
Copyright ©2000IEEE. Reprinted from (Proceedings of the 12th EEEE International
Conference on Tools with AI, held in Vancouver, Canada, 2000)).
This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of The Robert Gordon University’s
products or services. Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

Appears inProceedings of the 12TH IEEE Int. Conf. on Tools with Artificial Intelligence,pp182–185, 2000, ISBN 0-7695-0909-6.cIEEE 2000

Debugging Knowledge-Based Applications with a Generic Toolkit

Susan Craw Robin Boswell
School of Computer and Mathematical Sciences

The Robert Gordon University
St Andrew Street, Aberdeen, AB25 1HG, Scotland

fs.craw jrab g@scms.rgu.ac.uk

Abstract

Knowledge refinement tools assist in the debugging and
maintenance of knowledge based systems (KBSs) by at-
tempting to identify and correct faults in the knowledge
that account for incorrect problem-solving. Most refine-
ment systems target a single shell and are able to refine
only KBSs implemented in this shell. Our KRUSTWorks
toolkit is unusual in that it provides refinement facilities that
can be applied to a number of different shells, and is de-
signed to be extensible to new shells. This paper outlines
the components of the KRUSTWorks toolkit and how it is
applied to faulty KBSs. It describes its application to two
real aerospace KBSs implemented in CLIPS and POWER-
MODEL to demonstrate its flexibility of application.

1. Background

Knowledge refinement tools correct faulty knowledge
based systems (KBSs) in reaction to examples of incorrect
problem solving. They assist in detecting and removing
faults while the KBS is being developed, but also when up-
dating the KBS if its specification changes over time [4].

Most refinement tools are restricted to KBSs imple-
mented in a single shell or language. ODYSSEUS [11]
refines Minerva KBSs by exploring the problem-solving
strategy that is explicitly represented in control knowledge.
CLIPS-R [7] acts on CLIPS KBSs by analysing the KBS’s
interaction with the user and the content of working mem-
ory when execution halts. We developed a refinement tool
specifically for the PFES shell, designed to implement for-
mulation applications [4]. Several refinement tools target
Prolog clauses [8, 2]. In contrast, the KRUSTWorks toolkit
described here allows the knowledge engineer to construct
a KRUSTTool refinement tool, customised for a particu-
lar KBS. Thus, KRUSTWorks helps to refine KBSs imple-
mented in a number of different shells, and can be extended
to new shells as required.

Refinement tools often assume that the shell’s inference
uses pure logic, and ignore procedural features like conflict
resolution strategies. Refinement tools constructed from
KRUSTWorks represent and reason about non-logical fea-
tures of rule execution by using generic KBS concepts that
represent the knowledge and reasoning processes in a vari-
ety of KBSs. We exploit the fact that despite variations in
syntax, there are a relatively small number oftypesof rule
conditions and conclusions [6]. Tasks and problem-solving
methods can also be organised into ontologies [5].

This paper describes the KRUSTWorks toolkit. We first
outline its components and how the KRUSTTools it cre-
ates cover a range of KBSs (Section 2). We have created
KRUSTTools for CLIPS and IntelliCorp’s POWERMODEL,
and these are evaluated on two real KBSs developed for di-
agnostic aerospace applications (Section 3). The paper con-
cludes by summarising the lessons learned.

2. The KRUSTWorks Refinement Toolkit

KRUSTWorks has two types of component: core refine-
ment procedures that are independent of the KBS; and a
set of toolkits from which the knowledge engineer selects
tools to suit their specific KBS. The algorithm applies stan-
dard refinement steps (Figure 1). Run the KBS on a partic-
ular training example, allocate blame to potentially faulty
rules, and then propose repairs that prevent the faulty be-
haviour. However, KRUSTTools are unusual in generating
many repairs and postponing the selection of the best until
the refined knowledge bases (KBs) have been evaluated by
executing them on further examples. This cycle is repeated
iteratively for each training example. Once processed, each
example is added to aconstraintbuffer; subsequent refined
KBs performing incorrectly for constraint examples are re-
jected. Another project has developed a more sophisticated
treatment of training examples by re-ordering and back-
tracking to previously generated refined KBs [12].

KRUSTWorks provides several toolkits for the refine-
ment algorithm.Communication functionsestablish a two-

IMPLEMENT
 REFINEMENTS

GENERATE
REFINEMENTS

ALLOCATE
BLAME

CHOOSE
BEST KB

Refinement
Filters

Filter
Refinements

Filter Refined
KBs

Refinement
Operators

Training Examples

Constraint Examples

Refinement
Example

Evaluation
Functions

KB Filters

Original
Faulty
KBS

Figure 1. Refinement Algorithm

way communication between the KRUSTTool and the KBS
via RPC-calls, pipes, or shared files.Refinement Filtersre-
move refinements before the changes are implemented; e.g.
conflicting or “poorest” according to some criteria (com-
plexity, depth of rule in proof tree).Refinement Operators
implement refinements and are associated with the various
types of knowledge found in KBSs.KB Filters remove re-
fined KBs that are unsatisfactory when executed; e.g. those
that fail on constraint examples.Evaluation Functionsse-
lect the best refined KB; e.g. the one with the highest accu-
racy on the training examples. The selection from toolkits
is often dependent on the KBS to be refined; e.g. refine-
ment operators depend on the type of knowledge in the KB.
But the choice may be dependent on the refinement task;
e.g. few training examples may demand more sophisticated
evaluation functions.

Figure 2 illustrates the resulting KRUSTTool. The core
refinement algorithmreasons about the static knowledge
represented in theknowledge skeletonand the knowledge
applied during problem solving as found in theproblem
graph. Firstly the shell-specific translator transforms the
KB into the internal knowledge skeleton (1). For each train-
ing example, the KBS applies its problem-solving, and gen-
erates an execution trace from which the problem graph
is formed (2). The refinement algorithm reasons from
the knowledge skeleton and problem graph, applies refine-
ment operators to change the knowledge skeleton, and the
changed knowledge updates the actual KBS (3). Unlike
many refinement tools (e.g. [8]) we separate the refinement
and KBS processes so that different KBSs can easily be re-
fined by the same basic architecture.

Knowledge
Skeleton

Problem
Graph

KRUST
Tool

==> f-0 (fact)
=> Activation 0
FIRE 1 not-artic: f4
==> f-5 (not-artic)
FIRE 2 weight: f3,f4
==> f6 (total-weight 1)
FIRE 3 isa-car: f2
=>> f-7 (vehicle car)

Execution

Refinement
Algorithm

KBS

Training
Examples

Trace

2

3

3

1

2

Translators

Figure 2. KRUST and KBS Processes

2.1. Representing Static Knowledge

There are only a small number of roles performed by
rule conditions and conclusions [6]. An internal format is
defined for each of the basic knowledge types and the con-
tent of the rules is captured in the knowledge skeleton. The
knowledge hierarchy and associated refinement operators
are described in [1]. We distinguish between comparisons
assignments and goals. Different goal types also exist; e.g.
OAV triples, AV tuples. Goals succeed by matching with
observables or facts inferred by other rules. All three oc-
cur as rule conditions, but only assigments and goals appear
as rule conclusions. Comparison and goal conditions suc-
ceed or fail, and so can be refined to affect the activation
of that rule, but assignments always succeed. Refinement
operators are defined for each knowledge type: a compar-
ison ?temp<50 is generalised by increasing the value50;
we specialise the goal(temperature ?motor ?temp)

by instantiating?motor or ?temp .
Rule syntax varies in different shells. When faced with

a new shell, the knowledge engineer defines a grammar for
the rules, describing items in terms of the standard knowl-
edge types, but adding new types to the hierarchy if needed.
The grammar underpins 2 shell-specific translators between
the KBS and the knowledge skeleton. A similar approach
analyses the execution trace for the problem graph.

2.2. Representing Problem Solving

The problem graph captures the reasoning as rules are
applied to observables to infer the solution. Nodes rep-
resent rule activations or facts (those observed initially or
inferred by applying rules). Edges link fact nodes to the
rule nodes whose conditions they match, and rule nodes to
the fact nodes they conclude. In addition to this part ex-
tracted from the trace, further nodes are added by finding
rule chains in the knowledge skeleton that connect the ob-

183

servables and thedesiredsolution. The trace part is guaran-
teed correct, but the added nodes and edges require a simu-
lation of potential KBS behaviour and may introduce inac-
curacies. Stalker [2] relies on the correctness of this simula-
tion, but we implement and test all refinements in the KBS
itself. Reasoning about simulated behaviour is common in
planning applications [10] and so it is appropriate here for
planning refinements. Refinement tools capture reasoning
in different ways: CLIPS-R [7] groups traces which share
initial sequences of rule firings; ODYSSEUS[11] explores
all instantiations of the explicit problem solving strategy.
Our problem graph and its applicability to a range of prob-
lem solving methods is described in [3].

3. Evaluation

KRUSTTools have been applied to various artificial and
industrial KBSs; e.g. student loans [12], AstraZeneca’s
tablet formulation system TFS [4]. In each case a
KRUSTTool was developed for that KBS. Here we evalu-
ate KRUSTTools created from KRUSTWorks on 2 industrial
KBSs: Nasa’s MMU and ESA’s AMFESYS.

Ideally, a refinement tool is applied during the devel-
opment of a KBS. Various early faulty versions of As-
traZeneca’s TFSdemonstrated the effectiveness of the PFES

KRUSTTool [4]. But access to industrial KBSs during de-
velopment is hard to achieve, so we obtained copies of AM-
FESYSand MMU, which we assumed to be correct, and in-
troduced manual corruptions to each KB. One advantage of
this approach is that the expert does not need to label exam-
ples; instead, we generated sample problems and used the
original KBS to generate the “correct” outputs.

For each KBS, 5 faulty KBs were created each con-
taining a single change: modified threshold, equality test,
CLIPS field constraint, or disjunction; or an added condi-
tion. Further faulty KBs were generated by combining sin-
gle faults into all possible groups of 2-3 faults. The final KB
contained all 5 faults; 26 faulty KBSs in all. Faults were
numbered and the corrupted KBSs assigned names based
on their faults; e.g. MMU134 has faults 1, 3, 4.

Evaluating knowledge acquisition and refinement tools
can be user-centred [9]; ease of acquisition is measured
and new knowledge is critiqued by the expert. Since
KRUSTTools currently do not interact with the user, we
evaluate their performance by measuring the accuracy of
the refined KB on unseen test problems. An n-fold cross-
validation was performed. The example set for the appli-
cation was randomly divided into 5 equal subsets, and re-
peatedly allocated to training and testing sets in the ratio
3:2 (10 experiments). For each experiment, the KRUSTTool
was applied iteratively to the training examples. Both the
initial (corrupt) KB and the final refined KB were evaluated
on the testing set and the improved accuracy noted.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m
m
u
4
5

m
m
u
1
2
4

m
m
u
1
2
5

m
m
u
1
3
4

m
m
u
1
2

m
m
u
1
4

m
m
u
1
2
3

m
m
u
1
4
5

m
m
u
1
2
3
4
5

m
m
u
1
3

m
m
u
1
5

m
m
u
1

m
m
u
1
3
5

Corrupted KBS

%
o
f
R
u
n
s

Unchanged

Improved

Corrected
C

Figure 3. Improved error rates for MMU

3.1.MMU: Diagnosis of Manned Maneuvering Unit

NASA’s Manned Maneuvering Unit (MMU) is a pow-
ered framework which fits around a space-suited astronaut
and enables them to maneuver during space-walks. The
MMU system (104 CLIPS rules) performs automatic fault
diagnosis and recovery procedures for the MMU. Six ex-
amples came with MMU; having few test examples is quite
common. We generated further examples manually, aiming
to cover the problem space uniformly. The original KBS
determined the “correct” diagnosis for all 80 examples.

Figure 3 allocates runs for each corrupt KBS into 3
classes: the refined KB is correct, has improved accuracy, is
unchanged. Faults were not fixed in two situations: (1) no
training examples exhibit the fault; and (2) the tool fixes the
fault but notestingexamples exhibit the fault, so the error
rate is not improved. Several faults were under-represented
like this (no examples for faults 3&5; and only 1 example
highlights faults 2&4). For fault 1 there was ample evi-
dence, and the tool always fixed the fault. Figure 3 shows
the results for MMU45 and MMU KBs incorporating fault
1; the other KBs are always unchanged because of the lack
of revealing training examples. Only 33% of refined MMU

KBs were correct, and a further 11% were improved.

3.2.AMFESYS: Diagnosing Experiment Simulations

The European Space Agency’s AMFESYScontrolled the
Automatic Mirror Furnace payload of the EURECA mis-
sion. Only the fault-diagnosis module (67 rules) is writ-
ten as POWERMODEL rules. We generated 4 examples by
running the full AMFESYS system and monitoring the ob-
servables presented to the fault-diagnosis module. Further
examples, up to a total of 40, were created as for MMU.

Figure 4 shows the results for all AMFESYS KBs. The
AMFESYSKRUSTTool almost always fixed the faults: 73%
of refined KBs are correct, and a further 22% are improved.
Combinations of faults 1,2& 3 are always corrected. Faults

184

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

a
m
f2

a
m
f1
2
3
4
5

a
m
f1
3
5

a
m
f1
4
5

a
m
f2
4
5

a
m
f1
5

a
m
f2
3
5

a
m
f3
4
5

a
m
f5

a
m
f1
2
5

a
m
f1
3
4

a
m
f2
3
4

a
m
f3
5

a
m
f2
4

a
m
f1
4

a
n
f2
5

a
m
f4
5

a
m
f1
2
4

a
m
f3
4

a
m
f4

a
m
f1

a
m
f1
2

a
m
f1
2
3

a
m
f1
3

a
m
f2
3

a
m
f3

Corrupted KBS

%
o
f
R
u
n
s

Unchanged

Improved

Corrected

Figure 4. Improved error rates for AMFESYS

4&5 demonstrate (2) and degrade the performance when
combined with other faults.

4. Conclusions

Most refinement tools target a single shell. KRUSTWorks
uses generic representations for rules and the KBS’s reason-
ing that enable us to build KBS-independent toolkits, appli-
cable to a range of KBSs. We have presented the application
of 2 tailored refinement tools to 2 industrial applications
written in CLIPS and POWERMODEL. When the refinement
tools failed to fix faults, the major cause was a lack of fault
evidence in the available examples.

We also learned useful lessons relating to the refinement
tool. Situations arose with MMU when a faulty refined
KB disrupted the experiments: a pair of rules when over-
generalised looped indefinitely; other refinements caused
runtime errors. Rather than attempt a complex semantic
analysis to predict rule behaviour [10], we believe the re-
finement tool should simply execute the refined KBS. Thus
we have implemented a KRUSTTool-KBS interface that
limits the KBS execution resources or kills the process for
a crashed KBS, and rejects the refined KB that causes the
error. AMFESYSshowed that it is possible to refine knowl-
edge when the rules are only part of a larger system. This is
important for the applicability of KRUSTWorks, since few
industrial systems use rules exclusively.

Acknowledgements

This work is supported by EPSRC grant GR/L38387. We
are grateful for software donated by ESA and IntelliCorp.

References

[1] R. Boswell and S. Craw. Knowledge modelling for a generic
refinement framework.Knowledge Based Systems, 12(5-

6):317–325, 1999.
[2] L. Carbonara and D. Sleeman. Effective and efficient knowl-

edge base refinement.Machine Learning,37:143–181, 1999.
[3] S. Craw and R. Boswell. Representing problem-solving for

knowledge refinement. InProceedings of the Sixteenth Na-
tional Conference on Artificial Intelligence, pages 227–234,
Orlando, FL, 1999. AAAI Press/MIT Press.

[4] S. Craw, R. Boswell, and R. Rowe. Knowledge refinement to
debug and maintain a tablet formulation system. InProceed-
ings of the 9TH IEEE International Conference on Tools
with Artificial Intelligence (TAI’97), pages 446–453, New-
port Beach, CA, 1997. IEEE Press.

[5] D. Fensel, E. Motta, S. Decker, and Z. Zdrahal. Using on-
tologies for defining tasks, problem-solving methods and
their mappings. InProceedings of the 10th European Knowl-
edge Acquisition Workshop (EKAW97), pages 113–128, Sant
Feliu de Guixols, Spain, 1997. Springer.

[6] V. M. Johnson and J. V. Carlis. Building a composite syntax
for expert system shells.IEEE Expert, 12(6):60–66, 1997.

[7] P. M. Murphy and M. J. Pazzani. Revision of production
system rule-bases. InMachine Learning: Proceedings of
the 11th International Conference, pages 199–207, New
Brunswick, NJ, 1994. Morgan Kaufmann.

[8] D. Ourston and R. Mooney. Theory refinement combin-
ing analytical and empirical methods.Artificial Intelligence,
66:273–309, 1994.

[9] N. Shadbolt, K. O’Hara, and L. Crow. The experimental
evaluation of knowledge acquisition techniques and meth-
ods: History, problems and new directions.International
Journal of Human-Computer Studies, 51(4):729–755, 1999.

[10] D. E. Smith and M. A. Peot. Suspending recursion in causal-
link planning. In Proceedings of the Third International
Conference on AI Planning Systems, Edinburgh, Scotland,
1996. AAAI press.

[11] D. C. Wilkins. Knowledge base refinement as improving an
incorrect and incomplete domain theory. InMachine Learn-
ing: An Artificial Intelligence Approach Volume III, pages
493–513. Morgan Kaufmann, San Mateo, CA, 1990.

[12] N. Wiratunga and S. Craw. Informed selection of train-
ing examples for knowledge refinement. InProceedings
of the 12th European Knowledge Acquisition Workshop
(EKAW2000), Juan Les Pins, France, 2000. Springer.

185

