

 140

A Distributed Multimedia Knowledge Based Environment for Modeling over
the Internet

Stephen W. Ryan, Arvind K. Bansal1, and T. Kapoor
Department of Mathematics and Computer Science
Kent State University, Kent, OH 44242 - 0001, USA

E-mail: {sryan, arvind, tkapoor}@mcs.kent.edu

1 Corresponding Author

Abstract

This paper describes a knowledge-based scalable
multimedia environment for graph based modeling and
the design of complex objects over the Internet. A
complex object is modeled as a directed hierarchical
graph with each sub-component abstracted as a node and
the shared parameters between two components as an
edge. The knowledge base archives and retrieves
reusable components, and integrates multiple
simultaneous distributed numeric simulations of
components over the Internet. The tool exploits
heterogeneous associative logic programming [1] and
has been implemented using CORBA to exploit
heterogeneity and user transparent distributed object-
based computing. Java has been used for an architecture
independent graphical user interface accessible via the
World Wide Web. The design is visualized using XML
extended to visualize graph-based multimedia objects
over the Internet.
Keyword: CORBA, design, distributed computing,
graph, Internet, knowledge base, logic program,
modeling, multimedia, XML

1. Introduction

As the Internet becomes faster and more integrated, it has
become a viable option to extend cluster based computing
over a local area network to include the computers
distributed over the Internet. Major advantages of the
faster Internet are:

1. large knowledge bases can be distributed over the
Internet in a user transparent way,

2. multiple computations can be done
simultaneously over distributed resources, and

3. computing resources are significantly enhanced

Many applications can benefit from this enhancement in
the Internet capability. One such application is a user-
friendly distributed multimedia knowledge based tool to
facilitate design of complex systems.

A complex system consists of many subsystems, which
themselves are composed of even smaller subsystems.
The design of a complex system involves modeling the
individual subsystems. The simulation of individual
subsystems has to be integrated to achieve the design of
the complex system. This process can be undertaken
using either a top-down or bottom-up approach. In the
top-down approach, the designer outlines the overall
system and then details the specifications of the various
subsystems. In the bottom-up approach, the system is
designed by assembling existing sub-component designs.

The design process is iterative: subsystems are
repeatedly adjusted or redesigned until the components
achieve the desired input/output parameter specifications.
Previously designed components are reused with minor
modifications to interface with different subsystems. A
large repository of components of already designed
subsystem is created and archived in a repository.
Components are designed in two ways:

1. new engineering systems are simulated
numerically using data from experimentation or
from mathematical program “codes”; and

2. components designed previously are retrieved
from the knowledge base using input/output
parameters, interactively modified, and rearchived
into the repository.

In this paper, we describe a knowledge based
environment that

1. facilitates graph-based modeling to design
objects using multimedia knowledge retrieval,
and

1082-3409/00 $10.00 © 2000 IEEE

Proceedings of the Twelfth International Conference on Tools with Artificial Intelligence, ICTAI 00, IEEE Computer Society Press
13-15 November 2000, Vancouver, British Columbia, Canada, ISBN 0-7695-0909-6, ISSN 1082-3409

 141

2. integrates various simulated subsystems on a
distributed computing platform over the
Internet.

This system aims to develop an user friendly
environment for the analysis and design of aircraft
engines by integrating existing numerical codes for
engine components [2, 5, 9] to create an end-to-end
engine simulation in realistic time. In this paper, we will
use examples from NASA engine simulation project
NPSS [5] to illustrate our system.

The software features a graph-based user interface for
specifying and connecting components, CORBA-based
communications [16] for distributing the simulation of the
various subsystems across a network, and an XML [19]
based visualization tool extended (in this work) to
visualize a graph representation of multimedia objects.

The paper is organized as follows. Section 2 briefly
describes the underlying theory of distributed knowledge
base system over the Internet and basic definitions needed
for a graph based representation of complex objects.
Section 3 describes the overall model of the multimedia
knowledge base system. Section 4 describes the details
for graphical design of complex objects over the Internet.
Section 5 describes the CORBA based implementation for
the graph based design. Section 6 describes the
implementation of multimedia capability in the
knowledge base system. Section 7 describes the front end
interface for the graph based design. Section 8 describes
a grammar to extend XML for the graph based
visualization of multimedia objects. Section 9 describes
the related work. The last section concludes the work.

2. Background

Logic programs expresses knowledge in a declarative and
easily modifiable manner. A complex system is modeled
using logical facts and rules [17].

Example 1

The following program illustrates the modeling of a
part of an aircraft engine:

part_of(engine, turbofan).
part_of(turbofan, rotor).

contains(X, Z) :- part_of(X, Z).
contains(X, Z) :- part_of(X, Y), contains(Y, Z).

Information is retrieved from the given knowledge

base, by posing a query of the form: contains(engine, W)?
The query yields a set of values {turbofan, rotor}.

We have modeled multimedia knowledge over the
internet using distributed heterogeneous associative logic
programming [14, 15] which integrates associative
computing, logic programming, and heterogeneous

distributed computing for a scalable distributed
knowledge retrieval system.

Associative computing [12] exploits content based
matching to retrieve a subset data items by specifying
possibly incomplete and unordered information related to
a set of data items. The content based matching exploits
data parallel search on the entire data set. A data parallel
search executes efficiently on high performance parallel
architectures and distributed ensemble of computers.

The distributed heterogeneous associative logic
programming system [15] distributes multimedia
knowledge on a heterogeneous cluster (including high
performance processors) in a user-transparent way. A
coordinating process ties multiple distributed multimedia
knowledge bases together into a single seamless virtual
knowledge base. An individual knowledge base resides
in an associative knowledge server. Each knowledge
server runs on a distinct computer node. Within each
server, knowledge is stored in a tabular format. Data is
represented as an indexed association of fields (optimized
during compile time analysis) to facilitate search by
content. Low-level details are available elsewhere [1].

After initialization of a system, a knowledge base
server process loads the tabular data and the compiled
rules, and reports to its coordinator with a list of the
solvable goals. The coordinator builds a virtual
knowledge base by combining the individual capabilities
of all the servers. A coordinator then participates in even
larger virtual knowledge bases by acting as a server (see
Figure 1).

Figure 1. The distributed knowledge model

2.1. Definitions

A hierarchical graph (possibly directed) [4] has multiple
layers of abstraction. Each level of abstraction joins a
cluster of nodes (at the lower level of abstraction) having
a common attribute/function into a single node. Each
node at a higher level of abstraction is a simple node or

User

Coordinator

Distributed associative knowledge server

Knowledge
server

Coordinator Knowledge
server

Knowledge
Server

Knowledge
Server

 142

corresponds to a hierarchical graph at the lower level of
abstraction. The edge between two nodes VI and VJ at a
higher level of abstraction represents one or more edges
between the embedded subgraphs corresponding to the
nodes VI and VJ.

Example 2

Figure 2 illustrates a hierarchical graph with two levels of
abstraction: Figure 2a gives the actual graph, and Figure
2b gives the abstracted graph. In Figure 2a, the nodes in
the subgraph G1 and the subgraph G2 are connected
through the edges E1 and E2. In Figure 2b, the subgraph
G1 is abstracted as the node V1, the subgraph G2 is
abstracted as the node V2, and the edge (V1, V2) is a
composite edge abstracting the set of edges {E1, E2}.

Figure 2a. A graph Figure 2b. Abstraction

3. Distributed modeling system

The overall system is given in Figure 3. The numerical
simulation of engine components is done at the cluster of
numeric nodes distributed over the Internet, and the
virtual knowledge base is distributed over the Internet.
The overall system works as follows:

The coordinator has a top level engine design program.
To design a complete engine, the individual input/output
parameters of the sub-components are computed. If a
design of any sub-component is archived in the virtual
knowledge base, then the design and the input/output
specifications of the sub-component are displayed to the
user. The user interactively modifies the design,
simulates specific sub-component on a numeric node, and
archives the new design in the knowledge base.

A user models a component using hierarchical graphs:
each sub-component is a node representing a hierarchical
graph at a lower level and each edge represents a set of
interface parameters between the two sub-components.
For example, an edge could represent a two dimensional
table where the first column represents the values of the
output from the source node, and the second column
represents the input parameters at the sink node.

These graphs are compiled in a user-transparent
manner to a set of logical rules at the user end, transmitted
to the server end, and finally archived in the knowledge
base.

A server sends the design as graphs represented in
XML extended to visualize graphs. The use of extended
XML provides a natural interface with other Internet
based scripting languages.

4. Hierarchical graph based design

In this section we describe the design of an engine
component using hierarchical graphs. The user defines
the complex system as a set of hieracial graphs
representing the overall system and subsystems. In the
logic program representation, the nodes are mapped to
predicates and edges map to shared variables between the
corresponding predicates.

Figure 3. The overall design system

4.1. Designing combustion engine

Figure 4 is the top level of a hierarchical graph that
abstracts the operation of an aircraft engine [13].

Figure 4. Graph-based design of an engine

In this graph, the compressor and the nozzle share a
common variable Environment. The compressor and the
combustor share a common variable V1 which represents
mixing volume V1. A mixing volume is an abstraction to
describe the interconnecting attributes between the
components in a physical system. It includes values such
as mass, temperature and pressure. The turbine shares
mixing volume V2 with the combustor and mixing volume
V3 with the nozzle. These sub-components are modeled in

Cluster
of

numeric
nodes

User interface at remote site

Design

Internet

Coordinator

XML
visualization

Virtual knowledge base

Compressor

Combustor Turbine

Nozzle

V1 V2
V3

Environment

V1 V2

G1 G2
E1

E2

 143

more detail by expanding nodes compressor, combustor,
turbine and nozzle into subgraphs.

The system translates a graph-based representation of a
modeled system into a set of logical rules. The graph in
Figure 4 is converted into the following logic rule.

engine(Environment):-
compressor(Environment, V1),
combustor(V1, V2),
turbine(V2, V3),
nozzle(V3, Environment).

4.2. Translating hierarchical graphs

Hierarchical graphs have been transformed into a set of
logical rules using an object-oriented approach (see
Figure 5).

Algortihm compile_graph
Input: A heirarchcial graph
Output: A set of logical rules

{ let the set of logical rules P be •;
for each graph in the graph set

for each vertex in the graph
 { Set S = “ ”;
 S += vertex.LPhead();

if there is an embedded subgraph
{ S += “:-” ;

S += graph.LPtail();
S += “.” ;}

P = P � S;}
return P;}

vertex.LPhead()
{ S += node-label;S += “(”;

for each edge incident upon the node
{ S += edge-label;
 if this is not the last edge

 S += “,” ; }
S += “)” ;}
return S;}

graph.LPtail():
 { S += “ ” ;
 for each node in the graph

{ S += “,” ; S += vertex.LPhead() ;}
return S;}

Figure 5. Compiling hierarchical graph

The implementation uses three classes: graph-class,
vertex-class, and edge-class. The graph-class is a triple
of the form (graph-id,, a list of vertices, a list of edges).
The vertex-class is a pair of the form (a list of incident
edges, a reference to a subgraph representing the
corresponding sub-component). The edge class is a pair
consisting of references to the two connecting vertices.

To parse a graph, every vertex is represented as a
logical rule. A vertex-label forms a predicate name, edge-

labels of the incident edges form the arguments of the
predicate, and the mapping of an embedded subgraph
representing a subsystem makes the right hand side of the
rule. A vertex not mapped to any embedded subgraph,
maps to a logical fact.

A method vertex.LPhead() constructs the predicate
from a vertex object. A method graph.LPtail() builds
predicates recursively corresponding to the embedded
subgraphs. The method graph.Lptail() calls
vertex.LPhead() for each vertex in a subgraph to create
the set of corresponding logical rules.

5. Distributed simulation

The graph representation naturally exploits distributed
simulation: embedded subgraphs of a hierarchical graph
reside, and are simulated on separate host computers.
Meta-information such as the specific server or class of
servers used to solve a subgoal are stored in the properties
dialog of the various nodes in the graph.

5.1 CORBA based implementation

The current system is implemented using CORBA as the
middleware. CORBA provides user transparency and
heterogeneity for distributing servers across the network.
In a CORBA based system, all potential servers define
their capabilities using a standard Interface Definition
Language (IDL), and publish their availability to an
Object Request Broker (ORB). This interface, which
encapsulates the operation of a knowledge server, is
flexible enough to access other types of servers. This
flexibility facilitates the use of a large library of pre-
existing CORBA-compliant server objects without a need
to recompile or modify the objects. A simple code stub
translates between the interface of a CORBA object and
the standard server interface. The naming and lookup
facilities of the ORB are used to find the appropriate
server object regardless of the server type. This enables
the use of various types of modules, including numerical
engineering codes that model physical subsystems such as
the aircraft engine described in Figure 4.

 Figure 6 illustrates a sample IDL and typical
capabilities of a knowledge server.

module knowledge_server {
interface KnowledgeServer
{ short load_program(in string file);
 short load_code(in string code);
 short solve(in string goal);
 short more();
 short next();
 string get_bindings();
};

Figure 6. A sample IDL for a knowledge sever

 144

The invocation of the method load_program causes a
server to load a compiled knowledge base from a file. The
method solve submits a query to the server. The method
get_bindings retrieves a set of solutions. The methods
more and next retrieve additional solutions by controlling
backtracking in the knowledge servers.

6. Multimedia knowledge capability

Multimedia knowledge is represented in the knowledge
base by mixing the uniform resource locators (URL) of
the HTML file, video file, or the audio as arguments to a
fact in the knowledge base. For example, we can code
different types of jet engines as a set of facts, and every
different type of engine becomes a unique index for the
picture of the engine as illustrated below:

jetengine(ge90). jetengine(pw2000).

enginePicture(ge90,"http://www.geae.com/lrgcom/
ge90 /images/ge90_cutout.gif”).

enginePicture(pw2000,"http://www.prattwhitney.com/
images/engines/enginegallery/lg.f117.cut.jpg”).

We illustrate the use of the knowledge retrieval using a
small multimedia knowledge base about jet engine
manufacturers and their engines. The engine companies
have web sites on the Internet that have information about
their products, including images of the engines
themselves. This system can access this distributed
multimedia knowledge by creating a knowledge base
server and querying the knowledge transparently.

The knowledge base contains two types of facts and
one rule. Facts of the form makes_engine(Maker, Engine)
associate the various engines in the knowledge base with
the manufacturers that make them. Facts of the form
enginePicture(Engine, URL) mark the location on the
Internet where the image of an engine is archived. The
rule

 engineFrom(Maker, Picture) :-
makesEngine(Maker,Engine), enginePicture(Engine,
Picture).

matches the manufacturers in the multimedia knowledge
base with images of the engines on the Internet.
 Figure 7 illustrates the result of executing a query
against such a knowledge base. In this example, the
query engine_from(pratt, X)? retrieves and displays a
series of images of engines from the internet in a user
transparent manner.

7. User interface implementation

The graphs and graphical user interfaces have been
implemented using the Java programming language [3]
due to the following reasons:

1. Java is an architecture independent language that
provides a portable graphical user interface,
supports visualization of multimedia objects, and
accesses resources on the Internet.

2. The use of Java allows the user interface code to
be mobile. By constraining the functionality
(file system access for example), the front end
can be loaded on demand as an applet from any
site with a Java-enabled web browser.

Figure 7. A multimedia query using the Internet

The structure of the Java front end is illustrated in
Figure 8. The graphical user interface (GUI) contains a
typical windows-based interface for viewing the graph
and text. There are menus to abstract a hierarchical graph
to higher level, to get low level details of a hierarchical
graph, to compile hierarchical graphs into the
corresponding logical rules, and to launch processes to
solve a query. The user is able to draw a hierarchical
graph interactively using the front end. A hierarchical
graph is abstracted or detailed by referring to the unique
identifier of the subgraph corresponding to a node at a
higher level of abstraction.

Figure 8. The user interface

 145

Beneath the user interface there are modules to convert
the graphs to logic programs, to parse query, to compile a
logic program to tabular representation and abstract
instruction code, and to communicate with the knowledge
servers. A schematics is given in Figure 9.

R e m o te s e r v e r

G r a p h ic a l U s e r I n te r f a c e

P a r s e r

K n o w le d g e s e r v e r

K n o w le d g e s e r v e r

R e m o te s e r v e r

Figure 9. The structure of Java based front end

8. Visualization of hierarchical graphs

In this section, we describe a grammar to extend XML
[19] for graph based visualization over the Internet. An
object is represented as a set of one or more graphs. Each
graph has zero or more attributes and one or more edges.
The graph attribute could be graph-id, default color of
edges, default color of nodes, default zoom size of nodes.
Graph-id provides the reference from a node to the
corresponding subgraph embedded at the lower level of
abstraction. By placing graph-id within a node, the node
is expanded (when needed) to the corresponding
subgraph. Each edge has a label. On each edge or a
node, a multimedia object is superimposed by including
type:<Type> attribute where <Type> is defined an audio
clip, video clip, image, user-defined object, a graph , or a
multi dimensional table.

<Object>::= {<G>}+
<G> ::= ‘<’graph {<Graph-Attribute>}* ‘>’ {<E >}+

‘</ ‘graph ’>’
<E> ::= ‘<’edge {<Edge-Attribute>}*’>’< N> <N>

 ‘</’Edge’>’
<N> ::= ‘<’node {<Node-Attribute>}* ’>’ ‘</’node’>’
<Graph-Attribute> ::= graph_id:<Number> | edge_color:

<Color>| node_color:<Color> | size: <Number>
<Edge-Attributes> ::= edge_id:<Number> | color:

<Color> | label: <Text> | type:<Type> |
edge_dir: <Dir>

<Node-Attributes> ::= node_id:<Number> | type:<Type:> |
label= <String> | x:<Number> | y:<Number> |
color: <Color> | size:< Number> | style: <Style>

<Direction>::= directed | undirected
<Type>::= video | image | view |audio| graph | table |

 user_defined |
<Style> ::= solid | circle
<Number>::= <Digit>+

Figure 10. A grammar to visualize graphs in XML

8.1 An example of XML based graph

Figure 11 illustrates an example of the extended XML
representation of the graph presented in Figure 8.

<?xml version ="1.0" encoding="UTF-8"
standalone="no"?>
<!DOCTYPE graph SYSTEM "graph.dtd">
<graph graph_id="0" edge_color="black"
node_color="black">
<edge edge_id ="1" label="ENV" edge_dir="directed">
<node node_id="1" label="ENV" style="solid" size="5"
x="300" y="100" > </node>
<node node_id="2" label=”compressor” style="circle"
size="35" x="100" y="200"> </node>
</edge>

<edge edge_id ="2" label="V1" edge_dir="directed">
<node node_id="2" label=”compressor”> </node>
<node node_id="3" label=”combustor” style="circle"
size="35" x="200" y="315"> </node>
</edge>

<edge edge_id ="3" label="V2" edge_dir="directed">
<node node_id="3" label=”combustor” > </node>
<node node_id="4" label=”turbine” style="circle" size="35"
x="400" y="315"> </node>
</edge>

<edge edge_id ="4" label="V3" edge_dir="directed">
<node node_id="4" label=”turbine” > </node>
<node node_id="5" label= ”nozzle” style="circle" size="35"
x="500" y="200"> </node>
</edge>

<edge edge_id ="5" label= “ENV” edge_dir="directed">
<node node_id="5" label= “nozzle” > </node>
<node node_id="1" label= “ENV”> </node>
</edge>
</graph>

Figure 11. A graph visualization in extended XML

This text is transmitted over the Internet to visualize the
graph at the user’s end. At the user’s end the extended
XML code is parsed [11] and displayed using a JAVA
interface.

9. Related works

As previously mentioned, NASA’s NPSS project is
developing a distributed system for the analysis, design
and simulation of aircraft engines. The approach is to
reuse the existing base of engineering codes by
standardizing on the CORBA distributed object protocol
and making those existing codes interoperable. The work
described in this paper is complementary to NPSS project
since we are using knowledge based system to enhance
component reuse by archiving previously designed
subsystems and to integrate multiple subsystems using
symbolic reasoning. Our system can easily be interfaced

 146

with the NPSS software library due to the use of CORBA
protocol for distributed execution.

10. Conclusions

In this paper, we have described a distributed knowledge
based environment for the design a complex object by
reusing previously designed components and by
integrating numerically simulated subsystems over the
Internet. The system exploited associative logic
programming for content based search, ease of
modifiability of knowledge base, and symbolic reasoning.
We also described a graph based representation and
visualization of the complex object. We extended XML
to visualize graph based multimedia objects over the
Internet.

We are extending our system to provide interfaces to
already developed libraries of numerical codes in NPSS
project to simulate an aircraft combustion engine [5].

Acknowledgments

This research was supported in part by NASA Glenn
Research Center through a NASA Grant and Ohio Board
of Regent’s Ph. D. enhancement grant. We thank
Gregory Follen and NASA research team for useful
discussions and the continued support of the project.

References

 [1] A. K. Bansal, “A Framework of Heterogeneous Associative
Logic Programming,” International Journal of Artificial
Intelligence Tools, Vol. 4, Nos. 1 & 2, (1995), pp. 33 - 53.

 [2] R. Claus, G. J. Follen, R. Haimes, and W. Jones, CAPRI -
Computational Analysis Programming Interface/ A CAD
infra-structure for Aerospace Analysis and Design
Simulations, NASA HPCC/CAS Workshop/NASA Ames
Research Center, February 2000.

 [3] J. Gosling, B. Joy, and G. Steele, “The Java Language
Specification,” Addision-Wesley, also see
http://www.javasoft.com

 [4] I. Herman, G. Melançon, and M. S. Marshall, “ Graph
Visualisation and Navigation in Information Visualization,”
http://www.cwi.nl/InfoVisu/Survey/StarGraphVisuInInfoVis
.html #16592

 [5] P. T. Homer and B. Schlichting, “Using Schooner to support
distribution and heterogeneity in the Numerical Propulsion
System Simulation Project,” Concurrency Practice and
Experience, Vol. 6(4), 1994, pp. 271 – 287

 [6] G. Iazeolla and A. D'Ambrogio, “A Web-Based
Environment for the Reuse of Simulation Models,” SCS
Western MultiConference on Computer Simulation, San
Diego, (1998)

 [7] R. McNab. and F. W. Howell, “Using Java for Discrete
Event Simulation,” Proceedings of the Twelfth UK
Computer and Telecommunications Performance
Engineering Workshop (UKPEW), University of Edinburgh
(1996), pp. , 219 - 228

 [8] A. L. Evans et. el., “HPCC NPSS Introduction,” http://hpcc
lerc.nasa.gov/hpcc2/npssintro.shtml

 [9] G. J. Follen and M. auBuchon, Numerical Zooming between
a NPSS Engine System Simulation and a 1-Dimensional
High Compressor Analysis Code, NASA HPCC/CAS
Workshop/NASA Ames Research Center, February 2000.

 [10] V. Ogle and M. StoneBraker, “Chabot: Retrieval from a
Relational Database of Images,” IEEE Computer 29, (1995),
pp. 18 - 22.

 [11] R. Pfeifer, “:Parsing XML Using Java,” IBM XML
Technology Group Report,” http://www-
4.ibm.com/software/developer/education/tutorial-prog/
parsing. html

 [12] J. L. Potter, Associative Computing, Plenum Publishers,
New York, (1992).

 [13] J. A. Reed and A. A. Afjeh, “A Java-based Interactive
Graphical Gas Turbine Propulsion System Simulator,”
AIAA paper 97-0233, 35th Aerospace Sciences Meeting and
Exhibit, Reno NV (1997), pp. 1 - 9.

 [14]S. Ryan S. and A. K. Bansal, “A Scalable Heterogeneous
Associative Logic Programming System,” Proceedings of
the Ninth International Conference on Tools with Artificial
Intelligence, Newport Beach, California, (1997), pp. 37 –
44.

 [15] S. Ryan and A. K. Bansal, “A Scalable Distributed
Associative Multimedia Knowledge Base System for the
Internet,” Proceedings of the Eighth International
Conference on Intelligent Systems, Denver, Colorado,
(1999), pp. 1 - 6.

 [16] J. Siegel, CORBA Fundamentals and Programming, John
Wiley & Sons, (1996)

 [17] L. S. Sterling, and E. Y. Shapiro, The Art of Prolog, MIT
Press, (1994).

 [18] P. Tarau, “Jinni: a Lightweight Java-based Logic Engine for
Internet Programming,” Proceedings of JICSLP'98
Implementation of LP languages Workshop, (1998), pp. 1-
15.

 [19]Extensible Markup Language (XML), Version 1.0 , W3C
Recommendation (1998), http://www.w3.org /TR/1998/REC
-xml-19980210

 [20] D. H. D. Warren, “An Abstract Prolog Instruction Set,”
Technical Report 309, SRI International, (1983).

