
Consistency Checking for Euclidean Spatial Constraints: A Dimension Graph Approach

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 00-039

Consistency Checking for Euclidean Spatial Constraints: A

Dimension Graph Approach

Xuan Liu, Shashi Shekhar, and Sanjay Chawla

July 11, 2000

Consistency Checking for Euclidean Spatial Constraints: ADimension Graph Approach �yXuan Liu, Shashi Shekharz, Sanjay ChawlaComputer Science Department, University of MinnesotaEE/CS 4-192, 200 Union St. SE., Minneapolis, MN 55455telephone: (612)624-8307[xliujshekharjchawla]@cs:umn:eduhttp://www.cs.umn.edu/research/shashi-groupAbstractIn this paper, we address the problem of consistency checking for Euclidean spatial constraints.A dimension graph representation is proposed to maintain the Euclidean spatial constraints amongobjects. The basic idea is to project the spatial constraints on both X and Y dimensions, and thedimension graph is constructed on each dimension. By using the dimension graph representation,the problem of consistency checking is then transformed to a graph cycle detection problem. Theconsistency checking can be achieved with O(N+E) time as well as space complexity, where N is thenumber of spatial objects, and E is the number of spatial predicates in the constraint. The proposedapproach to consistency checking for spatial constraints is faster than O(N2) when the number ofpredicates is much smaller than N2 and there are few disjunctions in the spatial constraint. Thedimension graph and consistency checking algorithm can be used for points, intervals and polygonsin 2 dimensional space. The algorithm can guarantee the global consistency.Keywords: Euclidean spatial constraint, consistency checking, dimension graph, directional relation-ship
�This work is sponsored in part by the Army High Performance Computing Research Center under the auspices of theDepartment of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract numberDAAH04-95-C-0008, the content of which does not necessarily reect the position or the policy of the government, and noo�cial endorsement should be inferred.yTech. Report TR00-039, University of Minnesota, Minneapolis, MN. Submitted to ICTAIzContact author

1 IntroductionA spatial database [12, 14, 23] management system aims at the e�ective and e�cient management ofdata related to a space such as the physical world (geography, urban planning, astronomy); parts ofliving organisms (anatomy of the human body); engineering design (very large scale integrated circuits,the design of an automobile or the molecular structure of a pharmaceutical drug); and conceptualinformation space (a multi-dimensional decision support system, uid ow, or an electro-magnetic �eld).The distinguishing features of a spatial database management system are the use of complex datatypes like points, lines and polygons to represent spatial objects and the existence of many potentialrelationships between spatial objects.Consistency checking is an important concept to maintain the integrity of databases in generaland spatial databases in particular. Consistency checking is the process of identifying contradictoryinformation in a database. For example, if A, B and C are three spatial objects and if B is west of Aand C is west of B and if the database indicates that C is east of A then the information is inconsistent.The existence of many potential spatial relationships implies that consistency checking in the context ofspatial databases is more challenging vis-a-vis its traditional relational counterpart.Consistency checking can also be used for spatial query processing via semantic query optimization[21]and reasoning for spatial qualitative relationships. For example, given a spatial query S and a set of ofspatial constraints SC, if the query S is inconsistent with respect to SC then the answer to S is null.Currently most of consistency checking is based on Allens's algorithm [3] which was originally devisedfor checking temporal relationships on one-dimensional objects. Spatial relationships are typically for-mulated among multi-dimensional objects and straightforward extension of Allen algorithm for spatialrelationships are prohibitively expensive.In this paper, we address the problem of consistency checking for directional spatial constraints inthe two-dimensional Euclidean space. We propose a dimension graph representation for maintaining thespatial constraints among objects. Basically, the spatial constraints is projected on each dimension(Xand Y), the constraints that must be satis�ed for each dimension(X/Y) are maintained in di�erentgraph(X/Y graph). One graph records the constraints on one dimension. The problem of constraintconsistency checking is transformed to a graph cycle detection problem on the dimension graph. Thecycle detection could be solved by traversing the graph in linear time. As we will see in later sections,the proposed consistency checking algorithm is e�cient in terms of both time and space. The algorithmalso guarantees the global consistency of system.1.1 Spatial Data ModelRecent reports[12, 14, 23, 1] have described the accomplishments of spatial database research and haveprioritized research needs. A broad survey of spatial database requirements and an overview of researchresults is provided by [23, 12, 1, 20].A spatial data model is de�ned by geometric entities, spatial operations on these entities and spatialrelationships between them. The three basic geometric entities are point, line and polygon which rep-1

resent spatial objects in zero, one and two dimension respectively. To facilitate rapid query processingpolygons are often represented by their Minimum Bounding Rectangles(MBRs). An MBR of a spatialobject is the smallest axis parallel rectangle which covers the polygon.The spatial relationships between the geometric entities are categorized according to the mathemat-ical properties of the relationships. For example, topological relationships like overlap and adjacent arerelationships which are invariant under a change of coordinate or projection system. Other types ofrelationships include Metric, Set and Directional. Some important relationships categories and theirrepresentative example are shown in 1. In this paper we will focus on consistency checking of absolutedirectional relationships like North, South, East, West, Northeast, Northwest, Southeast and Southwest.These relationships can be de�ned between any combination of point, line and polygon objects but wewill restrict our attention to homogeneous point, line and MBR pairs. For constraints among intervals,we deal with Allen's 13 relationships [3]. The constraints are represented in terms of disjunctions and/orconjunctions of spatial predicates. The predicates are logically atomic.Data model Operator Group OperationSet-Oriented equals, is a member of, is empty, is a subset of, is disjointfrom, intersection, union, di�erence, cardinalityVector Object Topological boundary, interior, closure, meets, overlaps, is inside, covers,connected, components, extremes, is withinMetric distance, bearing/angle, length, area, perimeter.Direction east, north, left, above, between.Network successors, ancestors, connected, shortest-pathTable 1: A Sample of Spatial Operations1.2 Problem De�nitionIn this paper, we intend to explore the consistency checking for Euclidean qualitative spatial constraintsamong points, intervals, and 2-D Minimum Bounding Rectangles(MBRs) objects in spatial database.Consistency Checking Problem:Given: A collection of 0-th order1 spatial constraints in terms of disjunctions and/or conjunctionsof spatial predicatesFind: Consistency, i.e., return TRUE if the constraints are consistent, False otherwiseObjective: Reduce computation complexityConstraint: (a) 2-D Euclidean space.(b) Two-dimensional extended objects are approximated by MBRs(c) Spatial objects refereed to given spatial constraints are of homogeneous types,(i.e., point pairs, interval pairs, or MBRs in 2D)10-th order spatial constraints means that there are no free variables but only constant objects2

Consider an example of direction constraints among point objects A, B, and C. Assume one constraintsays A is Southeast of B, B is Northwest of C, and A is Northeast of C. This constraint is consistent,and hence the result will be TRUE. An example of the possible spatial con�gurations satisfying thisconstraint is shown in Figure 1.
C

A

North

East

B

Figure 1: One possible spatial con�guration for point objects A, B, and CSuppose we have another set of constraint among A, B, and C: A is strictly north of B, B is Northwestof C, and A is Northeast of C. This constraint is inconsistent since there does not exist any spatialcon�guration of A, B, and C satisfying this constraint. The consistency checking algorithm shouldreturn FALSE.1.3 Related work and our contributionsMost of previous study on consistency checking is based on Allen's consistency checking algorithm [3] forconstraints among intervals. The basic approach for consistency checking is to use transitive closure al-gorithm, which incurs high order of time and space complexity. Hernandez [13] presented mechanisms tomaintain the consistency of a knowledge base of spatial information based on a qualitative representationof 2-D positions. His approach improved Allen's algorithm by using the heuristic of rich structure of thespatial domain. Bowman and etc.[6, 5] addressed the problem of consistency checking between multipleviewpoints using strategies based on uni�cation. Some other work[15, 10, 17] focused on the problemof consistency checking for more general constraints, such as, 1-th order constraints. Manandhar[16]discussed deterministic consistency checking for LP constraints. Beneventano and etc.[4] focused onthe problem of providing a theoretical framework for consistency checking of integrity constraints in acomplex object database environment.The consistency checking algorithm is dependent on the set of spatial predicates. This paper, we dealwith basic direction predicates for absolute directions[22]. There are some other directional predicates.The research work on direction modeling has been carried out in several areas such as geographicinformation systems and image analysis. Most of the studies is on how to capture the semantics ofdirection relations, and further, how to do spatial reasoning based on direction predicates [8, 9, 11]. Thereare two major direction reference frames used to model direction in 2D space: the cone-based model[18],and the projection-based model[9, 11]. Frank[2] compared these two models and found the projection-based reference frame to be better in many aspects. The most common way to model directions betweenextended objects is through the object's Minimum Bounding Rectangle(MBR), where direction relationsare obtained by applying Allen's [3] interval relations along the x and y axis, in which case, 169 di�erentrelations[8] can be distinguished. We'll briey describe Allen's Algorithm since it is basic to many3

algorithms.1.3.1 Allen's Propagation AlgorithmAllen[3] summarized thirteen mutually exclusive relationships to express any possible relationships be-tween intervals as shown in table 2.Relationships symbol Symbol for Inverse Pictorial ExampleX before Y < > XXX YYYX equal Y = = XXXYYYX meets Y m mi XXXYYYX overlaps Y o oi XXXYYYX during Y d di XXXYYYYYYX starts Y s si XXXYYYYYX �nishes Y f � XXXYYYYYTable 2: Thirteen possible relationships proposed by Allen[1]In Allen's work[3], the relationships between intervals are maintained in a network where each nodeNi represents individual interval i, and each arc N(i,j) is associated with possible relationships betweenthe corresponding interval pair i and j. The basic algorithm he used for maintaining relationships waspropagating new relationships by computing the transitive closure of the relationships between intervals.Figure 2 shows the network used by Allen for consistency checking. 2(a) is the network for twoinputs, i.e. S overlaps or meets L, and S is before, meets, is metby, or after R. After the second input
(< m mi >) S (o m) R L

(< m mi >) S (o m) R L

(< > o oi m di s si fi =)

(b)

(a)

S(<,m) (o m)

(o s)

LR

(c). After adding L --(os) --> R

Figure 2: Examples of Allen's algorithmwas added, the algorithm computed the constraint between L and R, and the resulting network is shownas 2(b). If we add a new fact L overlaps, starts, or is during R, we need to propagate its e�ect throughthe network, and thus obtaining the resulting network 2(c).As explained in Allen's paper[3], the time complexity of this algorithm is calculated as: 13 �(N�1)(N�2)2 for N intervals, i.e., O(N2). The space requirement for the algorithm is also O(N2).4

As Allen stated in [3], one problem with this algorithm is that it does not detect all inconsistenciesin its input. Quote the phrases in [3] "In fact, it only guarantees consistency between three nodesubnetworks. There are networks that can be added which appear consistent by viewing any three nodes,but for which there is no consistent overall labeling of the network." In other words, the algorithm cannot guarantee global consistency.1.3.2 Our ApproachIn this paper, we propose a new strategy to process consistency checking for Euclidean spatial constraintsamong objects. We use a geometric approach by incorporating the spatial domain information in consis-tency checking. We propose dimension graphs to maintain the spatial constraints among objects. Eachconjunctive constraint is projected on both dimensions, and a dimension graph is constructed for theconstraint on each dimension. For spatial constraints in general format, the constraints can be convertedto its Disjunctive Normal Form(DNF)[19] , and dimension graphs are constructed for each conjunction.By using the dimension graph representation, the problem of constraint consistency checking is thentransformed to a graph cycle detection problem on each dimension graph. The cycle detection could besolved e�ciently with O(N+E) time as well as space complexity, where N is the number of spatial objects,and E is the number of spatial predicates in the constraint. Recall that Allen's algorithm has a timeand space complexity of O(N2). The proposed approach to consistency checking for spatial constraintsis faster when the number of predicates is much smaller than N2 and there are few disjunctions in thespatial constraint. The dimension graph and consistency checking algorithm can be used for points, andMBRs in 2 dimensional space. Since the algorithm returns TRUE if and only if the dimension graphof at least one conjunction contains no cycle, which means there exist at least one consistent overallconstraint. The algorithm can guarantee the global consistency.1.4 Scope and OutlineIn this paper, we address the problem of consistency checking for spatial constraints in the two-dimensional Euclidean space. We deal with only 0-th order constraints. We focus on the qualitativeconstraints among objects, which include topological and direction relationships(See Table 1). Distance-based constraints are not discussed. We consider the constraints among point objects, interval objects,and region objects approximated by MBRs. We focus on addressing the consistency checking for homoge-neous types of objects, i.e., the constraints among point objects, or intervals, or MBRs. The consistencychecking for the constraints speci�ed among mixed types of objects(e.g. the constraints between a pointand an interval) is out of the scope of the paper, which may be addressed in the future work. We onlydiscuss a speci�c set of predicates de�ned in the paper. The predicates are de�ned in Euclidean space.Di�erent predicate sets or in di�erent space may be di�erent. Some constraints that are inconsistent inEuclidean space may be consistent in spherical space. The consistency checking for predicates in otherspace is out of the scope of this paper.The organization of this paper is as follows: In section 2, we propose dimension graph representationfor the conjunctive constraints among points, intervals. The consistency checking for conjunctive con-5

straint based on the dimension graph representation is introduced in section 3. In section 4, we discussedthe dimension graph construction and consistency checking for conjunctive constraints among MBRs.Finally, the consistency checking for constraints in general format is described in section 5. The paperends with conclusions and recommendations for future work.2 Dimension Graphs for Conjunctive Spatial ConstraintsIn this section, we will describe the construction of dimension graph for conjunctive spatial constraintsamong points and intervals. The basic idea is to projected the conjunctive spatial constraint onto eachdimension and record the spatial constraints that much be satis�ed on each dimension in a dimensiongraph respectively. The dimension graph for points in 2D space contains X-graph and Y-graph. Thedimension graph for intervals in 1D space contains only one graph. We also analyze the computationcomplexity for the dimension graph construction algorithm.2.1 Dimension Graphs for Constraints Among Point ObjectsWe start by de�ning a set of absolute direction predicates for point objects in terms of coordinates. Here,We assume the global coordinate systems aligned with the reference frame of absolute directions, i.e.,North aligns with y-axis, and East align with x-axis. The de�nition for each predicate is given in Table3. The �rst column of the table enumerates the direction predicates. The second and third columnsDirection predicates Ax; Bx Ay; BySP (A;B) = =North(A;B) = >South(A;B) = <East(A;B) > =West(A;B) < =NE(A;B) > >NW (A;B) < >SE(A;B) > <SW (A;B) < <Table 3: Direction Predicates for point objects in terms of coordinatesrepresent the relationships between two point objects on X and Y dimensions respectively. Ay; By are they-components of A and B, and Ax; Bx are x-components of A and B. Figure 3(a) illustrates the intuitionof the de�nition. The predicates are de�ned using direction equivalence classes [22] by partitioning thespace. SP(A,B) means A and B are on the same position, North, South, East, and West representexact directions, while NE, NW , SE, and SW can point to any direction in their respective quadrants.This predicate set is complete. Figure 3(b) shows examples of predicates described the directionalrelationships among points A, B and C, i.e., B is east of A, A is northwest of C, and C is southwest ofB. The spatial constraints represented in terms of conjunctions of predicates can be maintained in twographs: X-graph and Y-graph. The nodes in both graphs represent the objects forming the constraints.6

Y

X

North

East

SW

West

South
SE

NW NE

(a) De�nitions ofthe predicates
E

NA B

C

East(B, A), NW(A, C), SW(C, B)
West(A, B), NE(B, C), SE(C, A)(b) Examples of predicatesFigure 3: Illustration of the predicatesThe direction constraints are represented as directed edges in each graph according to the symbol in thecolumn 2 and 3 of Table 3. The edge goes from the node with smaller values to the node with larger values.If the symbol is '=', the two nodes are merged to one node. Figure 4 shows the graph representation

X-graph Y-graph

B

A
C

A

D

C

D

B

Figure 4: Dimension graph for North(A,B) ^ NW(B,C) ^ SE(B,D)for the constraint North(A,B) ^ NW(B,C) ^ SE(B,D). The dimension graph is a union of X-graph andY-graph, and is constructed according to the de�nition of each predicate in Table 3. Algorithm 1 isthe pseudo-code of the graph constructing procedure. The input of the algorithm is the conjunctiveconstraint and the output is the dimension graph. For each predicate in the conjunctionConstraint,the algorithm invokes the sub-function add a predicate point to add the predicate to the dimensiongraph. This function calls function addNode to add nodes that do not in the dimension graph into thegraph, and calls function addEdge to add the spatial relationships between nodes into dimension graph.We can easily summarize the computation complexity for this algorithm. Let N be the number ofspatial objects involved and E be the number of spatial predicates in the conjunction.� Time complexity = O(N+E);Any of the sub-functions addNode and addEdge takes constant time(O(1)). �ndXconstraintand �ndYconstraint are essentially table lookup functions, which could also be accomplished inconstant time. The whole algorithm therefore have the time bound of O(E). The generated graphhas at most N nodes and E edges each in X-graph and Y-graph.� Space complexity O(N+E).We can process on each dimension graph at a time, the space requirement is also linear to thegraph elements. 7

Algorithm 1 Constructing Dimension Graph from conjunctive spatial constraints for points: con-structGraphPointInput: conjunctionConstraint is a set of conjunctive predicatesOutput: constraintGraph consists of the corresponding X/Y-graphs.Graph constructGraphPoint(Set of Predicates conjunctionConstraint) fGraph constraintGraph = ;;for each entry p 2 conjunctionConstraintadd a predicate point(p, &constraintGraph);return constraintGraph;gadd a predicate point(Predicate aPredicate, Graph* aGraph) f�rstObject = getFirstObject(p);secondObject = getSecondObject(p);addNode(�rstObject, secondObject, aGraph.graphX);symbol =�ndXconstraint(Table 3, p);addEdge(symbol, �rstObject, secondObject, aGraph.graphX);addNode(�rstObject, secondObject, aGraph.graphY);symbol =�ndYconstraint(Table 3, p);addEdge(symbol, �rstObject, secondObject, aGraph.graphY);gaddNode(Node n1, Node n2, Graph aGraph) fif n1 =2 aGraph Add n1 to aGraph;if n2 =2 aGraph add n2 to aGraph;gaddEdge(char symbol, Node n1, Node n2, Graph, aGraph) fif (symbol == '=')merge nodes n1, n2 to one;else if (symbol == '<')add directed edge of (n1, n2) to aGraph;else add directed edge of (n1, n2) to aGraph;g2.2 Dimension Graph for Conjunctive Spatial Constraints Among IntervalsThe relationships between intervals proposed by Allen [3] can be de�ned in terms of the endpoints ofintervals. Table 4 shows the de�nition of the 13 relationships, where A1; A2 and B1; B2 represent thestart and end points of the intervals A and B respectively. Allen's symbols are used here.The relationships represented in terms of conjunctions of predicates can be maintained in directedgraphs, where the nodes represent start or end points of the individual intervals, and the directed edgesrepresent the constraints between the two points. Each edge is added to the graph according to thede�nition in Table 4. The edge point to the nodes with larger values from the nodes with smallervalues. The nodes with same values are merged into one node. It is worth noting that there is anintrinsic constraint between the start point and the end point of an individual interval, i.e. start-point< end-point. Figure 5 shows the graph representation for the constraint before(S;R) ^ meets(S;L).8

Predicate name predicates point relationshipsbefore < (A;B) A2 < B1equal = (A;B) (A1 = B1) ^ (A2 = B2)overlaps o(A;B) (A1 < B1) ^ (A2 > B1) ^ (A2 < B2)meets m(A;B) (A2 = B1)during d(A;B) (A1 > B1) ^ (A2 < B2)starts s(A;B) (A1 = B1) ^ (A2 < B2)�nishes f(A;B) (A1 > B1) ^ (A2 = B2)after bi(A;B) B2 < A1overlapby oi(A;B) (B1 < A1) ^ (B2 > A1) ^ (B2 < A2)metby mi(A;B) (B2 = A1)duringby di(A;B) (B1 > A1) ^ (B2 < A2)startby si(A;B) (B1 = A1) ^ (B2 < A2)�nishedby fi(A;B) (B1 > A1) ^ (A2 = B2)Table 4: Spatial relationships for intervals, where < and bi describe directional relationships and othersare topological relationships
spatial constraint

intrinsic constraint
RS

Interval relationship

L

R1 R2S1 S2

L1 L2

S1 S2
L1

R1 R2

L2

Before(S, R) and Meets(S, L)Figure 5: before(S;R) ^meets(S;L)The graph is constructed according to the de�nition of each predicate in Table 3. The dashed arrowrepresents the intrinsic constraint of the start point and end points. The pseudo-code of the graphconstructing procedure is given as in Algorithm 2.The input of the algorithm is the conjunctive constraint and the output is the corresponding di-mension graph. For each predicate in the conjunctionConstraint, the algorithm calls the subfunctionadd a predicate interval to add the predicate to the dimension graph. This function adds nodesthat do not in the dimension graph into graph, and adds the spatial relationships between nodes intodimension graph.Let N be the number of objects(intervals) and E be the number of interval predicates in conjunction-Constraint. We can summarize the complexity as follows:� Time complexity = O(E);According to table 4, there are at most three point predicates should be satis�ed for each intervalpredicate, and hence at most three edges added for each interval predicate. The time complexityfor this algorithm is therefore O(E).� Space complexity O(N+E).The resulting constraintGraph consists of at most 2N nodes and 3E edges. The space requirementis linear to the number of nodes and edges, roughly 2N+3E, which is essentially O(N+E).9

Algorithm 2Constructing Graph from conjunctive constraints for intervals: constructGraphIntervalInput: conjunctionConstraint is a set of conjunctive predicatesOutput: constraintGraph is the corresponding graphGraph constructGraphInterval(Set of Predicates conjunctionConstraint) fconstraintGraph = ;;for each entry p 2 conjunctionConstraintadd a predicate interval(p, &constraintGraph);return constraintGraph;gadd a predicate interval(Predicate p Graph* aGraph) f�rstObject = getFirstObject(p);secondObject = getSecondObject(p);addIntervalNode(�rstObject, secondObject, constraintGraph);pointPredicates = convertToPoint(p); //according to Table 4for each r(k; l) in pointPredicates fif (k < l) add directed edge (k; l) to aGraph;if (k > l) add directed edge (l; k) to aGraph;if (k = l) merge node k and l in aGraph;gg3 Consistency checking for conjunctive constraintsIn the previous section, we construct dimension graph for conjunctive Euclidean spatial constraintsamong point objects or intervals. In this section, we will describe the consistency checking algorithmbased on the dimension graph representations.Let's revisit the example given in Figure 4. If we add a new constraint NE(A;C), the new constraintgraph is given in Figure 6. A new edge represented by dot line is added into the graph. As can be
X-graph Y-graph

A
B B

D
D

C
A

C

Figure 6: North(A,B) ^ NW(B,C) ^ SE(B,D)^ NE(A,C)seen, a cycle is constructed in the X dimension graph in Figure 6. In other words, the constraint ofNorth(A;B) ^NW (B;C)^SE(B;D)^NE(A;C) requires that the x-value of A is smaller than the x-value of C, and at the same time, the x-value of C is smaller than the x-value of A. This is a contradiction,which means the constraint is inconsistent. In general, we can characterize this feature as Theorem 1.Theorem 1 A conjunctive constraint is consistent if and only if there exists no cycle in its correspondingdimension graphs, i.e., the graphs are all directed acyclic graphs(DAG).10

Proof:=): Suppose that the dimension graph contains no cycle, i.e., the graph is a directed acyclicgraph(dag), we can construct a topological sort of the dag [7] using depth-�rst search algorithm. Atopological sort of a dag is a linear ordering of all its nodes such that if the dag contains an edge (u; v),then u appears before v in the ordering. In other words, there exists at least one spatial con�gurationsatisfying the constraints, the constraint is consistent.(=: Suppose that the dimension graph contains a cycle. For the nodes involved in the cycle, thereexist no topological sort, i.e., no linear ordering of the nodes is possible. In other words, we can not givea global labeling for the nodes to meet the requirement that all directed edges go from left to right. Nospatil con�guration can satisfy the constrain. Therefore, the constraint is inconsistent. �3.1 Basic AlgorithmWe now describe the algorithm for consistency checking for conjunctive spatial constraints among a setof points or a set of intervals based on dimension graph representation. The consistency checking forconjunctive constraints contains two steps: 1. Construct the corresponding dimension graph; 2. Performcycle detection on each graph. The constraint is consistent if none of the graph contains cycle. Thepseudo-code is described as in Algorithm 3.Algorithm 3 Consistency checking: conjunctionConsistencyCheckInput: conjunctionConstraint is a set of conjunctive predicatesOutput: TRUE if consistent, FALSE otherwiseconjunctionConsistencyCheck(Set of Predicates conjunctionConstraint) fGraph constraintGraph = ;;if the constraint is among pointsconstraintGraph = constructGraphPoint (conjunctionConstraint);else //the constraint is among intervalsconstraintGraph = constructGraphInterval (conjunctionConstraint);if !detectCycle(constraintGraph)return TRUE;return FALSE;gThe algorithm �rst constructs the dimension graph by invoking subfunction constructGraphPointor constructGraphInterval according to the types of the objects. The function detectCycle performscycle detection on the corresponding dimension graph. The algorithm return TRUE if no cycle isdetected.A nice property of this algorithm is its e�ciency. The consistency checking is just a graph cycledetection which can easily be done in linear time. As in previous section, let N be the number of spatialobjects and E be the number of spatial predicates involved in the conjunctive constraint.� Time complexity = O(N+E);O(N+E) is the time for cycle detection in a directed graph with N nodes and E edges[7]. As11

we explained in section 2, each of X-graph and Y-graph for a set of points has at most N nodesand E edges, and the dimension graph for intervals has at most 2N nodes and 3E edges. There-fore, O(2N+3E) is the upper bound time complexity for consistency checking for a conjunctiveconstraint, which is same as O(N+E).� Space complexity =(N+E).We can process on each dimension graph at a time, the space requirement is also linear to thegraph elements.3.2 ExamplesConsider the example of spatial constraints among intervals:(S meets L) and (S is metby R).The consistency checking for this constraint is then accomplished by two steps. The function construct-GraphInterval is �rst invoked to construct the corresponding dimension graph, which is illustrated inFigure 7 (a). The detectCycle function checks the cycle in the graph. Since there is no cycle found,
L

R

S1

L1 L2

S2

R2R1
S

(b) Interval relationship(a) Dimension graph

R2
S1

S1

S2
L1

L2Figure 7: Dimension Graph for meets(S;L) ^metby(S;R)the constraint is consistent. We can construct an interval con�guration which satis�es the constraint asin Figure 7 (b).Assume a new fact overlaps(L;R) is added into the system. We call the function ofadd a predicate interval to add this new constraint to the dimension graph, resulting in a new di-mension graph as in Figure 8.
spatial constraint

intrinsic constraint

S1
R2 L1

S2

L2

R1

Inconsistent constraintFigure 8: Dimension Graph after adding overlaps(L,R)The cycle detection is performed on the new dimension graph to check consistency of the status.Since cycles of (R1, S1, L1, R1) and (R2, L1, L2, R2) are detected in the �gure as shown. The new12

constraint added is not consistent with the system, therefore, the new constraint is inconsistent. Thereexist no interval con�guration satisfying this constraint.Since the consistency checking is performed based on the cycle detection of the corresponding dimen-sion graph, the algorithm can always detect inconsistent constraints. As we stated in Theorem 1, forany dimension graph without cycle, there is a consistent con�guration among objects. The algorithmcan guarantee global consistency.4 Consistency Checking for Conjunctive Constraints AmongMBRsIn the previous section, we discuss the dimension graphs for conjunctive constraints among 2D pointsand 1D intervals, and also describe the dimension graph based consistency checking algorithm. In thissection, we will extend our dimension graph based approach to 2D spatial objects approximated byMBRs. Examples of 2D spatial objects includes polygon regions.It is common in spatial databases to approximate 2-D regions by minimum bounding rectan-gles(MBRs) which are orthogonal with respect to the global coordinate system. Figure 9(a) showsa small portion of the campus maps of University of Minnesota. Figure 9(b) replaces all the buildingsin Figure 9(a) by their corresponding MBRs.
North(y-axis)

East(x-axis)

Hall
Pillsbury

Memorial

Morrill Hall

Physics
 of

Northrop

Auditorium

Nicholson
Hall

Hall

Library

Westbrook
Hall

Tate LabWalter

Johnston

(a) Campus map of University of Minnesota
Hall

Pillsbury

Memorial

Morrill Hall

Physics
 of

Northrop

Auditorium

Hall
Johnston

Walter
Library

Tate Lab

Hall
Westbrook

Hall
Nicholson

(b) Approximate buildings byMBRsFigure 9: 2D region objects vs. MBRsBy using MBR approximation, we can use two representative points, namely lower-left and upper-right corners to determine the corresponding object. In the rest of the paper, we use the notation of Alland Aur to represent the lower-left and upper-right corners of the MBR for any object A. The notationsof All:x; All:y; Aur:x and Aur:y are used to represent the x and y coordinates for lower-left and upper-rightcorners of MBR A.The direction relationship between MBRs can be determined by the relationships between the rep-resentative points. Table 5 shows the de�nitions of the direction predicates based on the representative13

points of MBR of the objects. The �rst column of the table enumerates the direction predicates. TheDirection predicates conditionsSP (A;B) (All:x = Bll:x) ^ (All:y = Bll:y) ^ (Aur:x = Bur:x) ^ (Aur:y = Bur:y)North(A;B) (All:y � Bur:y) ^ (All:x � Bll:x) ^ (Aur:x � Bur:x)South(A;B) (Aur:y � Bll:y) ^ (All:x � Bll:x) ^ (Aur:x � Bur:x)East(A;B) (All:x � Bur:x) ^ (All:y � Bll:y) ^ (Aur:y � Bur:y)West(A;B) (Aur:x � Bll:x) ^ (All:y � Bll:y) ^ (Aur:y � Bur:y)NE(A;B) (All:x � Bur:x) ^ (All:y � Bur:y)SE(A;B) (All:x � Bur:x) ^ (Aur:y � Bll:y)NW (A;B) (Aur:x � Bll:x) ^ (All:y � Bur:y)SW (A;B) (Aur:x � Bll:x) ^ (Aur:y � Bll:y)Table 5: Direction Predicates for MBRsecond column gives the constraints that should be satis�ed by their representative points.For example, in Figure 9(b), MBR of \ Morrill Hall" is north of MBR of \Tate Lab", and the MBRof \Pillsbury hall" is northeast of the MBR of \Northrop Auditorium". The same relationships holdfor buildings in Figure 9(a). These are described by predicates North(Morrill Hall, Tate Lab), andNE(Pillsbury hall, Northrop Auditorium).4.1 Dimension Graphs for Conjunctive Constraints Among MBRsThe dimension graph for each direction predicate contains X-graph and Y-graph which maintain theconstraints that must be satis�ed on X and Y dimension respectively. The nodes in these graphs representthe objects forming the constraints. The constraints are represented as directed edges according to theconditions speci�ed in column 2 of Table 5. Similar to the X-graph and Y-graph for points, an directededge goes from the node with smaller values to the node with larger values. If the value associated withtwo nodes are same, the two nodes are merged to one node. We introduce a new `thick arrow' edgehere to represent new relationships of � or �. If the relationship between two nodes p and q is p � q,a `thick arrow' directed edge is added from p to q. If the relationship between p and q is p � q, a `thickarrow' directed edge is added from q to p. The dashed arrow is used for intrinsic constraint between thelower-left point and the upper-right point of a MBR.The dimension graph for a conjunctive constraint is constructed by adding the constraints speci�edin each predicate in X-graph and Y-graph. Figure 10(a) and (b) shows an example of dimension graphfor a conjunctive constraint of North(A;B) ^NE(B;C) ^ SW (C;A). Figure 10(c) is a possible spatialcon�guration among MBR A, B and C.We now describe the dimension graph construction for conjunctive constraints for MBRs. Thepseudo-code of the graph constructing procedure is given as in Algorithm 4. For each predicate in theconjunctionConstraint, the algorithm invokes the sub-function add a predicate MBR to add it to thedimension graph. The basic strategy of this function is �rst to transform the MBR predicate to pointpredicate set, and add each point predicate into the graph. To accomplish this, addNode and addEdgeare invoked. 14

All Aur

Cll
C

ur

B
ll

Bur

All Aur

Cll
C

ur

B
ll

Bur

(b) Y-graph(a) X-graph

A

B

C

(c) MBR configurationFigure 10: Example MBR con�guration and its corresponding dimension graphs, thick arrow represents�, thin arrow represents <Let N be the number of objects(i.e. MBRs) and E be the number of predicates in conjunctionCon-straint. We can summarize the complexity as follows:� Time complexity = O(E);According to table 5, there are at most four point predicates should be satis�ed for each MBRdirection predicate, and hence at most four edges added for each predicate. The time complexityfor this algorithm is therefore O(E).� Space complexity = O(N+E).The resulting constraintGraph consists of at most 2N nodes and 4E edges. The space requirementis linear to the number of nodes and edges, roughly 2N+4E, which is O(N+E).4.2 Consistency checking for conjunctive constraints Among MBRsAfter constructing dimension graphs for conjunctive constraints among MBRs, we can check the consis-tency by detecting cycle in the dimension graphs. There are three possible situations and correspondingresults:Case 1: There exist no cycle (constraint predicates are consistent)Case 2: Every cycle consists of only thick edge (constraint predicates are consistent)Case 3: At least one cycle consists of non-thick edges(constraint predicates are inconsistent)Case 1 is obvious. No cycle means there exist a consistent spatial con�guration among all objects.Figure 10 is an example of consistent constraints whose dimension graphs contain no cycle.In case 2, since every cycle detected contains only thick edges. Recall that any thick edge p ! qrepresents that the relationships between p and q is `�', i.e., either p = q or p < q could hold. If welabel all thick edges as '=', all the nodes involved in the cycle will have same value. We can then mergethis cycle with a big node consisting of all nodes involved in the cycle. The transformed graph containsno cycle, and the corresponding constraint is consistent. Figure 11 shows such an example. Figure 11(a) is the dimension graph for constraint North(A;B)^South(B;A), it contains a cycle with only thickedges in X-graph. Figure 11 (b) is the transformed X-graph after merging each cycle to one node. Thereis no cycle in this resulting graph. This constraint is obviously consistent. Figure 11 (c) is a samplecon�guration. 15

Algorithm 4 Constructing Graph for MBR constraints: constructGraphMbrInput: ConjunctionConstraint is a set of conjunctive predicates between MBRsOutput: constraintGraph consists of the corresponding X/Y-graphs.Graph constructGraphMbr(Set of Predicates conjunctionConstraint) fGraph constraintGraph = ;;for each entry p 2 conjunctionConstraintadd a predicate MBR(p, &constraintGraph);return constraintGraph;gadd a predicate MBR(Predicate aPredicate, Graph* aGraph) fpointPredicates= �ndfromTable(aPredicate);for each predicate r(k; l) 2 pointPredicatesaddNode(k, l, aGraph.graphX);addEdge(r(k; l), aGraph.graphX);addNode(k, l, aGraph.graphY);addEdge(r(k; l), aGraph.graphY);gaddEdge(Point Predicate pp, Graph* aGraph) fr(k; l)= getRelationSymbol(pp);if (r ==0<0) add directed edge (k; l) to aGraph;if (r ==0>0) add directed edge (l; k) to aGraph;if (r ==0=0) merge node k and l in aGraph;if (r ==0�0) add thick directed edge (k; l) to aGraph;if (r ==0�0) add thick directed edge (l; k) to aGraph;gCase 3 is easy to understand. If there is a cycle containing at least one non-thick edges, no matterhow we label the thick edges in the cycle, we can not remove the cycle. There must be conicts amongcoordinates of the objects involved in the cycle, and hence, the constraint is inconsistent. Figure 12shows an example of the constraints among A, B, and C. The constraint is: North(A;B)^NE(B;C)^SW (A;C). As we can noticed, there exist cycles in both X and Y dimension graphs of the constraint.No spatial con�guration of A, B, C can satisfy this constraint. The constraint is inconsistent.Based on the above arguments, we can now describe the consistency checking algorithm for MBRsas in Algorithm 5. The algorithm �rst calls function constructGraphMbr to construct the dimension
B ur

Aur

B ll

All

B ur

Aur

B ll

All

AurAll
B ll B ur

Y-graphX-graph

A

B

(b) X-graph after merging the cycle (c) MBR configuration(a) Dimension graphFigure 11: Dimension graphs for North(A;B) ^ South(B;A)16

All Aur

Cll
C

ur

B
ll

Bur

All Aur

Cll
C

ur

B
ll

Bur

(b) Y-graph(a) X-graphFigure 12: Dimension graphs for North(A;B) ^NE(B;C) ^ SW (A;C)Algorithm 5 Consistency checking for conjunctive MBR predicates: MBRconjunctionConsisten-cyCheckInput: conjunctionConstraint is a set of conjunctive predicatesOutput: TRUE if consistent, FALSE otherwiseMBRconjunctionConsistencyCheck(Set of Predicates conjunctionConstraint) fGraph constraintGraph = ;;constraintGraph = constructGraphMbr (conjunctionConstraint);if !detectCycle(constraintGraph)return TRUE;else if the cycle contains thin edgereturn FALSE;else return TRUE;ggraph, and then use detectCycle to detect cycles in the dimension graph. It returns TRUE if no cycleis detected. If the detected cycle contains thin edges, the algorithm returns FALSE, otherwise, returnsTRUE.Let N be the number of objects(i.e. MBRs) and E be the number of predicates in conjunctionCon-straint.� Time complexity = O(N+E);The time complexity for cycle detection is O(N+E). Checking the edge type in a cycle can be doneeasily by turning on a ag if the traverse passes a thin edge. Therefore, this checking does notrequire extra time complexity, the time complexity is then O(N+E).� Space complexity = O(N+E).The dimension graph consists of at most 2N nodes and 4E edges. In order to record the edge type,each edge may need an extra ag, which will add another E space. The total space required isroughly 2N+4E+E, which is O(N+E).5 Consistency Checking for Constraints in General FormatIn the previous sections, we describe the dimension graph representation and the consistency checkingalgorithms for conjunctive constraints among points, intervals and MBRs. In this section, we will extend17

the dimension graph based consistency checking algorithm to the constraints in general format.5.1 Dimension Graphs for Constraints in General FormatThe constraints in general format can be transformed into Disjunctive Normal Form(DNF), which is adisjunction of conjunctions where no conjunction contains a disjunction. Each conjunction in the DNFconstraint can be represented by a dimension graph by applying the algorithm constructGraphPointor constructGraphInterval. The dimension graph of the general format constraint therefore arecollection of all the dimension graphs constructed from all its conjunctions. The number of graphsets(X/Y-graphs or interval graph) is the same as the number of conjunctions in the DNF.
X-graph Y-graph

A
B B

D
D

C
A

C

(a) North(A,B) ^ NW(B,C) ^SE(B,D) ^ NE(A,C) X-graph Y-graph

B

D

C

AA

C

D

B

(b) SE(A,B) ^ NW(B,C) ^ SE(B,D)^NE(A,C)Figure 13: X/Y-graphs for (North(A;B) _ SE(A;B)) and NW (B;C) and SE(B;D)and NE(A;C)Figure 13 is an example of the dimension graph maintaining the constraint ofNorth(A;B)_SE(A;B)and NW (B;C) and SE(B;D)and NE(A;C) for point objects A, B, C and D. The DNF format of theconstraint is: (North(A,B) ^ NW(B,C) ^ SE(B,D) ^ NE(A,C)) _ (SE(A,B) ^ NW(B,C) ^ SE(B,D) ^NE(A,C)). Figure 13(a) and (b) are X/Y-graphs for the two conjunctions, which are (North(A;B) ^NW (B;C) ^ SE(B;D) ^NE(A;C)) and (SE(A;B) ^NW (B;C) ^ SE(B;D) ^NE(A;C)).
R1 R2

S1 S2

L1

L2

R1

S1

R2

L2

L1

S2

(a) before(S,R) and meets(S, L) and overlaps(L,R) (b) metby(S,R) and meets(S, L) and overlaps(L,R)Figure 14: Constraint graphs for (S meets L) and (S before or metby R) and (L overlaps R)Figure 14 is an example of the dimension graph maintaining the constraint of "S meets L and Sbefore or metby R and L overlaps R" for intervals S, L and R. The DNF format of the constraint is:(before(S;R) ^meets(S;L)^ overlaps(L;R))_ (metby(S;R)^meets(S;L)^ overlaps(L;R)). The twoconjunctions correspond to Figure 14(a) and (b) respectively.18

5.2 Consistency Checking for General ConstraintsAfter constructing the corresponding dimension graph for the constraints, the cycle detection functionis performed on each subgraph representing a conjunctive constraint. If each set of subgraph containscycle, the constraint is inconsistent. If a subset of graphs contains cycle, the constraint combinationscorresponding to those graphs containing cycles are inconsistent. The combinations corresponding to thegraphs without cycles are consistent. Algorithm 6 is the pseudo-code for consistency checking for generalformat constraints among points or intervals. The consistency checking algorithm contains three steps:Normalizing the constraints to standard DNF formats; Construct dimension graphs for each conjunctionin DNF; Perform cycle detection on each graph.Algorithm 6 Consistency checking: consistencyCheckInput: constraint is the constraint need to be checkedOutput: TRUE if consistent, FALSE otherwiseconsistencyCheck(Set of Predicates constraint) fDNF dnfConstraint= normalize(constraint);Set of Predicates consistentConstraint = ;;for each conjunction p 2 dnfConstraint fif objects are MBRsif MBRconjunctionConsistencyCheck(p)add p to consistentConstraint;else if conjunctionConsistencyCheck(p)add p to consistentConstraint;gif consistentConstraint == ;return FALSE;return TRUE;gThe subfunction normalize preprocesses the constraint and transform the general format constraintinto its DNF format. Secondly, check the consistency for each conjunction of the DNF representationby calling the Algorithm conjunctionConsistencyCheck or MBRconjunctionConsistencyCheckaccording to the type of the objects. If the conjunction constraint is consistent, add the conjunctionto consistentConstraint. The �nal result of consistentConstraint contains all the consistent constraintcombination, each of which represents a global consistent constraint.In the example of constraint among point A, B, C and D shown in Figure 13, the dimension graphcorresponding to conjunction North(A,B) ^ NW(B,C) ^ SE(B,D) ^ NE(A,C) contains a cycle, and hencethis conjunction constraint is inconsistent. The consistentConstraint will only include the consistentconjunction, which is SE(A,B) ^ NW(B,C) ^ SE(B,D)^ NE(A,C)(Figure 13(b)). Similarly, in theexample for intervals illustrated in Figure 14, the conjunction depicted in Figure 14(b) contains cycleand hence the corresponding conjunction is inconsistent. Figure 15 shows the only consistent conjunctionand one of its possible interval con�gurations. 19

RS

Interval relationship

L

R1 R2

S1 S2

L2

L1Figure 15: S meets L and S before R and L overlaps R)Complexity AnalysisSimilarly, let N be the number of spatial objects and E be the number of spatial predicates being checkedfor consistency, and COR be the number of all possible combinations of disjunctive predicates, i.e., thenumber of conjunctions in DNF.� Time complexity = O(N+E)*O(COR);The consistency checking algorithm for general format constraints �rst generates the DNF for theconstraints, and then call the conjunctionConsistencyCheck algorithm for each conjunction.O(N+E) is the time for consistency checking for a conjunction constraint. Therefore, the totaltime bound is O(N+E)*O(COR).� Space complexity = O(N+E).COR does not contribute to space factor, since one may process one graph at a time.6 Conclusions and Future WorkIn this paper, We propose a new strategy to process consistency checking for Euclidean spatial con-straints among objects. We use a geometric approach by incorporating the spatial domain informationin consistency checking. Dimension graphs are proposed to maintain the spatial constraints among ob-jects. Each conjunctive constraint is projected on both dimensions, and a dimension graph is constructedfor the constraint on each dimension. The spatial constraints in general format are maintained in a setof dimension graph constructed from its conjunctions. By using this framework, constraint consistencychecking is then transformed to a graph cycle detection problem on its dimension graph. The cycledetection could be solved e�ciently with O(N+E) time as well as space complexity, where N is the num-ber of spatial objects, and E is the number of spatial predicates in the constraint. Recall that Allen'salgorithm has a time and space complexity of O(N2). The proposed approach to consistency checkingfor spatial constraints is faster when the number of predicates is much smaller than N2 and there arefew disjunctions in the spatial constraint. The dimension graph and consistency checking algorithm canbe used for points, and MBRs in 2 dimensional space. Since the algorithm returns TRUE if and only ifthe dimension graph of at least one conjunction contains no cycle, which means there exist at least oneconsistent overall constraint. The algorithm guarantees the global consistency.In future work, we would like to explore the consistency checking among mixed types of object,e.g. consistency checking for constraints between point and intervals. We would also like to apply the20

dimension graph based cycle detection algorithm to the application of image similarity retrieval basedon the similarity of spatial con�guration.References[1] N. Adam and A. Gangopadhyay. Database issues in Geographical Information Systems. Kluwer Academics, 1997.[2] A.Frank. Qualitative Spatial Reasoning: Cardinal Directions as an Example. International Journal of GeographicalInformation Systems, 10(3):269{290, 1996.[3] J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM, 26(11):832{843, 1983.[4] Domenico Beneventano and etc. Consistency Checking in Complex Object Database Schemata with Integrity. IEEETrans. on Knowledge and Data Eng., 10(4), July/August 1998.[5] E.A. Boiten, J. Derrick, H. Bowman, and M.W.A. Steen. Constructive Consistency Checking for Partial Speci�cationin Z. In Science of Computer Programming, number 1, pages 29{75, September 1999.[6] H. Bowman, E.A.Boiten, J. Derrick, and M.Steen. Strategies for Consistency Checking Based on Uni�cation. InScience of Computer Programming, pages 261{298, April 1999.[7] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT press, McGraw-Hill PublishingCompany, 1994.[8] D.Papadias, M. Egenhofer, and J. Sharma. Hierarchical Reasoning about Direction Relations. In Fourth ACMWorkshop on Advances in Geographic Information Systems, pages 105{112. ACM, 1996.[9] A. Frank. Qualitative Spatial Reasoning about Cardinal Directions. In Auto carto 10, D.Mark and D. White, eds.,Baltimore, MD, pages 148{167, 1991.[10] C. Freksa. Temporal Reasoning Based on Semi-Intervals. Arti�cial Intelligence, 54:199{227, 1992.[11] C. Freksa. Using Orientation Information for Qualitative Spatial Reasoning. Theories and Methods of Spatio-TemporalReasoning Geographic Space, 639:162{178, 1992.[12] R.H. G�uting. An Introduction to Spatial Database Systems. VLDB Journal, Special issue on Spatial DatabaseSystems, 3(4):357{399, 1994.[13] Daniel Hernandex. Maintaining Qualitative Spatial Knowledge. Proc. of the European Conference on Spatial Infor-mation Theory, Elba, Italy, pages 19{22, Sept. 1993.[14] W. Kim, J. Garza, and A. Kesin. Spatial Data Management in Database Systems. In Advances in Spatial Databases,3rd International Symposium, SSD'93 Proceedings , Lecture notes in Computer Science, Vol. 692, Springer, ISBN3-540-56869-7, pages 1{13, Singapore, 1993.[15] V. Kumar. Algorithms for constraint satis�cation problems: A Survey. AI Magazine, 13(1):32{44, 1992.[16] S. Manandhar. Deterministic consistency checking of LP constraints. In Proceesings of the 7th Conference of theEuropean Chapter of the Association for Computional Linguistics, pages 165{172, Dublin, Ireland, March 1995.[17] P. Meseguer. Constraint satis�cation problems: An overview. AI Communications, 2(1):3{17, 1989.[18] Donna J. Peuquet and Zhan Ci-Xiang. An Algorithm to Determine the Directional Relationship Between Arbitrarily-shaped Polygons in the plane. Pattern Recognition, 20(1):65{74, 1987.[19] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach. Prentice Hall, Inc., 1995.[20] S. Shekhar, S. Ravada A.Fetterer, X.Liu, and C.T. Lu. Spatial Databases: Accomplishments and Research Needs.IEEE Trans. Knowledge and Data Eng., 11(1):45{55, 1999.[21] S. Shekhar and B. Hamidzadeh. Learning Transformation Rules for Semantic Query Optimization: A Data-DrivenApproach. IEEE Trans. Knowledge and Data Eng.(Spatial Issue on Discovery in Databases), October 1993.[22] Shashi shekhar, Xuan Liu, and Sanjay Chawla. Equivalence Classes of Direction Objects and Applications. Tech.Report TR99-027, University of Minnesota, Minneapolis, MN 55455.[23] M.F. Worboys. GIS: A Computing Perspective. Taylor and Francis, 1995.
21

