that new information structures be designed. This has led 
to the development of the data cube information model [GBLP96], and techniques for its efficient 
implementation [HRU96, SDNR96, AAD+96]. 

Recent work [Dyr97] has shown that the analysis needs of Web usage data have much in 
common with those of a data warehouse, and hence OLAP techniques are quite applicable. The 
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access information in server logs is modeled as an append-only history, which grows over time. A 
single access log is not likely to contain the entire request history for pages on a server, especially 
since many clients use a proxy server. Because information on access requests will be distributed, 
and there is a need to integrate it. Since the size of server logs grows quite rapidly, it may not 
be possible to provide on-line analysis of all of it. Therefore, there is a need to summarize the log 
data, perhaps in various ways, to make its on-tine analysis feasible. Making portions of the log 
selectively (in)visible to various analysts may be required for security reasons. These requirements 
for Web usage data analysis show that OLAP techniques may be quite applicable, and this issue 
needs further investigation. 

4.3 Data & Knowledge Querying 

One of the reasons attributed to the great success of relational database technology has been the 
existence of a high-level, declarative, query language, which allows an application to express what 
conditions must be satisfied by the data it needs, rather than having to specify how to get the required 
data. Given the large number of patterns that may be mined, there appears to be a definite need for 
a mechanism to specify the focus of the analysis. Such focus may be provided in at least two ways. 
First, constraints may be placed on the database (perhaps in a declarative language) to restrict the 
portion of the database to be mined for, e.g. [MJHS96]. Second, querying may be performed on the 
knowledge that has been extracted by the mining process, in which case a language for querying 
knowledge rather than data is needed. An SQL-like querying mechanism has been proposed for the 
WEBMINER system [MJHS96], details of which are provided in section 5. 

4.4 Usability Analysis 

Research in human-computer interactions (HCI) has recently started developing a computational 
science of usability [GSB+94]. The principal goal of this effort is develop a systematic approach to 
usability studies by adapting the rigorous experimental method of a computational science. The 
first step is to develop instrumentation methods which collect data about software usability, in a 
manner akin to instrumentation that has been done for analyzing performance. This data is then 
used to build computerized models and simulations which explain the data. Finally, various data 
presentation and visualization techniques are used to help analyst understand the phenomenon. 
This approach can also be used to model the browsing behavior of users on the Web. 

As described in this section, there is an increasing need for, as well as interest in, developing 
techniques and tools to analyze the usage patterns of information on the Web. Some initial ideas 
have been proposed, but are still in their nascent stages and much work remains to be done. We 
believe that the techniques which are most effective will include the following characteristics: (i) 
will be data driven empirical methods, (ii) will use vast amounts of data for validation, (iii) will 
use rigorous experimental methods and sound statistical analysis, etc. 

5 Web Usage Mining Architecture 

We have developed a general architecture for Web usage mining which is presented in [MJHS96] 
and [CMS97]. The WEBMINER is a system that implements parts of this general architecture. 
The architecture divides the Web usage mining process into two main parts. The first part includes 
the domain dependent processes of transforming the Web data into suitable transaction form. 
This includes preprocessing, transaction identificat ion, and data integration components. The 
second part includes the largely domain independent application of generic data mining and pattern 
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Figure 2: A General Architecture for Web Usage Mining 

matching techniques (such as the discovery of association rule and sequential patterns) as part of 
the system's data mining engine. The overall architecture for the Web mining process is depicted 
in Figure 2. 

Data cleaning is the first step performed in the Web usage mining process. Any of the cleaning 
techniques discussed in section 3.1.1 can be used to preprocess a given Web server log. Cur­
rently, the WEBMINER system uses the simplistic method of checking filename suffixes. Some low 
level data integration tasks may also be performed at this stage, such as combining multiple logs, 
incorporating referrer logs, etc. 

After the data cleaning, the log entries must be partitioned into logical clusters using one or a 
series of transaction identification modules. The clean server log can be thought of in two ways; 
either as a single transaction of many page references, or a set of many transactions each consisting 
of a single page reference. The goal of transaction identification is to create meaningful clusters of 
references for each user. Therefore, the task of identifying transactions is one of either dividing a 
large transaction into multiple smaller ones or merging small transactions into fewer larger ones. 
This process can be extended into multiple steps of merge or divide in order to create transactions 
appropriate for a given data mining task. A transaction identification module can be defined as 
either a merge or a divide module. Both types of modules take a transaction list and possibly some 
parameters as input, and output a transaction list that has been operated on by the function in the 
module in the same format as the input. The requirement that the input and output transaction 
format match allows any number of modules to be combined in any order, as the data analyst sees 
fit. The WEBMINER system currently has reference length, maximal forward reference, and time 
window divide modules, and a time window merge module. 

Access log data may not be the only source of data for the Web mining process. User registra­
t ion data, for example, is playing an increasingly important role, particularly as more security and 
privacy conscious client-side applications restrict server access to a variety of information, such as 
the client user IDs. The data collected through user registration must then be integrated with the 
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access log data. There are also known or discovered attributes of references pages that could be 
integrated into a higher level database schema. Such attributes could include page types, classifi­
cation, usage frequency, page meta information, and link structures. While WEBMINER currently 
does not incorporate user registration data, v-c:trious data integration issues are being explored in 
the context of Web usage mining. For a study of data integration in databases see [LHS+95]. Once 
the domain-dependent data transformation phase is completed, the resulting transaction data must 
be formatted to conform to the data model of the appropriate data mining task. For instance, the 
format of the data for the association rule discovery task may be different than the format necessary 
for mining sequential patterns. 

Finally, a query mechanism will allow the user (analyst) to provide more control over the 
discovery process by specifying various constraints. The emerging data mining tools and systems 
lead naturally to the demand for a powerful data mining query language, on top of which many 
interactive and flexible graphical user interfaces can be developed [HFW+96]. Some guidelines for a 
good data mining language were proposed in [HFW+96], which among other things, highlighted the 
need for specifying the exact data set and various thresholds in a query. Such a query mechanism 
can provide user control over the data mining process and allow the user to extract only relevant 
and useful rules. In WEBMINER, a simple Query mechanism has been implemented by adding 
some primitives to an SQL-like language. This allows the user to provide guidance to the mining 
engine by specifying the patterns of interest. 

As an example, consider a situation where the user is interested in the patterns which start with 
URL A, and contain B and C in that order, this pattern can be expressed as a regular expression 
A*B*C*. To sec how this expression is used within a SQL-like query, suppose further that the analyst 
is interested in finding all such rules with a minimum support of 1 % and a minimum confidence of 
90 %. Moreover, assume that the analyst is interested only in clients from the domain . edu, and 
only wants to consider data later than Jan 1, 1996. The query based on these parameters can be 
expressed as follows: 

SELECT 
FROM 

association-rules(A*B*C*) 
log.data 

WHERE date>= 960101 AND domain= "edu" AND 
support= 1.0 AND confidence= 90.0 

This information from the query is used to reduce the scope, and thus the cost of the mining 
process. The development of a more general query mechanism along with appropriate Web-based 
user interfaces and visualization techniques such as those discussed in section 4, are planned in the 
future revisions of the WEBMINER system. 

6 Research Directions 

The techniques being applied to Web content mining draw heavily from the work on information 
retrieval, databases, intelligent agents, etc. Most of these techniques are well known and reported 
elsewhere, hence in this survey we have not focused on Web content mining. Hence, in this survey 
we have focused on Web Usage Mining, which is just starting as an area of research, and hence has 
a number of open issues. In the following we provide some directions for future research: 

6.1 Data Pre-Processing for Mining 

Web usage data is collected in various ways, each mechanism collecting attributes relevant for 
its purpose. There is a need to pre-process the data to make it easier to mine for knowledge. 
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Specifically, we believe the following issues need to be addressed: 

1. Instrumentation & Data Collection: Clearly improved data quality can improve the 
quality of any analysis on it. A problem in the Web domain is the inherent conflict between 
the analysis needs of the analysts (who want more detailed usage data collected), and the 
privacy needs of users (who want as little data collected as possible). This has lead to the 
development of cookie files on one side and cache busting on the other. The emerging OPS 
standard on collecting profile data may be a compromise on what can and will be collected. 
However, it is not clear how much compliance to this can be expected. Hence, there will be 
a continual need to develop better instrumentation and data collection techniques, based on 
whatever is possible and allowable at any point in time. 

2. Data Integration: Portions of Web usage data exist in sources as diverse as Web server logs, 
referral logs, registration files, and index server logs. Intelligent integration and correlation of 
information from these diverse sources can reveal usage information which may not be evident 
from any one of them. Techniques from data integration [LHS+9S] should be examined for 
this purpose. 

3. Transaction Identification: Web usage data collected in various logs is at a very fine 
granularity. Hence, while it has the advantage of being extremely general and fai rly detailed, 
it also has the corresponding drawback that it cannot be analyzed directly, since the analysis 
may start focusing on micro trends rather than on the macro trends. On the other hand, 
the issue of whether a trend is micro or macro depends on the purpose of a specific analysis. 
Hence, we believe there is a need to group individual data collection events into groups, called 
Web transactions [CMS97], before feeding it to the mining system. While [MJHS96, CPY96, 
CMS97] have proposed techniques to do so, more attention needs to be given to this issue. 

6.2 The Mining Process 

The key component of Web mining is the mining process itself. As discussed in this paper, Web 
mining has adapted techniques from the field of data mining, databases, and information retrieval, 
as well as developing some techniques of its own, e.g. path analysis. A lot of work still remains 
to be done in adapting known mining techniques as well as developing new ones. Specifically, the 
following issues must be addressed: 

1. New Types of Knowledge: Web usage mining studies reported to date have mined for 
association rules, temporal sequences, clusters, and path expressions. As the manner in which 
the Web is used continues to expand, there is a continual need to figure out new kinds of 
knowledge about user behavior that needs to be mined for. 

2. Improved Mining Algorithms: The quality of a mining algorithm can be measured both 
in terms of how effective it is in mining for knowledge and how efficient it is in computational 
terms. There will always be a need to improve the performance of mining algorithms along 
both these dimensions. 

3. Incremental Web mining: Usage data collection on the Web is incremental in nature. 
Hence, there is a need to develop mining algorithms that take as input the existing data and 
mined knowledge, and the new data, and develop a new model in an efficient manner. 
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4. Distr ibuted Web mmmg: Usage data collection on the Web is distributed by its very 
nature. If all the data were to be integrated before mining, a lot of valuable information 
could be extracted. However, an approach of collecting data from all possible server logs is 
both non-scalable and impractical. Hence, there needs to be an approach where knowledge 
mined from various logs can be integrated together into a more comprehensive model. 

6.3 Analysis of Mined Knowledge 

The output of knowledge mining algorithms is often not in a form suitable for direct human con­
sumption, and hence there is a need to develop techniques and tools for helping an analyst better 
assimilate it. Following are some of the issues tbat need to be addressed in this area: 

l. Usage Analysis Tools: There is a need to develop tools which incorporate statistical meth­
ods, visualization, and human factors to help better understand the mined knowledge. Section 
4 provided a survey of the current literature in this area. 

2. Interpretation of Mined Knowledge: One of the open issues in data mining, in general, 
and Web mining, in particular, is the creation of intelligent tools that can assist in the 
interpretation of mined knowledge. Clearly, these tools need to have specific knowledge about 
the particular problem domain to do any more than filtering based on statistical attributes 
of the discovered rules or patterns. In Web mining, for example, intelligent agents could 
be developed that based on discovered access patterns, the topology of the Web locality, 
and certain heuristics derived from user behavior models, could give recommendations about 
changing the physical link structure of a particular site. As a simple example, consider an 
agent that (among other things) looks at the difference between the visit frequency for a 
particular page and the number of frequent user paths ending in that page. This difference 
could be used to determine if the page constitutes an entry point. This may suggest the other 
navigational links should be placed on that page to increase traffic to other clusters of pages. 

7 Conclusion 

As the popularity of the World Wide Web cont inues to increase, there is a growing need to develop 
tools and techniques that will help improve its overall usefulness. Since one of the principal goalc;; of 
the Web is to act as a wor-ld-wide distributed information resource, a number of efforts arc underway 
to develop techniques that will make it more useful in this regard. The term Web mining has been 
used to refer to different kinds of techniques that encompass a broad range of issues. However, while 
meaningful and attractive, this very broadness has caused Web mining to mean different things 
to different people [HFW+96, MJHS96], and there is a need to develop a common vocabulary for 
all these efforts. Towards this goal, in this paper we proposed a definition of Web mining, and 
developed a taxonomy of the various ongoing efforts related to it. Then we presented an brief 
survey of the research in this area. Next, we concentrated on the aspect of Web mining which 
focuses on issues related to understanding the behavior of Web users, called Web usage mining. 
We provided a detailed survey of the efforts in this area, even though the survey is short because 
of the area's newness. We provided a general architecture of a system to do Web usage mining, 
and identified some of the issues and problems in this area that may require further research and 
development. 
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Sensor Explication: 
Knowledge-Based Robotic Plan Execution 

through Logical Objects 
John Budenske and Maria Gini 

Ah.itracl.- Comp lex robot tas ks are usually described as 
high-level goals, w ith no details on how to achieve them . 
However, details must be provided to generate prim it ive 
commands to control a real robot. A sensor explication 
concept, that makes details explicit from general commands, 
is presented. 

W e show how t he transformation from high-level goals to 
primitive commands can be performed at execution time 
and we propose an architecture based on reconfigurable ob­
jects that contain domain knowledge and knowledge about 
the sensors and actuator s available. Our approach is based 
on two premises: (1) plan execution is an information gath­
ering process where det ermining what information is rele­
vant is a great part of the process; and (2) plan execution 
requires that many details are made explicit. 

We show how our approach is used in solving the t ask of 
moving a robot to and through an unknown, and possibly 
narrow, doorway wher e sonic range data is used to find the 
doorway, walls, and obst acles. We illustrate the difficulty of 
s uch a task u sing data from a large number of experiments 
we conducted wit h a real mobile robot. The laboratory 
r esults illustrate how the prop er application of knowledge 
in the integration and ut ilization of sensors and actuators 
increases the robustness of plan execution. 

Keywords- pl:tn execution for robots, knowledge based 
sensing, o bject-oriented design. 

I. INTRODUCTION 

Today's system designers arc addre.ssing more and more 
complex problems to solve applications such as robotk_c; 
[l], [2], [3), adaptive intelligent systems [4], [5), [6), and 
manufacturing control systems [7]. 

These are challenging domains because the environment 
is dynamic (objects can move in unpredictable ways, and 
therr. are multiple independent entities), sensor data an~ 
noisy, there are multiple and sometimes conflicting goals, 
and decisions must be made in real-time. This requires a 
tight but fle>,.-iblr. coupling of perception to action and the 
ability to take advantage of opportunities that appr.ar in 
the environment. 

The real-time requirement and the unpredictability of 
the environment make it impossible for a system to obtain 
complete knowledge of the environment such as to enable 
globally optimal decisions. So, actions must be selected 
using only limited, most ly local information. The major 
difficulty is in controlling and coordinating all the compo-
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nents of the system (sensors, sensor processing units, de­
cision units, actuators, and actuator drivers) so that the 
global goals are achieved using the resources available. 

Detecting achievement of goals is difficult. This is further 
hampered when goals already ac.bieved become unachieved 
because of other actions (a stack of blocks might fall down 
because of a movement of a robot) or because of uncon­
t rollable changes in the environment (a door waci unlocked 
but someone locks it while the robot is inspecting another 
part of the building so that the robot cannot opcm it). 

In this paper we describe a coherent approach to the ex­
ecution of plans which allows specification, coordination, 
and control of a variety of sensors and actuators in a flex­
ible architecture that we caJI a Logical Sensor/Act1tator 
(ISA). The implementat ion of our solution resulted in an 
object oriented system called the Logical Sensor/ Actuator 
Testbed. The testbed contains a library of reusable and re­
configurable sensor and actuator processing entities. The 
design is easy to extend to other sensors or robots and to 
adapt to simulation systems. 

We have focused our investigation on a particular do­
main where the robot is given a high-level detail-less plan, 
such as "move through a doorway", that bas to be exe­
cuted in a changing and only partially known environment. 
Many characteristics in the environment (unknown infor­
mation, noisy data, etc.) provide variability. Variability 
not only provides difficulties that must be overcome, but 
also opportunities to apply knowledge and develop strate­
gi<>.s. The task requires precision beyond that of any given 
single sensor, and requires the combination and interaction 
of multiple sensors, so providing a rich domain of interac­
tion, abstraction, and application of knowledge. 

IT. T HE A PPJ.ICATION: RonoT, SENSORS, ACTUATORS, 

AND KNOWLEDGE 

A large part of our civilized world is unstructured and 
dynamic. This fact has been one of the leading obstacles 
to mass-quantity introduction of robots into everyday life. 
Though there are factories and buildings in which highly 
structured environments have been introduced for easy in­
tegration of robots, the ratio of unstructured to structured 
environments will always be high. Thus, society's utiliza­
tion of robotics will depend upon the ability of robots to 
move safely in these unstructured environments. 

The variability of the environment makes it impractical 
to develop very detailed plans of actions before execution. 
The environment might change before execution begins and 
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thus invalidate the plan. Attempting to determine, prior to 
execution, everything needed to achieve a goal across the 
domain of goals, environment states, and sensor availability 
would be an endless task. It makes more sense to develop, 
before execution, a high-level plan of what generally should 
be accomplished, and then generate the necessary explicit 
details during execution. 

Thus, we are faced with a problem: how can a robot 
accomplish its goals and still remain reactive to its envi­
ronment? Many approaches have been proposed to make 
robots reactive [8], [9] and to combine planning with reac­
tivity [1], [10], [11]. 

Our research has focused on determining what knowl­
edge about sensors, actuators, and processes is necessary 
for their effective utilization and how to use this knowledge 
to dynamically reconfigure the flow of data from sensors 
into actuators. This process of monitoring sensors, collect­
ing data, and using the data to further guide the robot 
through execution must, at the same time, remain reac­
tive to the external world and also achieve high-level goals. 
We call this process sensor explication1 which we define as 
_qeneratin_q from high-level commands e.'Eplicit and detailed 
commands for the sensor and actuatorfi. 

Instead of "directed control from a prespecified plan" 
the process could be described as "directive reaction to en­
vironmental changes during pursuit of a high-level goal". 
The centraJ researd1. question is determining how to trans­
form a given "goal" into an explicit representation of "what 
is necessary to achieve the goal". 

Suppose a mobile robot is given the task of finding a 
doorway and passing through it. The task can be decom­
posed into the sub-tasks of finding the doorway, tracking 
it during approach, and then passing through it [12]. 

Suppose the sensors available to the robot are ultrasonic 
sensors, placed all around the robot to give it a 360° cover­
age of the surrounding environment. Finding the doorway 
is more than just looking for a "sonic hole" signifying no 
object reflections in the sensor stream. The pattern of a 
short distance, Jong distance, short distance (or variation 
thereof) can be attributed to many natural indoor struc­
tures as well as to the general occurrence of noise. The 
real problem comes when the robot finds something that 
looks like a doorway. How can the robot verify that it is 
indeed a doorway? To illustrate this point, let us first play 
a game of "Find the Doorway" (please don't look at the 
even numbered figures yet!). 

Figures 1, 3, 5 show the re,sult of collecting a snapshot 
of ultra-sonic readings from a ring of 24 sensors. The data 
are collected as an array of 24 readings (x, y, 0, distance), 
where x and y are the position of t.he center of the sensor 
ring on the robot, 0 is the angle from the front of the robot 
t.o the direction of the sensor, and distance is the returned 
range calculated from the time-of-flight to the object off 
which the sonar beam is bouncing. 

Sonar data are illustrated by drawing the robot (the 

1from the Webster's dictionary - noun: (origin 1531) 1: to give 
a detailed explanation of 2: to develop the implications of: analyze 
logically 

F ig. 1. Sonar data for Case l. The robot is in a doorway with 
objects at various distances. The sonar returns are shown as arcs 
connected by lines through their centers. 

Fig. 2. Sonar data for Case l superimposed on a map of the room. 
The data match closely the walls and furniture in the room and 
the doorway is easy to find . 

black square, where the notch indicates the robot's front), 
and plotting for each sensor an arc at the corresponding 
angle and range at which reflections appear to bounce off 
objects. An arc is used since any object in the sensor's 
cone (30°) can return the sound signal2 . To further illus­
trate the data, a line is drawn from the midpoint of each 
arc to t he next. The resulting outline is a visualization of 
the "open" space around the robot. 

Now, examine this visualization and "guess" the location 
of the doorway. Once you have decided, look at Figures 
2, 4, 6, which have a layout of the room superimposed 
on the original visualization. The game for Figure 1 is 
easy, but Figures 3 and 5 show how the doorway can be 

2 Actually, the sensor beam's footprint is far more complex than a 
cone, but for this illustration, the simplicity of a cone allows for better 
understanding. 
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Fig. 3. Sonar data for Case 2. T he robot is facing a wall with a 
doorway slightly to the right of the robot. The doorway is barely 
visible in the sonar data. 

Fig. 4. Sonar data for Case 2 superimposed on a map of the room. 
The doorway is barely visible in the sonar data. A ghost door, 
caused by reflections, appears to the left front of the robot. The 
openings to the right and in the back of the robot could be mis­
taken for doorways. 

missed. Unfortunately, the sensed data are not always as 
clean as in Figure 1. The last set of figures shows the 
effect of physical interaction between the sensor beam and 
surrounding structures. This "noise" (that we call a ghost 
(/,oor) was consistently present in our experiments until the 
robot moved, changing its physical relationship with the 
environment. Of course moving the robot is not always 
desirable, since it increases its positional error and might 
interfere with other parts of the task. 

Detecting the doorway is just the beginning. When 

Fig. 5. Sonar data for Case 3. The robot is facing an opening. 

Here It Is! 

Fig. 6. Sonar data for Cas() 3 superimposed on a map of the room. 
There is an opening in front of the robot. A ghost door, caused by 
reflections, appears to the left rear of the robot. The doorway on 
the left side of the robot is practically invisible. The openings in 
front and to the right of the robot could be mistaken for doorways. 

tracking the doorway, it is easy to lose it and find it again 
later. If this occurs, is the robot sensing a ghost door or a 
real one? Even if the robot could sense exactly where the 
doorway is, moving to and through it can cause other er­
rors. Suppose the bumpers make contact with something. 
Is this conclusive evidence that there is no doorway? Or 
does it only mean that there is something between the 
robot and the doorway? What does it mean to have the 
bumper contact something when the robot should be pass­
ing through the doorway? Is the robot misaligned to the 
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opening? Is it farther through the opening than previously 
thought? Is the doorway too small for passage? Is the door 
in the way? Or is there an object obstructing the pathway? 

One possible solution would be to use more accurate sen­
sors and more precise dead-reckoning. However, no matter 
how accurate the measurements are, there will always be 
situations in which they are not sufficiently accurate, and 
increasing accuracy in general comes at additional cost that 
might not be justified by the application. 

Overall, there are a number of things that could happen 
or go wrong as the robot searches for, tracks, and maneu­
vers through the doorway. Each situation calls for a differ­
ent response, and the real problem is not so much what the 
response strategy should be, but what the situation is. Of­
ten extensive interaction with the environment is necessary 
just to collect information for assessing the situation. 

Expect ing the execution to always go right is futile. Er­
rors will occur, and unexpected events will get in the way 
of success. Gat [13] usf>.'l the concept of "cognizant fail­
ure", or failures which can he monitored for, detected, and 
thus recovered from. Monitoring for errors is actually mon­
itoring for deviations from the normal expected processing. 
Thus, design for cognizant failure must lead to design for 
"anticipatory deviation". Not only must you realize that 
something failed, but the control must anticipate the devi­
ation from the norm and be ready to resolve it. Knowledge 
on what and when to monitor, and on hO\•.r to resolve dis­
crepancies is key to our approach. 

Our experiences have led us to the conclusion that as the 
robot tackles each task and subtask, the situations encoun­
tered cannot simply be addressed by a single algorithm. 
Multiple algorithms, multiple sensing, and multiple strate­
gies appear to be the course of action. 

Ill. CONCEPTUAL EXPLANATION: SBNSOR 

EXPLICATION 

To be executed, a task must explicitly specify how to 
utilize the sensors and actuators. For the same goal, differ­
ent environment situations may require different sensors, 
different programming and control of the sensors, and dif­
ferent strategics. Decause this transformation process de­
pends on the current situation it must occur at e.xecution 
time. Essentially, Sensor Explication requires: 

1. Identifying the information needed for execution. 
Sensor Explication must deal with the question of 
"what information is relevant and thus is needed in 
order to execute this goal?". The first step in our ap­
proach is to use domain knowledge to abstract from 
the given goal its information needs. To put it an­
other way, the goal "ad1ieve X" is replaced by explicit 
knowledge on "how to achieve X" and "how to inter­
act with the sensors and actuators which provide the 
information needed to achieve X". This is what we call 
Relevant-Information-Need. This requires: 

(a) determining the information necessary to accom­
plish the goal. This depends on the current state, 
the availability of sensors and actuators, and the 
goal informational needs; 

(b) decomposing the goal into sub-goals. Sensor Expli­
cation must capture the relationship between goals, 
current situations, and information needs. The 
choice of how to decompose a goal into sub-goals 
is contingent on the current situation and often re­
quires additional information which might have to 
be collected before the decomposition can be com­
pleted. 

2. Finding and controlling sources of information. Sen­
sor Explication must deal with the question of "what 
details of using sensors, actuators, and processes are 
necessary to execute this goal?" In our approach tho 
knowledge on "how to achieve X" is coupled with 
knowledge about sensors, actuators, and processes, 
and knowledge about what parameters will satisfy 
the information need This is what we call Utilization­
Detail. This is accomplished by: 

(a) selecting the source of information and collecting 
it. Executing primitive commands on smsors or ac­
tuators allows the system to collect the relevant in­
formation; 

(h) detecting and resolving conflicts between sub-goals. 
Some minor conflicts (such as contention for the 
same resource) can be resolved locally with sim­
ple scheduling, others rnquire more complicated rea­
soning and even changing the way a sub-goal is 
achieved. 

(c) activating a feedback control loop to control sensors 
and actuators. A changing environment requires the 
system to be continuously react ive. This forces the 
system to constantly collect information and inte­
grate it back into the execution process and continu­
ously reselect appropriate Utilization-Detail values. 

(d) monitoring to detect goal accomplishment and er­
ror conditions. Information relevant to determining 
goal accomplishment and error conditions is deter­
mined first. Then that information is monitored for 
the occurrence of the anticipated situations. 

We have utili1,ed the concept of Logical Sem,ors. A Logi­
cal Sensor [14] contains both a declarative description of the 
sensor and procedures to control it. Logical Sensors are ab­
stracted views of sensors and sensor processing, much like 
how logical 1/0 is used to insulate the user from the differ­
ences of 1/0 devices and operating systems. The specifics 
of the implementation can change without affecting the 
symbolic-level control system. This allows for easier sen­
sor system reconfiguration, both as a means of providing 
greater tolerance for sensor failure, and to enhance incre­
mental development of additional sensing and procf>.'lsing 
devices. 

We have expanded the concept of Logical Sensors to also 
include Logical Actuators, and incorporated it into Log­
ical Sensor/ Actuator (LSA) objects. LSAs are plan exe­
cution entities, each of them corresponding to an explicit 
goal. Sensor Explication is ba.~ically a process of creating 
and manipulating these entit,ies by activating/deactivating 
them and manipulating the flow of information between 
them. Thus, as the world changes, the ent.it if>.'l that pro-



nunENSl( I!: ANO CINI: SF,NSOH f,XPLICATION 

Primary Btha vlor Suttlcient Descriptloo 

P'rettda.ra.l lu•wlrdgt-onbew DtduatittkM•-W•"' be•W 
lo Mdlie¥c ltw,,......,.,. io,al 11tiln and intcrlK1 widii tlm .. jut 

Struclurrs and Mechanisni.~ for Stn.wr ExJ)flcat.ion 

OiilJifJowl _ - - - - --- - - --- - - ~ 

Strudurb Ind Mtt:banism., for int~raction •itb othr objtcts 

Ceatrol l>c.u& Ml 

Fig. 7. The Logical Sensor/ Actuator Object. 

vide information and the datapaths between them change. 
Ily defining Sensor Explication in terms of object inter­

actions, th<? LSA architecture evolves from simply "plan 
translation into robotic cock" to "c:oor<linat.ion of intelli­
gent plan execution objects". 

For example, the high-level goal of turning the robot 
towards a moving object could be defined as a feedback 
control with little knowledge used within decomposing, de­
termining, and selecting. The high-level goal of moving the 
robot through a doorway requires decomposing, determin­
ing, <let0cting and resolving conflicts. Sensor Explication 
decomposes the goal into the lower level goals of finding 
the doorway, moving towards it, as well as feedback con­
trol mapping of sensor-sweeping an area, searching for the 
doorway until found, and progressively moving through the 
doorway until clearing it. More details on this example are 
given later. 

IV. SYSTEM DESIGN: LOGICAL SENSOR/ ACTUATOR 
OBJECTS 

We developed an object oriented architecture for Sen­
sor Explication built around the concepts outlined in the 
previous section, and we have implemented it in an object­
oriented programming environment. This resulted in a flex­
ible tt>~9tbed. The testbed is a collection of reconfigurable 
objects and flexible component structures which can be 
combined to achieve high-level goals through execution. A 
general object is shown in Figure 7. 

Within the LSA object definition, there arc four major 
sub-components: (1) Primary Behavior; (2) Sufficient De­
scription; (3) Structures and mechanisms for explication; 
and (4) Structurns and mechanisms for interaction with 
other objects. They are layered into three levels. At the 
lowest level arc the mechanisms for interacting with other 
objects. The middle level contains the mechanisms for ex­
plication. These mechanisms utilize the lowest level to in­
teract with other LSAs. The top level includes the object's 
Primary Behavior and Sufficient Dt>.scription. The Primary 
Beh:wior defines the actions which this LSA takes, and the 
Sufficient Descript ion includes, in a declarative form, the 
information needed by other LSAs to utilize this object. 

The LSA object definition has three types of dataflow 
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which pass through it. The first is relevant informat ion 
from non-subordinate LSAs to controlling LSAs. This is 
t he primary dataflow path where sensor data (raw or pro­
ce.ssed) pass through the LSA, and arc used to s0t up the 
lowest level feedback control loops in the architecture. The 
second is relevant informat ion from subordinate LSAs to a 
controlling LSA. This path is where internal state informa­
tion passes from one LSA to another LSA in sud1 a way 
to be used for control decisions. The third path is used for 
control details from controlling to subordinate LSAs. This 
is the control flow path. 

V. IMPLEMENTATION OF TIIB T1-;STBBD 

The testbed is implemented on a SUN SPARC 4/330 
computer which interacts with a TRC Labmate mobile 
robot (nicknamed "Eric the Red") over two separate serial 
Jines. The system is comprised of 33K of documented lines 
of code written in C, Lucid Common Lisp with the Com­
mon Lisp Object System and Lisp View windowing system. 

The architecture is implemented as a hierarchy of object 
classes, as shown in Figure 8. The upper part of the hi­
erarchy (not shown) defines the components that are used 
in the definition of a general LSA object. The lower part 
of the object class hierarchy (shown) defines sub-classes 
organized by overall LSA behavior. The leaf sub-classes 
(grouped into boxes) correspond to the actual classes used 
during the system execution. The individual LSAs in the 
examples shown later resulted from making instantiations 
of these non-generic object classes. The six primary sub­
classes of LSA are explained next. 

A. Six S1Lb-Classes of Logical Sensor/Actuator Objects 

The LSA class has been divided into six sub-classes, five 
major and one used as a special collection point for in­
formation about entities in the robot's environment. The 
primary difference betwe<m the sub-classes is in how the 
Sensor Explication process is implemented and how the 
dataflow is handled. 

£-Controller. The class of L-Controller represents the 
Sensor Explication process in its entirety, where the 
Primary Dehavior method actually contains the Sen­
sor Explication algorithms. The L-Controller runs the 
Sensor Explication process and utilizes other LSAs to 
accomplish its goal. Ea<:'h instance of L-Controller bas 
a different goal and thus each contains a different col­
lection of domain knowledge that is used by the Sen­
sor Explication process. Internal knowledge is divided 
into: (1) how to control the subordinate LSAs given 
the goal and the current situation (input to the L­
Controller from its subordinates); and (2) what LSA's 
to select to satisfy a R.elev.:l.llt-lnformation-Need. An 
internal mapping is maintained between the Relevant­
Information-Needs identified internally and the exter­
nal LSA's which provide input for each need. Since 
LSAs can be built hierarchically, L-Controllcrs act 
as building blocks. The subordinate LSAs of an L­
Controllcr can be any of the six sub-classes of LSA, 
including other L-Controllcrs. 
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LSA 

~!~ 
L-Sensor L-Driver L-Controller 

11 ~ 
L-Sen-Detector 

4 

I 
L-sen-PickXY 

L-sen-DetectDoor .... 

L-drv-IR 

L-drv-Robot 

L-d.rv-Sonar 

L-Sen-Processor 
L-Sen-CoUector 

L-PSU-Mixin 

L-ctrl-Avoid 

L-ctrl-Circle 

L-ctrl-CloseQuartersMove 

L-ctrl-GotoXY 

L-ctrl-MoveThrough 

L-ctrl-MoveToVicinity 

L-ctrl-PolarDir 

L-ctrl-ProximitylR 

L-ctrl-ProximitySafe 

L-ctrl-ProximitySonar 

L-ctrl-Search W allDoor 

L-ctrl-SimpleMove 

L-ctrl-SitNSpin 

L-ctrl-VerifyDoor 

L-sen-Pvect 
L-sen-WorldXY 

L-Bump 

L-IRData 

L-RobotHeading 

L-RobotVelocity 

L-RobotXY 

L-SonarData 

L-Gen- ligner 

L-gen-Aim 

L-gen-Perpendicular 

L-gen-Spin 

L-gen-Swivel 

L-Generator LM-Landmark L-Matcher 

L-{'.en-Mover 

t 
L-gen-Approach 

L-gen-Crawl 

L-gen-Oval 

L-gen-Pounce 

L-gen-Propel 

L-gen-RepelObst 

L-gen-Shift 

L-gen-Slide 

L-gen-Touch 

LM-Doorwayl 

L-mat-DetectDoor 

L-mat-DoorSize 

L-mat-DoorwayType 

L-mat-Distance 

L-mat-FramePassing 

L-mat-FrontAlignment 

L-mat-MonitorDoor 

L-mat-Passage 

L-mat-RangeXY 

L-mat-Revolutions 

L-mat-RobotMoveDetect 

L-Gen-Stopper 

L-gen-hstop 

L-gen-cstop 

L-gen-pstop 

Fig. 8 . The LSA object inheritance hierarchy. Arrows point to superclasses, boxes contain primitive LSAs. 

L-Sensor. This is an object which produces "data" based 
on sensing. It can be raw data from actual hard­
ware or it can be the result of combining the hard­
ware with software to produce processed data. This 
entity is treated like a sensor, its output treated like 
sensor data (primarily as dataflow to satisfy another 
LSA's Relevant-Information-Need). L-Sensor is cur­
rently divided into three sub-classes for: (1) ordinary 
collection/processing of raw data; (2) classification of 
entity types; and (3) detection of world entities. 

L-Driver. L-Driver accepts as input multiple commands 
for individual hardware drivers. It acts as an interface 

to the hardware, and performs command scheduling. 
It also resolves minor command conflicts, and routes 
major conflicts to its controlling LSA. L-Driver differs 
from the other classes in that its dataAow input is 
robot actuator commands. We use only one L-Driver 
per actuator. This allows the L-Driver to monitor the 
commands passing through it and attempt to detect 
conflicts, or perform command fusion and mediation. 

L-Generator. The L-Generator class accepts sensor data 
as input and outputs a command m<>,ant for a L-Driver. 
This class can be viewed as a low level, feedbac,k con­
trol, looping mechanism between a sensor and the ac-



OUDENSKE AND GIN!: SENSOR F:XPLICATION 

Fig. 9. 8 ric the Red 

tuator. The Primary Behavior for most L-Generators 
is simply a mapping from a set of possible input values 
to the desired actuator command. 

£-Matcher. L-Matcher is much like L-Sensor, only it also 
takes as control input a description of a goal or er­
ror situation. The class of L-Matcher represents the 
Sensor Explication sub-process of monitoring relevant 
informat ion to detect goal accomplishment and error 
occurrence. L-Matchers use their knowledge of a par­
ticular goal or error to interpret incoming sensor data 
(most likely from a L-Sensor) as to whether that goal 
or error has occurred. 

LM-Landmark. LM-Landmark is used to represent col­
lections of knowledge about physical entities in the 
robot's environment. It contains information on the 
expected characteristiC'.S of the real entity such as ex­
pected location in the world, size, etc. Any informa­
tion which might be needed by the system or which is 
derivable about this entity by other LSAs can be con­
tained in this object. For example, when a LSA for 
detecting doors detects a specific doorway, the LM­
Landmark object corresponding to the physical door­
way can be updated with the last known location of 
the doorway. When the system, later, needs the lo­
cation of the doorway and thn door detection LSA is 
unable to detect it, the corresponding LM-Landmark 
object can be accessed for an estimated location to be 
used until the doorway detection LSA can find again 
the doorway. 

VI. T IIE RonOT 

Eric the Red is an indoor, battery powered platform, 
which can carry up to 200 pounds of payload (see Figure 
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9). The base is 70 cm wide, 75 cm long, and 28 cm high. 
We have outfitted the base with an ult rasonic sonar ring, 
an infra-red proximity ring, and an aluminum structure, 
which fits on top of the base, to house the sensor systems. 

Twenty-four ultrasonic sensors are mounted at intervals 
of 15° around a 56 cm diameter ring that is 60 cm above the 
floor. Each of them emits an ultrasonic pulse whose cone 
has an angle of approximatively 30° . This arrangement 
provides an overlapped field coverage of the sonar beams. 

Eight infra-red sensors are mounted on the robot's lower 
corners and can be used to determine the alignment of the 
robot's physical edges to objects. These sensors arc most 
useful in determining the robot's alignment to doorways. 

Eric the Red has back and front bumpers and can provide 
status information on the current driving mode, heading, x 
and y location relative to the last reset, left and right wheel 
velocities and accelerations, bumper contact, and motor 
fuses. The robot is controlled via a serial connection to a 
host computer which sends the robot commandi:; and re­
ceives status information. 

The shape and size of Eric t.he Red and the limitations 
of its sensors make the task of passing through doorways 
challenging. The majority of related researd1 in which a 
robot freely passed through doorways had the luxury of 
wide doorways when compared to the width of the robot 
(often multiples of the robot's width) and, often, of us­
ing circular robots that have an easier time maneuvering 
through a doorway [15] .. 

VII. AN EXAMPLE OF SENSOR EXPI.ICATION 

To illustrate our approach, we will use an example de­
rived from our lab experiments [16]. When presented with 
the goal, "MoveThrough Doorl", the system first deter­
mines what information is initially needed. The goal con­
tains a movement command so the LSA MovETIIROUGII 
is selected. MovETIIROUGII coordinates among the three 
main phases illustrated in Figure 10. 

Move to vicinity and 

delttl doorway p~ 

I Verify detecred doorway phase j Close quarters move 
through doorway phase 

Fig. JO. The knowledge of how to move through a door guides the 
accomplishment of the goal by coordinating the different phases. 

Details on the prOCP-9S are shown in Figures 11, 12, and 
13. In the figures the letters at the front of each LSA oval 
correspond to the first letter of the subclass of that LSA. 
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( C: MoveTbrough(Doorl) ) 
I 
I r- ----,- ----------T--~- --- ------T----- ---------r---~ 

I I I I I 

(,--C-:P_r_o_XlDll_' ... ;·-ty_S_o_n_ar- ) M:DetectDoor 

r- ----- - , 
- .. - 24 

( D:Sonar) S:SonarData 

LM:Doorway 

I 

M:DoorwayType ( C:MoveToVicinity): 
I 

D:Robot 

' ' - - - - --- ----- -r---- - - - ,----- - r-,-- --- 1 
I I 1 ~----~ 

I C:SitNSpin 

S:WorldXY 1-----..i S:PickXY C:SimpleMove }-'----L------ --.1 

C:SearcbWallDoor l-'--------..i 

C:Circle 

Fig. 11 . First phase of moving through a door: move to vicinity and detect doorway. Continuous lines with arrows indicate the primary 
dataRow, dashed lines indicate the control flow. 

( C: MoveThrough(Doorl) ) 
I 
I 

r - - - - - - - - - - - - r - - - - - - - - - -1- - - .... - - - - - - - - - i - - - - - - - - - - - - ,- - - - - , 

~--~'--~ I I I I I 

( C:Proxi~itySonar) '---r--~..-,-/ LM:Doorway M:DoorwayType ( C:VerifyDoor ) : 

--~•- 24 - ~ , .__ _________ __J I 

( D:Sonar) S:SonarData D:Robot 

l --- - ~---- --r--- - T----,-- ---- -T---- -------- - - r -J 
I I 

G:Perpendicular 

S:WorldXY l---~-

S:ProximityIR G:Slide 

S:Bump G:Touch 

Fig. 12. Second phase of moving through a door: verify detected doorway. 

A. Move to vicinity and detect doorway phase. 

The init ial goal requires detecting an object, Doorl. 
Each world object has an approximate vicinity for search­
ing for it, so the robot is required to approach that vicinity 
and search for Doorl. Thus a decomposition is selected 
which includes: 

1. a controller for the sonar sensors, PROXIMITYSONAR 
and a driver for the robot ROBOT. PROXlMlTYSONAR 
spawns 24 SONAR.DATA LSAs, one for each of the avail­
able sonars, and a driver SONAR to coordinate their 
activity. The sonar data provide input data for other 
LSAs. 

2. a matcher DETECTDooR, that attempts to detect a 
doorway and, upon detection, returns its location rel­
ative to the robot. The output of DETECTDOOR is 
piped to DooRWAYTYPE. H the type of door detected 
is different than expected, further investigation would 

be needed to determine if the doorway found is th(i 
right one and how the door is positioned in it. 

3. a landmark object DOORWAY for Doorl and a matcher 
DOORWAYTYPE. The doorway type is important in 
the selection of other LSAs and their control param­
eters. Doors that open in vs doors that open out ap­
pear differently, and doors in corners require different 
strategies. 

4. a controller MovEToV1c1NJTY, that moves the robot 
into a designated vicinity of the doorway, using lower 
level LSAs. Among the LSAs that are activated by 
MovEToV1c1NITY are: WoRT,oXY, which passes the 
robot position to other LSAs, P1cKXY, which picks 
the Hkely location for the doorway, SBA!lCIIWALL­
DooR.. which searches the wall looking for doors. S1M­
PLEMOVE, which moves the robot from onr. position to 
another utilizing lower level LSAs; SITNSPIN, which 
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( C: MoveThrough(Doorl) ) 
I 

~--- -----------------~-------~- ----~-----------~-----------~-- -----, 
: - --~--- ~ ' 

( C:Proxi~itySonar). M:Detect LM:Doorway M:DoorwayType M:MonitorDoor ( C:Clos~uartersMovc): 
I 

,-:- , 24 D:Robot 

I ( D:So~ ) S:SonarData 

r- - - , - - - - - - T - - - - -,- - - - - - r - - - - -,- - - - - - r - - - - - T - - - - - - - - - - - -,- - - - -i 
I I I I ~---'---~ 

S:WorldXY 1--.:c...e===::;+-- ---tt"{ M :FramcPassing 

C:ProximityIR M:FrontAlignrnent ----- ----'-__, G:Shift 

S:Bump G:Propcl 

S:RobotVelocity 

Fig. 13. Third phase of moving through a door: close quarters move through doorway. 

spins the robot around in one place; CmcLE, which 
circles t he robot around a designated position at a 
designated radius. 

Once a door-like structure is found, MovETOVICINITY 
and i1s sub-LSAs a re deactivated. 

B. Verify detected doorway phase. 

In the second phase, VEntrvDooR is activat.ed to make 
sure that the doorway is truly a doorway, it is open, and 
the robot could fit through it. This initially sets up Doon­
S1z1-~ to monitor the size calculations from other LSAs to 
determine how much clearance there is for the robot to pass 
through. If t he clearance is large, the robot would engage 
simple, yet imprecise, LSAs for propelling itself through the 
doorway. If it is a close fit, additional investigation must 
occur to verify the size and to bettP.r align the robot to 
the opening. The process of verifying the doorway involves 
three sub-phases: 

1. move the robot next to the doorway, within the range 
of its proximity sensors (TOUCH and P ERPF:NDJCU­
LAR), 

2. move the robot back and forth in front of t he opening 
to verify its existence and size (SLIDE), 

3. center the robot to the doorway (SLIDF: and P ERPEN­
DICULAR). 

Both proximity and sonar sensors are used. Based on the 
movements within SLIDE, a more precise measurement of 
the doorway size is obtained, and the position of the door 
frame determined. This is then used to line the robot up 
to the doorway. 

It is important to note that the switch to VERJFYD0oR 
is completely controlled by MovETIIR0UGH. Within this 
I.SA, the execution of the lower LSAs is monitored and 
upon completion of that task phase, actions are taken by 
MovETIIROUGll to switch to, and monitor the next phase. 

C. Close quarters move through doorway phase. 

Once the door frame is verified (assuming the passage 
is a close fit), VERJFYD00R is deactivated and two new 
LSAs are activated. The first is M0NtTonDooR, which 
use>,s the sonar sensors to monitor the robot's placement 
and movement through the doorway. It also detects any 
new obstacles that may appear on the other side of the 
passage. 

This serves as a check on the progress of the second 
new LSA, C L0SEQUAllTF.RSMovE, which guides the robot 
through the opening. Upon activation, Cr.oSEQ UAR­
TF:RSMovE also activates and controls a number of sub­
LSAs that accomplish t hese sub-goals: 

1. propel the robot through the doorway to a predicted 
"other side" (P ROPEL); 

2. keep the robot in line with the door opening as 
it move<, through the doorway (FR0NTALtGNMimT), 
and monitor for obstacles in the forward path using 
BUMP and PR0XtMTTYIR; 

3. monitor the detection of the doorway frame 
(FRAMEPASSING) passing each of the side-mounted 
proximity sensors (PROXIMTTYIR); 

4. resolve any mis-a lignment of the robot to the door 
frame (SIIIFT); 

5. monitor the movement of the robot for differentiat­
ing between pauses (used by SmFT and PROPEL) and 
low velocity stagnation (RonoTM0VEDETECT). Of­
ten during low velocities, the wheel motor drives will 
freeze up and require a reset of the velocity register. 

As the robot moves through the doorway, PROPEL and 
FllAMEPASSING monitor for evidence of success. Once 
enough evidence is accumulated, CLOSEQUAITTERSMOVE 
declares success and this prompts Movr-:T,moumr to also 
declare the successful achievement of its goal. 
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VIII. VARIATIONS, KNOWLEDGE, STRATEGIBS 

The above example is merely a template for what could 
happen and shows the anticipated sequence of actions for a 
typical execution. It assumes that the robot had detected 
the doorway right away, and that the estimated size of the 
doorway was not too small nor too large. In real life, each 
execution could yield a different sequence of actions. These 
variations can be produced by: 

Doorsize. Though an expected doorsize is recorded in 
the DOORWAY landmark, it is merely used as a ref­
erence for what door detection parameters to use. If 
the actual doorsize differs greatly, the initial set.tings 
of the door detection parameters would do a poor job 
of detection. Thus, knowledge within MovETIIR0UGII 
would come into play when the robot is in the expected 
vicinity of the doorway and none is being detected. It 
then hypothesizes different si,,;ed doors and tests if any 
si1,es match the incoming Rf'nRor data. 

Door placement. The robot is initially given an expected 
placement of the doorway via the DOORWAY land­
mark. The actual location varies each run by as much 
as 1.5m. The strategy iR to bring the robot to the 
expected location and ,;earr.h for the doorway. If it is 
not initially found, the door detection parameters are 
"loosened up" and various maneuver,; are employed to 
aid in positioning the robot to detect the doorway. 

Door Type and State. Another environmental unknown 
is the type and state of the door. The type of door is 
how the door opens ( e.g. if there is a door, it opens 
in/out, to right/left) and how the physical structures 
around the door encompass it (e.g. is the door at the 
end of a hallway). The type has a great effect on how 
the robot would attempt to achieve the goal. In the 
experiments, we tested only doors of type "straight" 
and "wall-out-right" . The state of the door indicates 
whether the door is open or closed. 

Ghost Doors. One of the environment interactions whir.h 
often occur is the temporary appe,arance of a "gho::;t 
door" or the false detection of a doorway which does 
not exist. Init ially, the higher level LSAs perform fil­
tering via pausing the movement of the robot to see 
if the doorway disappears after a few sen,;or readings. 
Sometimes, the structure of the environment will cause 
fairly persistent ghost doors, and they are not truly 
discovered until the robot enters the verify detected 
doorway phase of the execution. Such ghosts can occur 
in room corners from certain angles, along the cabinets 
in the room (see Figures 2, 4, and 6), and at times in 
the middle of the room for no apparent reason (possi­
bly the communication cable to the robot, which hangs 
from the ceiling, will be detected and appear as a door 
or obstacle). 

Obstacles. Knowledge on how to avoid obstacles is basi­
cally included in two LSAs. For movement over large 
areas, we have an LSA that detects obstaclPA~ with the 
ultrasonic sensors and provides motion commands to 
steer the robot away from the obstacles. For close ob­
stacles, there is another LSA that uses bumpers and 

infrared sensors. Upon detection, it takes control of 
the robot and attempts to move it away of the invad­
ing obstacle. This LSA is not used during maneuvers 
such as traversing through the doorway, but only in 
situations when objects in close proximity to the robot 
are not expected. 

Unexpected Situations. Some of the knowledge deals 
with expectations. For example, if a door is detected, 
the robot should be able to turn towards it and move 
towards it until either the bumper touches one frame 
or the other, or the front of the robot ends up be­
tween the two frames . When the robot is commanded 
to "touch" the doorway, and it moves farther than ex­
pected and nothing is "touched" then this is an unex­
pected situation, and the system concludes that there 
was no real doorway. Often, when expected results arc 
not obtained, the knowledge makPA9 the robot fall back 
to a previous state where it can continue on with the 
achievement of its goal. 

Sensor Noise. A number of strategies can be taken to re­
duce sensor noise. One strategy we use is to filter out 
the noise over a sequence of readings. Filtering works 
well when the majority of the values arc statistically 
close to the true value, but that may not always be 
the case. If the robot happens to be sitting in a dead 
spot (i.e. a point where the sonar echo does not return 
directly back at the sensor',; receiver and is thus un­
detectable), or an echo point (i.e. a point where mul­
tiple returns occur due to echoing) then most to all of 
the readings are statistically far from the true value. 
Filtering will not yield an acceptable value. Another 
problem is caused by moving objects passing near the 
robot that produce temporary disturbances. 

Ways to handle these problems are encoded as domain 
knowledge within the LSAs. The robot uses its knowledge 
to decide what to monitor and, upon detection, how to 
respond with the bt>~'lt st rategy. 

IX. THE EXPERIMENTS 

The laboratory p,xperiments were conducted in a typical 
indo,or open-office environment, simulating an office build­
ing with cubicles, for instance, or a warehouse for delivering 
parts. The environment contains furniture, allows human 
traffic through it, and hosts multiple doors of various sizes 
(see Figures 2, 4, and 6). The ceiling is constructed of a 
sound absorbing material, and neither it nor the floor cause 
specular noi::;e to the ultrasonic sensors. The walls readily 
reflect both the ultrasonic and infra-red beam,;. The furni­
ture reflects ultrasonic bp,ams, but not infra-red. The labo­
ratory floor is carpeted whirl! results in wheel slippage and 
sometimes noise. Boxes were often used to create make­
shift doorways of similar size to the laboratory's doorways. 
This avoided potential damage to the robot due to colli­
sions. The boxes were primarily white and readily reflected 
both the ultrasonic and infra-red beams. 

The laboratory experiments consisted of three part,;: ( 1) 
development of the initial implementation on a real robot; 
(2) knowledge acquisition and refinement through guided 
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TADLF. 1 

RF.SULTS OP CAPAHILITl~;s EXPERIMF.NTS ORTAINF:D WITH FIVF: RUNS FOR EACH TEST SET. 

Test Set Door Type Door Si7.e Obstacles Doorway #goal #fail %goal 

1 straight 100 cm none wide 4 1 80% 
2 straight 100 cm none wide 4 1 80% 
3 straight 81 cm none average 5 0 100% 
4 straight 81 cm none average 4 I 80% 
5 straight 70 cm none too small 4 1 80% 
6 straight 60 cm none too small 5 0 100% 
7 wall-out-right 81 cm none actual 3 2 60% 
8 wall-on t-righ t 81 cm none actual 4 1 80% 
9 wall-out-right 81cm 2 actual 3 2 60% 

10 wall-out-right 81 cm 2 actual 3 2 60% 
Totals 2 door types 4 sizes I none or 2 50 runs 39 11 78% 

TAOLE II 

SUMMARY OF F.XPERIMENTS. 

Characteristics No. of No. of % Error 
runs goa.J goal false-goal intervention timeout 

straight door 30 26 86.7% 2 1 l 
wall-out-right 20 13 65% 0 7 0 
not too small 40 30 75% l 8 I 

too small 10 9 90% 1 0 0 
no obstacles 40 33 82.5% 0 4 I 

obstacles 10 6 60% 0 4 0 

Total 50 39 78% 2 8 1 

experiments; and (3) final capabilities experiments. 
T he guided experiments were devised to improve the 

knowledge we originally embedded into the system. Over 
forty guided runs were executed. New knowledge was en­
coded back into the system. For example, if during the 
guided e>..1)erimentation, it was determined that the robot 
wac; prone to become misaligned with the doorway passage 
upon entering it, additional knowledge (and the necessary 
supporting LSAs) would be introduced to monitor for the 
occurrence of misalignment and to correct for it. 

To validate the robustness of the approac.h when faced 
with previously unencountered situations, we did not use 
in the guided experiments all the conditions we expected 
to face later in the capabilities experiments. None of the 
guided experiments were conducted with doors too small, 
nor with the door type "wall-out-right". Door sizes ranged 
from 81 cm to 95 cm and obstacles rarely c,ame into play. 

The primary difference between the guided and the ca­
pahilit.ies experiments is that during the capabilities <'xper­
iments no change of the code was allowed and all experi­
ments had to run to completion. 

Completion is defined as the robot entering one of these 
states: 

goal: the robot successfully and knowingly passes 
through t.he doorway; 

false-goal: the robot fails by declaring it has passed 
through the doorway when it actually bas not; 

intervention: The robot fails due to human intervention 
to avoid damage (e.g. the robot runs into an obstacle, 
but docs not detect it and continues to push into it); 

timeout: the robot's execution has surpassed a time limit 
set for the task. 

We could think of two other states of completion, in 
which the robot fails in passing through the doorway, but 
acknowledges the failure, or passes through the doorway 
without knowing it succeeded. Actually, the first is never 
a final e.xperiment result, because the robot would realize 
that it is failing and initiate a maneuver which brings it 
back near its starting point to start all over. The robot 
will try, try again, until one of the other results occurs. 
The second happened once in the guided experiments but 
never in the capabilities experiments. 

A total of 50 capabilit ies experiments were run with 10 
different scenarios of five runs each. The scenarios varied 
in distance traveled to goal, doorway si7.eS, doorway types, 
and obstacles. Test sets 1 through 6 were with a doorway 
constructed of cardboard boxes, which allowed changes in 
its position and si7.e. Sets 7 through 10 were with a real 
door that opens out and to the right. 

Of the 50 capabilities experimental runs, 78% were com-
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pleted successfully. The results are shown in Table I. The 
results from the experiment runs whir,h did not have ob­
stacles were m1rprisingly good. The robot succeeded 90% 
of the time in determining that the doorway was too small, 
which is fairly good considering the lack of guided experi­
ments in this area. The same can be said for the results of 
the "wall-out-right" runs, where walls arc to the immediate 
right of the doorway. The clearance between the robot and 
the door frame in Test Sets 7 through 10 is very limited, 
and requires precision in sensing and control beyond the 
individual sensors available on our robot. The experiments 
provide evidence of the robustness of the approach and of 
transferability of knowledge to never-seen-before scenarios. 

In the eleven cases that did not succeed, as shown in 
Table II, eight were caused by the robot getting wedged in 
the doorway (seven of those where with the wall-out-right 
door type) , two were caused by the robot declaring it had 
successfully traversed the doorway when it fact it did not, 
and one was caused by the robot working itself into a corner 
and never escaping (and so failing because of timeout). A 
detailed analysis of the experiments i8 in [17]. 

The robot's performance in dealing with ghost doors was 
extremely good. The door detection LSA often detected 
ghost doors in the middle of the room or on doorway-less 
walls. The robot would approach the ghost door and start 
its verification procedures and always determined it to be 
a false door. 

One unexpected observation was that the robot had 
problems maneuvering near the edges of the doorway. If 
the robot ever became misaligned with the doorway so 
that it was facing towards one frame with the other frame 
against its side, it would be in serious trouble. Most of the 
error-intervention runs resulted from this situation. The 
development of specific domain knowledge and a more so­
phisticated proximity detection method could help in this 
situation. 

Another unm::pected observation was that the robot bad 
difficulty with the widest doorway (100 cm) . The door de­
tection LSA could not quickly nor consistently detect the 
wide opening. This became especially true at very close 
ranges, such as at the points in the Verify pha.se where the 
robot would attempt to become perpendicular/parallel to 
the opening. At that close range, Oc:TECTDOOR would 
loose the tracking of the door and eventually determine 
that it must have been a ghost door. Upon moving back to 
the middle of the room, the robot would again detect the 
doorway and approach to verify. It would take a numbP.r 
of repeated tries at this until, by chance, the verify phase 
occurred far enough away from the opening to allow DE­
TECTDOOR to continue t racking it. Persistence does pay 
off, and the knowledge encoded within MovBTHH.OUGH 
performed well at re-attempting to verify what appeared 
to be the correct door. This is a good example of proper 
application of knowledge to improve overall performance. 

X. THE USE OF KNOWLEDGE 

The role or importance of the domain knowledge is ex­
tensive. The questions are: what knowledge is encoded? 

how is it encoded? how was it acquired? and what are its 
limitations? These issues are discussed next. 

Domain Dependent vs. Domain Indevendent Knowledge. 
One of the goals of this research was to be able to sep­
arate the domain dependent knowlfidge from the do­
main independent knowledge. The Sensor Explication 
process implemented in the L-Controller class methods 
is domain independent, while the knowledge encoded 
in rules that is used by Sensor Explication is primarily 
domain dependent. The advantage of this division is 
that it separates the Sensor Explication process from 
the rest of the computation. This simplifies extending 
the architecture to other domains, tasks, and environ­
ments. 

Prover Application of Knowledge Increases Performance. 
Failure is mostly due to limitations and weaknesses in 
the LSA's knowledge. Many LSAs have simple algo­
rithms. Poorly designed LSAs resulted in a higher 
need for knowledge to compensate for the lack of per­
formance. A good example is PROXJMITYSAFE. Tts 
poor performance is evident by the amount of difficulty 
the robot experiences in moving away from obstacles. 
One of the capabilitie8 experiments failed due to its in­
ability to retreat. Another example is 0ETECT000!l. 
The algorithm had troubles in detecting larger door­
ways. H not for the knowledge encoded in its control­
ling LSA, this weakness could have caused additional 
failures. The knowledge in the LSA dealt with moni­
toring for large doorways and applied various maneu­
vering strategies to facilitate the detection of the door­
way as problems occurred. Because of this, the process 
of detecting and tracking the doorway through the en­
tire execution of the goal succeeded, though progress 
was occasionally hampered by noise. 
This truly emphasizPA'l the importance for higher levels 
of control to have knowledge about the weakness and 
limitations of the lower levels. Areas containing knowl­
edge performed very well compared to those lacking 
knowledge. The laboratory experiments showed that 
even simple algorithms can he combined with knowl­
edge into an overall synergistic algorithm which is far 
more reliable than any of the individual components. 

Know ledge Ar,q1iisition Through Experimentation. 
The suCCP$S of the laboratory experiments showed that 
knowledge can be extracted from the domajn and 
implemented in the system. The experiments also 
showed the difficulty in extracting the knowledge and 
structuring it to be properly utilized. At times a great 
deal of investigation would be needed to determine 
what aspect of the environment was causing a failure 
of a LSA or a poor coordination within a data.flow. 
Knowledge acquisition was the largest bottlener.k dur­
ing the experiments. 

Limits of Domain Knowledge. The primary problem is 
the dependence of the system on the domain knowl­
edge. Though the building of the domain knowl­
edge seems straightforward, there is still a kind of 
"black magic" aspect about it. The main problem that 
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has plagued domain knowledge all along still remains. 
There must be domain knowledge for each determined 
scenario or discovered weakness. The resulting system 
is only as powerful as the scenarios the knowledge cov­
ers, and there is no guarantee that the knowledge en­
coded will work beyond the scenarios examined during 
knowledge acquisition. Thus, the amount of domain 
knowledge can be endless, and the question remains 
of "how much is enough". We have observed, as ex­
pected, that initially each increment of knowledge im­
proved the performance greatly. However, as the total 
amount. of knowledge increased, the performance did 
not increase by a comparable amount. The returns 
were diminishing. At some point the performance im­
provement is no longer worth the cost. The issue then 
becomes onn of desired performance vs. cost. The 
issue can only be answered within each individual ap­
plication domain (i.e. how many dollars is robustness 
worth to this application'!). 

XI. RELATED RESEARCH 

There ha.9 been a large amount of researr.h in the area 
of sensor-based control of a mobile robot. The most pop­
ular and successful approach is the subsumption architec­
ture [8] which avoids planning altogether by using layers 
of behaviors. Behaviors run in parallel and interact when 
needed. Each individual layer corresponds to a level of 
be.havioral competence. Though this method of control al­
lows for many behaviors, it disallows central control and so 
it makes it difficult to assign to the robot different goals to 
be achieved. 

Our method of "intelligent plan execution objects" 
blends well into the "behaviors" paradigm which dominates 
the autonomous robotics research today. Using LSAs, a be­
havior can be constructed from a set of objects, and con­
t rolled by a single object which corresponds to that behav­
ior. Each of the sub-objects can attend to a different aspect 
of that behavior, such as producing information from the 
sensor data, or deciding what distance to move or turn, or 
deciding when the goal has been achieved and it is time to 
stop. In this sense our work is similar to the Perception 
and Motor Schemas by Arkin [9]. The main difference is in 
the way LSAa are activated. Control in Arkin's approach 
is achieved by a single control modulo that selects from a 
single layer of motor schemas. In our system knowledge 
stored in LSAs controls how LSAs are combined together. 
Different arbitration and task decomposition methods can 
be programmed in the LSAs, providing for more flexibility. 

Many architectures have been proposed that combine the 
ability to react to the environment with planning. Georgeff 
[18] has implemented a planning and control system based 
on a functional decomposition of high-level control into 
primitives, and that integrates some reactive behaviors into 
the control structure. The Rex/Gapps system (19] decom­
poses high-level goals into mobiJe robot commands, and 
then converts them into hardware logic designs. The result 
is a large reactive system that bas goal-oriented behavior 
but cannot plan or adapt itself to new goals. 
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The 3T arr.hitccture [20] has three levels: deliberative, 
sequencing, and reacting. The top level performs activi­
ties such as planning and world modeling, the middle level 
draws directly from the RAP system [21], while the lower 
level is a stateless reactive control mechanism which con­
trols activities with no decision-making. 

Firby's most recent work (I] extends his original RAP 
architecture by allowing the creation of independent reac­
tive agents for different tasks, and the run-time selection of 
which one to use to achieve the next subtask. His "skills" 
correspond to our low level LSAa, and "skill networks" to 
our high-level LSAs. The primary difference is that our 
architecture is homogeneous. Everything is a Logical Sen­
sor/ Actuator, from the low-level drivers for sensors and 
actuators to the high-level LSAs for abstract goals. Com­
mon methods are shared by objects through inheritance. 
The ability to activate/deactivate objects and to c.hange 
the datafiow among them in a dynamic way depending on 
the situation gives us a flexibility that other architectures 
do not have. 

The Task Control Architecture (TCA) of Simmons [3] is 
another successful example of combining deliberative and 
reactive control. The TCA consists of a set of task-specific 
modules and of a central control module that coordinates 
their activities. The central control module routes mes­
sages dynamically to the other modules. The TCA sup­
ports the creation and execution of hierarchical plans, and 
facilitatf>.s incremental building of systems. The LSA archi­
tecture is more distributed and has no central controller. 

A large number of experimental results obtained with 
various robots and tasks using the architccture>.s described 
above and others not mentioned attests to the validity of 
developing flexible and reconfigurable architectures. 

The LSA architecture borrows heavily from the idea of 
Logical Sensors [14], [22). Logical Sensors are abstracted 
views of sensors and sensor processing, much like how log­
ical 1/0 is used to insulate the user from the differences 
of I/0 devices and operating systems. We have expanded 
the concept of Logical Sensors to include Logical Actua­
tors, incorporated it into a comprehensive framework, and 
demonstrated experimentally the viability of the idea 

There arc also similarities between LSA and blackboard 
architectures [4]. Both hierarchically organize different 
components. The blackboard agent architecture's com­
ponents are: the perception procf>.sses (similar in func­
tionality to L-Sensors); the action systems (similar to L­
Drivers) ; the reflex-arcs and perception-action coordina­
tion processes (similar to L-Generators) and the cognition 
system (similar to L-Controllers and L-Ma.tchers). The 
main differences hinge on centralized vs distributed con­
trol and data storage. The blackboard architecture has 
a single cognition system containing multiple knowledge 
sources. The LSA distributes the control across multiple 
L-Controllers. The storage of data is centralized on the 
blackboard, while the LSA architecture requires data pro­
duced by a LSA to be stored within that LSA. 

The CIRCA system 15) integrates planning with real­
time control. Most of the work has focused on generating 
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plans in which the control actions are guaranteed to be 
executed within the real-time constraints. Our researd1 
has not addressed the issue of bow to guarantee real-time 
performance. Our architecture separates planning from ex­
ecution, and simplifies planning by increasing the level of 
intelligence of the execution system. The knowledge en­
coded in LSAs enables the execution system to be flexible 
and capable of taking advantage of the resources and situ­
ations available in achieving its goal. 

XII. CONCLUSIONS 

The Logical Sensor/ Actuator architecture was developed 
as an approach to robotic execution of classical planning 
goals. This architecture addresses the need to handle 
noisy sensors and actuators, the need to remain reactive 
to changes in the environment while accomplishing goals, 
and, most important, the application of knowledge to deal 
with resolving failures. 

The LSA architecture provides evidence that a goal 
can be achieved through proper application of knowledge. 
Specifically, this entails identifying (1) what information 
is relevant to achieving the ·goal; and (2) what are the 
sources of this information (i.e. sensors, actuators and 
processes), and how to control them. Extensive lab ex­
periments demonstrate that the architecture is reliable and 
robust, despite sensor noise, actuator errors, and even lim­
its in the knowledge encoded in the LSA objects. 
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