
Learning Refinements on Curve-Strokes

Saul Simhon Gregory Dudek
Centre for Intelligent Machines

McGill University
Montreal, Canada

Abstract

We present a system to beautify curves: i.e. to take curves
that roughly depict some property of interest and make
them look more like what experts would draw. The focus
of our work is in applications for artistic drawings, but
our system can also be plugged into various other domains
where curves and trajectories play a dominant role such as
robot path planning, animation or edge-deblurring. Our ap-
proach consists of learning properties from a database of
ideal example, which could be sketches or robot trajecto-
ries, and transform a coarse input curve to make it look like
those in the database. The key scientific issue is: in what
sense are these curves ’like’ one another? In our work, this
likeness is expressed statistically. Using Hidden Markov
Models in combination with multi-scale methods and mix-
ture models, we synthesize a new curve as a statistically
consistent mixture of the training set that best describes the
input. Additionally, our approach allows us to easily include
application specific biases to the system.

1. Introduction

Curves play an important role in a wide array of do-
mains. From applications in CAD modeling to image pro-
cessing, many components consists of some kind of inter-
action with a set of functions that describe the shapes or
constraints of curves. In particular, interfaces for simple
drawings consisting of only curve strokes are often found
for comics, presentation material, cel-animation, storyboard
designs, system designs and non-photorealistic pen and ink
illustrations. Although almost anyone can sketch rough out-
lines, only a few of us are lucky enough to have the artistic
talent and patience to draw refined details for enhanced pre-
sentation. In this work, we consider how to model thefeelof
an ensemble of example curves that exhibit a desiredlook.
We use this to develop a method for artificially augment-
ing coarse curves using learned refinements.

Traditionally, the tools available for creating or interact-
ing with curves are based on application specific analytic
models. For example, generating smooth curves typically
consists of using models with spline basis functions. Gen-
erating motion curves can require additional complex for-
mulations to simulate the kinematics of a moving object.
Whatever the constraints, expressing them in a suitable for-
mal framework is often challenging. Further, the processes
of finding solutions can be costly, particularly since the so-
lution techniques are often engineered for a specific con-
text.

In contrast, this paper presents a different approach to
curve synthesis. Constraints (or preferences) are expressed
in terms of a set of examples that illustrate how the curves
should behave. Further, these examples indicate how to
elaborate an input curve from a user or high-level special-
ized planner (which may not be acceptable in itself) into a
suitably acceptable output curve. Informally, the examples
say: “if a user asks you to do something likethis then what
you should actually perform is something likethat”.

In this framework, we develop a tool that acts as a smart
interface for curves. Coarse curves can be drawn (or loaded)
and the system interactively augments the curves to make
themlook more like those in the database. This refinement
is accomplished by synthesizing a new curve that is statisti-
cally consistent with the database examples while also con-
sidering the shape of the input curve. Our underlying ap-
proach consists of using a Hidden Markov Model (HMM).
This allows us to represent measurements the system can di-
rectly observe (the users’ curve) in conjunction with mea-
surements that are hidden but somehow related to the obser-
vations (the desired refined shape).

A Hidden Markov Model is trained using a set of cou-
pled examples, where each example consists of a refined
curve associated to acontrol curve. The control curve can
be thought of as what we expect the user to draw for that
particular refined shape (learning a drawing habit or control
scheme). After training, we can then synthesize a novel re-
fined curve by decoding the HMM with observations from
the input curve. This results in a statistically consistent mix-

ture of the training examples that best describes the ob-
served input.

The paper is outlined as follows: first we review some
related work, then describe how we train a HMM to cap-
ture the features of the training set, then we describe how
we synthesize a refined curve, we further show how we can
improve the system by including multi-scale curve compo-
nents as plug-in attributes (while maintaining a first order
Markov Model), then we show how to include specialized
biases to the system and finally we discuss the results and
conclude.

2. Related Work

There is ample and divers work by many authors in meth-
ods for modeling and editing curves. Much of the inter-
esting work is also related in surface models rooted by a
2D parameterization of a curve. A traditional approach to
curve modeling is to fit a specialized analytical model, such
as NURBS [6, 4], over a set of data points and curve at-
tributes. Rather than taking this specialized approach, we
seek a method to learn those models from examples, pro-
viding the ability to capture a wide array of preferred inter-
polators in association to their control points.

This idea of learning to generalize specific examples to
a broad ensemble of cases is, of course, the crux of classi-
cal machine learning [10]. Learning using Hidden Markov
models is a longstanding classic research area, although to
our knowledge it has never been applied to problems like
this one. Likewise, although there has been some prior work
on the relationship between learning and planning, most of
this has dealt with more traditional plan formulation prob-
lems [13] or on learning suitable cues that control or deter-
mine plan synthesis or execution [11, 3].

Related areas where single Layer Markov Models have
been applied include algorithms for texture synthesis [15,
2, 14] and motion synthesis [12, 1]. Such work suggests
that we can learn the regular properties of an example and
then synthesize novel outputs that exhibit the same statis-
tics. This approach has recently been applied in curve syn-
thesis for line-art [7] and curve hatching [8]. As single
layer Markovian systems, most of these approaches do not
actually learn the specific control attributes required for a
steerablesynthesis. In [7] some level of control is pro-
vided, but the synthesis itself is not biased over the abso-
lute shape of the input curve but rather over its relative off-
set from the training example. Further, these methods typ-
ically use greedy type strategies for the synthesis, consid-
ering only the best match at the current point. When we
are given inputs for controlling the synthesis, the best in-
termediate points often do not provide the global optimum.
Future information often biases earlier points, for example,
when drawing a vertical line, we do not know whether to

apply brick features or bark features until we see the what
will be drawn later. Our approach takes into account the en-
tire sequence of inputs while also avoiding exponential run
time complexity over the arc-length.

3. Learning

Our objective is to learn attributes from training exam-
ples in order to synthesize a refined curve given a coarse
input. In our approach, the training examples consist of a
set of coupled curves. In this coupling, one curve depicts
the what a user may actually draw (the control curve) while
the other curve depicts the intended refined shape (the styl-
ized curve). What the training set attempts to say to our sys-
tem is:if the user draws something like this then the system
should generate something like that. Figure 1 shows some
training examples for leaf styles. In this case, the control
curves are actually low-pass filtered version of the displayed
stylized curves, but in general they can be any shape to ac-
commodate an arbitrary control scheme or drawing habit.
We wish that after training, we can generate illustrations
that exhibit the samelookas the stylized example leaves.

Figure 1. Some samples from a training set used
for leaf synthesis. Figure (a) shows the control
curves while figure (b) shows the stylized curves.

We learn local shape constrains and input biases from the
examples using a Hidden Markov Model. A Hidden Markov
Model encodes the dependencies of successive elements of
a set ofhiddenstates along with their relationship toobserv-
ablestates. It is typically used in cases where a set of states,
that exhibit the Markov property, are not directly measur-
able but only their effect is visible through other observable
states. Formally, a Hidden Markov ModelΛ is defined as
follows:

Λ = {M,B, π} (1)

whereM is the transition matrix with transition probabili-
ties of the hidden states,p{hi(t) | hj(t−1)}, B is the confu-
sion matrix containing the probability that a hidden statehj

generates an observationoi, p{oi(t) | hj(t)}, andπ is the
initial distribution of the hidden states. In our work, sam-
ple points along the refined curves play the role of the hid-

den states while the sample points along the control curves
play the role of the observations.

There is an abundance of literature on Hidden Markov
Models and the domain is frequently decomposed into 3
critical sub-problems:

• Evaluation, where the likelihood of an HMM is evalu-
ated for a sequence of observations:p{o | Λ}.

• Decoding, where the maximum likelihood sequence of
hidden states is predicted for a given HMM and an ob-
servation sequence:arg maxh p{h | o,Λ}.

• Learning, where the transition probabilities, the confu-
sion matrix and the initial distribution that best fit an
observed set of examples are estimated.

Given only the observations, learning is most commonly
performed by algorithms such as the Baum-Welch algo-
rithm or generalized Expectation-Maximization methods.
In our application, when learning we have direct access to
both the hidden and observable states as given by the exam-
ples. Therefore, we can estimate an HMM by the the statis-
tics of the training data, calculating probabilities of succes-
sive elements of the refined curves and their relationship to
the control curves.

3.1. Hidden States

We represent a curve over 2D space parametrized by the
arc-length. Letα represent a parametric curve(x(t), y(t))
wheret is the arc-length of the curve from0 <= t <= T .
Since we can, in principle, encode a function using only its
derivations, we assume our curves are suitably normalized
and encode them as a discreet succession of tangent angles
θ(t).

Consider a stochastic process∆ as the source for a fam-
ily of refined curves. Each curve is considered to be a
random signal with characteristics described by the proba-
bility density function of the process. Letα denote a refined
curve andθ(t) as the tangent angles of that curve. We as-
sume that the sequence of samplesθ(t) from 0 <= t <= T
exhibit annth order Markov property, i.e. a Markov Pro-
cess:

p{θ(t + 1) | θ(t), θ(t − 1), . . . , θ(t − n + 1)} =

p{θ(t + 1) | θ(t), θ(t − 1), . . . , θ(0)}

This locality condition states that information from
recent samples is sufficient to predict the next sam-
ple point. Further, the dependency is considered to
be position-variant, where statistical relationships be-
tween successive points may benon-stationarywith re-
spect to the arc-length.

Sample points along the arc-length are represented by
hidden states in the HMM. Given an ensemble of training
examples, we can estimate the transition probabilities by
the statistics of successive elements in predefinedstation-
ary regionsand construct the transition matrixM where:

Pθ(t + 1) = M(t) Pθ(t) (2)

The transition matrix propagates the information embed-
ded in the probability distributionPθ(t) to predict the next
distribution Pθ(t + 1). For sets that exhibit stationarity
M(0) = M(1) = ... = M(T) = M , measured over
the entire signal. Otherwise, the transition matrix is calcu-
lated over fixed local regions of the curves across the en-
semble of curves. The ability to specify the local regions of
stationarity (hence global non-stationarity) allows us to ac-
commodate for shapes that inherently posses some global
constrains. We assume a uniform initial probability distri-
butionπ = Pθ(0), providing equal likelihoods to all curves
at time zero.

3.2. Observable States

Sample points of the control curves are represented by
observable states in the HMM. Based on the coupled as-
sociation to the refined curve, an new input stroke can
condition the distribution in Equation 2 and bias the syn-
thesis according to the prescribed characteristics. Be-
cause the input stroke can be any arbitrary shape, we
assume that samples of the control curve are indepen-
dent. For allt andk in the domain for observationφ:

p{φ(t) | φ(k)} = p{φ(t)}

That is, previous points generally do not provide in-
formation on what the next point may be. This satisfies the
HMM assumption that the observable state sequence is in-
dependent over the sequence.

Let β denote the curve representing the associated con-
trol stroke andφ(t) as the tangent angles of that curve, then:

α = Ψ β (3)

whereΨ is some mapping that transforms the control curve
to the refined one. The mapping in essence encodes the con-
straint relationship between the coupled pair. Given an en-
semble of pairs of refined and control curves, we estimate
the probabilities of the confusion matrixB from the statis-
tics of associated sample points(θ(t), φ(t)) and form the
following relation:

Pφ(t) = B Pθ(t) (4)

where the elements of the confusion matrix are the condi-
tional probabilitiesp(φi|θj) for all statesi andj. The confu-
sion matrix transforms the belief vector of the hidden states

to the belief vector of the observations. This is analogous to
the inverse relation of the mappingΨ in Equation 3. How-
ever, using Bayes law, one can show that solving the decod-
ing problem for a HMM in a maximum likelihood sense is
analogous to solving for the desired transformationΨ. (Pos-
ing this in a variational calculus form [9], it can be shown
how this solves the inverse problem in a maximum likeli-
hood sense.)

4. Synthesis

Given a set of observations and a HMM trained with a
family of curves, we generate a new curve by solving for
the maximum likelihood hidden state sequence:

arg max
θi...θn

p{θ(0), . . . , θ(T) | φ(0), . . . , φ(T),Λ}
or

arg max
α

p{α | β, Λ}
(5)

This is accomplished using theViterbi algorithm for HMM
decoding with a runtime ofO(N2T), whereN is the num-
ber of states andT is the sequence length. At each time in-
terval, we propagate the underlying probability distribution
as in Equation 2 and maintain states with maximum consis-
tency across successive elements. For each stateθi:

p{θi(t + 1)} = max
j:1 to n

p{θi(t + 1)|θj(t)}p{θj(t)} (6)

We keep track of the most likely previous stateθj(t) that
generatesθi(t + 1) by storing a pointer it. The resulting
distribution is then conditioned by the current observation
φ(t + 1) as in Equation 4:

p{φ(t + 1)} = p{θj(t + 1)}p{φ(t + 1)|θj(t + 1)} (7)

This expresses the probability of observingφ(t + 1) by go-
ing through stateθj(t + 1). We recursively compute this up
to time T and produce a sequence of probability distribu-
tions{Pθ(0), Pθ(1), . . . , Pθ(T)}.

One approach of instantiating a curve is to select states
with maximum probability from each distribution indepen-
dently. However, selecting states in a greedy fashion can re-
sult to an inconsistent sequence, it may break the continuity
of valid links between successive elements. Rather, we in-
stantiate the state with maximum probability at timeT and
then backtrack by choosing the previous most likely state
that would generate the current one. Backtracking is essen-
tial for generating a consistent curve as not only does it con-
sider the links between successive states, but also implicitly
propagates future information back to earlier points. Can-
didates that have small likelihoods at the current time in-
stance may have more influence on the global estimate than
the competing local maximum. Figure 5 shows some exam-
ples of generating leaf shapes using the leaves training set
(Figure 1).

4.1. Multi-Dimensional State Space

Implementation of a first order Markov Model is gener-
ally achievable by storing the transition probabilities in a
memory array. However, preliminary empirical results indi-
cated that for typical training examples, a first order Markov
Model does not capture enough information to properly
generate the curves. Higher order Markov Models increase
the state space exponentially and explicit storage of a tran-
sition matrix is not practical. To address this issue, we
do not explicitly compute and store the transition matrix,
rather, we only maintain a linked-list of candidate states
with strictly positive probabilities. At each iteration, the al-
gorithm searches the training example for matches. When
all the matches are found, the probability of the next state is
calculated and added to the list for the next iteration.

In order to capture large-scale structures without resort-
ing to high-order Markov models, we represent the states of
the Markov chain as a set of wavelet basis functionsγ(s, τ)
whereτ is position ands is scale [5]. While the details of
this are outside the scope of this paper, Figure 2 shows an
example where higher scale structures are important to cap-
ture. It is easy to see how the first order assumption does not
capture enough information to generate the pattern while a
synthesis using higher scales produces more consistent re-
sults. In application, we found that it was sufficient to only
use the multi-scale representation in the hidden layer while
the observation layer is assumes a single point from the raw
input. However, it is conceivable to condition the synthe-
sis using larger patches of the control curve.

Figure 2. Synthesis of a zig-zag pattern. The
training data consists of a set of zig-zag pat-
terns associated to straight line segments
(shown if Figure 4d. Each example is oriented
orthogonally to the others, forming a recti-
linear set. The training set is designated as
stationary. Figure (a) shows the input curve.
Figure (b) shows the synthesized curve us-
ing only first order information and Figure
(c) shows the synthesized curve using the
wavelet representation.

4.2. State Blurring

For the hidden state transitions, searching for ex-
act matches can be problematic. Quantization errors are
likely to occur and can abruptly terminate the synthe-
sis by propagating all probabilities to zero. Even with exact
values, transitions can only occur at places on the train-
ing curves where the wavelet components are identical,
making it difficult for the user to control the synthe-
sis. In order to provide better ‘mixing flexibility’, we can
blur the probability transitions, or synonymously the prob-
ability vector and then calculate the likelihood of a
match. A continuous probability distribution for a contin-
uous state space is modeled as a Gaussian mixture of the
discreet distribution of the discreet state space. The proba-
bility for stateγi is given by:

p{γi} = 1
N

∑
j p{γj}e−

∆2(γi,γj)

ν2

∆2(γi, γj) =
∑

s

∑
τ

w(τ,s)(γi(τ,s)−γj(τ,s))2∑
s

∑
τ

w(τ,s)

(8)

Equation 8 measures the difference between two wavelet
components as a weighted sum across the scaless and his-
tory τ . The variance of the Gaussian function specifies the
degree of mixing. A small variance requires close to ex-
act matches for mixing while a large variance makes it eas-
ier to transition at the cost of losing local consistency. The
weight functionw(s, τ) specifies the relative degree of im-
portance for points further in history and higher in scale.
Such a blur will often result in too many matches where
every combination of states will produce strictly positive
probabilities and contribute to the distribution. This causes
computational complexities and high dimensional models
may not be solved in practical time. Therefore, after nor-
malization, we threshold over the tail of the Gaussian and
re-normalize.

The input stroke used for conditioning may not provide
exact matches to the training data. The input sketch is man-
ually drawn by a human operator, hence it is overly restric-
tive to assume that inputs will match exactly to the user in-
tended shape. Thus, a sigmoid function is used to blur the
input. It has similar decay properties of a Gaussian function
but also provides control over an almost flat region. This
is ideal for noisy user input where we can suggest that the
intent of the user within a given error range is equally dis-
tributed over the neighbors but decay exponentially at points
further away. Thus the probability of observationoi given
inputoj is given by:

p(oi|oj) = 1

1+ek|oj−oi|+s

s = −2.197 − kp90
(9)

One can think of the sigmoid function as a blurred and
shifted step function with blurring parameterk and a shift

parameters. A simple variable transformation allows us to
specify the sigmoid shape by percentile thresholds. Empir-
ically, we found that a 90 percentile threshold of 14 de-
grees and 10 percentile threshold at 38 degrees provided
good results for various users. The sigmoid parameters can
be thought of as the degree of user control. The smaller the
shift and blur, the more we force the synthesis to adhere to
the input, otherwise, the synthesis is less constrained to the
inputs. For both the Gaussian and Sigmoid parameters, one
can specify default values empirically and allow the user to
tune them in specific cases.

4.3. Analytical Preferences

Given the compact and dynamic representation of the
probability vector as a linked list, it becomes straight for-
ward to embed additional preferences within the model.
Each node in the list can include auxiliary dimensions that
further condition the probability. It is important have the
ability to embed the analytical biases in the model as they
will also be accounted for in the synthesis backtracking
phase. In this section we describe some important measures
that help provide a more consistent synthesis with respect
to the input curve.

When the training set exhibits regular properties, the
search is configured to span across a wide range of sam-
ple points in each training curve (stationarity window). This
stationarity property removes all sense of progression of
points along the arc-length. The search is performed ir-
respective of the parametric position, possibly choosing
matches arbitrarily along the points in the curve. Although,
by definition of stationarity this is appropriate, in practical
applications it can become somewhat problematic. The syn-
thesis may getstuckat a state or a cycle through small set
of states (know as absorbing states or irreducible commu-
nication classes). In such a situation, the propagated proba-
bilities will model disjoint and self contained distributions.
Conditioning over the observations and using a multi-scale
model reduces the chance of this occurrence over long in-
tervals. However, for training sets where there are many line
segments that have few distinct features, such situations of-
ten occurs. To address this issue, we adopt a measure for
coherency over arc-lengthas a measure of the number of
out-of-sequence states in a synthetic curve [7]. To bias the
synthesis for more coherent shapes, we enforce a penalty on
matches that are out-of-sequence. The probability is penal-
ized by a factor ofq to help promote more coherent shapes.
This penalty can easily be enforced by adding to each candi-
date node an arc-length parametert and promoting matches
for t + 1.

While some degree of divergence from the input curve is
necessary to fulfill the desired look, we wish to avoid situa-
tions where the generated curve diverges too far away from

the input curve. Since the state space only represents the
tangent angles as a function of arc-length, there is no indi-
cation of how close the generated curve is to the input curve.
Therefore, we define a measure forspatial coherency to in-
put as a measure of the average distance between the in-
put curve and the generated curve over Cartesian space. To
generate more spatially coherent shapes, we include amag-
netic force that biases the distributions to prefer points that
are closer to the input. At each sample pointt the probabil-
ity is modified as follows:

p′(γi(t)) =
p(γi(t))

N(1 + kd(t)2)
(10)

whered is the distance between the input sample point and
the resulting sample point generated by the maximum like-
lihood curve, up-to and including the candidate state at time
t, k is the influence factor andN is a normalization constant.
We including two additional dimensions(x, y) in each node
to keep track of the co-ordinates of the candidate sequences
(the co-ordinates are updated using the backtrack pointer).
Figure 3 shows an example comparing generated curves
with and without the coherency conditions.

4.4. Local Orientation Frame

For some applications, such as generating the city sky-
line (Figure 9), structures on the curves are not rotationally
invariant. However, there are many applications where we
wish to generate a single style over some arbitrary shape.
Using an absolute reference frame for orientation, we would
require the user to provide that style at every possible ori-
entation. For such cases, removing the absolute bootstrap-
ping and performing all computations over local reference
frames avoids this issue. We compute the local reference
frame of the user curve by applying a uniform kernel low-
pass filter to the input (analogous to center of mass). The
basis vectors are computed over the neighboring filtered
points. For the training states, rather than using the tangent
angles for our state elements, we use the curvature(θ̇(t)).
This measures the relative change of the tangent angles and
is independent of an absolute orientation bootstrap. Figure
4 shows examples of relative and absolute synthesis.

5. Results

Experiments were performed using a variety of different
shapes exhibiting various properties. All of the input curves
were arbitrary strokes hand drawn by a user. The parameters
were empirically set once for each type of training set. For
most training sets, the standard deviation of the Gaussian
mixture was set to 15 degrees, for the user input blurring
function, the 90 percentile threshold was set to 14 degrees
and the 10 percentile threshold was set to 38 degrees. The

Figure 3. Generating coastlines. The train-
ing data is a set of 27 coastline patterns
from geographic maps. The associated con-
trol curves consists of blurred versions of the
set. Figure (a) and (d) show two input curves,
Figure (b) and (e) show the corresponding
synthesized curves without any magnetism
and Figure (c) and (f) show the results with
magnetism.

simple shapes(Figure 6) training set had a narrower Gaus-
sian variance (50 degrees), enforcing stricter mixing condi-
tion. Most of the training sets in experiments were consid-
ered as stationary sets, except for the leaves (Figure 1). All
experiments had magnetism on and, unless mentioned oth-
erwise, all frames of reference used absolute co-ordinates.
Experiments were executed on a Linux PC with a 1GHz
Pentium III processor and 1GB of RAM. The results were
generated in interactive-time.

Figure 5 shows example syntheses using leaf shapes.
The training set (Figure 1) is non-stationary, restricting the
mixture about the absolute arc-length position. Forcing this
global constraint avoids mixing parts of the left side of the
leaf with the right side of the leaf as there are cases that ex-
hibit similar local consistency and control on both sides of
the leaf (as in the maple leaf example). As such, each hand-
drawn stroke is normalized. It can be seen how the gen-
erated mixtures look like leaves. Although, it is also easy
to see that some of the leaves do not exhibit symmetry in
shape, a property often seen in real leaves but can some-

Figure 4. Example of synthesis using relative
and absolute frames for two stationary pat-
terns. Figure (a) shows the input curve and
Figure (d) shows the two patterns and the
control curve (straight line segment). For rel-
ative frames, each set consists of a single
curve, either the saw or the curl pattern. For
absolute frames, each set consists of orthog-
onal versions of each patters, forming two
rectilinear sets. Figure (b) and (e) show the
results using absolute frames and (c) and (f)
show the results using relative frames.

times be ignored in the realm of imaginative illustrations.
Further, when we are unlucky, we can see that in some cases
the curve does not close onto itself, even with high mag-
netism. Such issues require large scale re-configurations of
the curve which generally lead to no-linear computations.

Figure 6 displays some example shapes used in a training
set consisting of simple polygons. Figure 7 and 8 display ex-
ample syntheses using this set. Figure 7 shows a flow-chart
generated from a noisy sketch. In this case, each stroke was
generated as an exact instance from the training set. Figure
8 shows an example that results in a mixture of the train-
ing set. It is easy to see that various mixtures and shapes of
different sizes can be generated in consistency with the in-

Figure 5. Examples of synthesis using a leaf
training set. Curves on the left are the input
curves while curves on the right are the gen-
erated ones.

Figure 6. Some examples taken from train-
ing set consisting of simple shapes. The set
is considered stationary. Both the patterns
(right) and the associated control (left) are
displayed.

put stroke.
Figure 9 shows a synthesis using various training sets.

The building skyline was generated using only the two
training examples shown in Figure 10. Additional sets for
water, clouds and sun were used. The grassy terrain and
smoke were the only curves generated with relative refer-
ence frames. One important artifact that this example dis-
plays is that even with magnetism on high, the absolute po-
sitioning of the input curve is not exactly the same as the
generated curve. This is noticeable in the case where draw-
ing the smoke out of the chimney over the input curve does
not result in smoke being generated exactly at the same
place over the chimney at the generated curve. However,
these artifacts can be easily compensated for by manually
moving the object to the desired position.

Our multidimensional state space allows us to include on
only higher-scale attributes, but any desired supplementary
attribute that we wish to include a constraint for. Figure 11
shows examples for learning non-holonomic paths. These

examples shows paths that include the robot axis facing di-
rection (shown by arrow). This attribute is stored as an addi-
tional dimension in our HMM. As can be seen, some of the
paths are non-trivial motions such as the parallel-parking
type example. Figures 12 and 13 show how we can generate
new paths that are bound by these learned non-holonomic
constraints from the initially unconstrained trajectory.

6. Conclusion and Future Work

We have presented an approach to curve synthesis from
learned refinement models: that is, to producing stylized
curves given input curves that indicate roughly what shape
the stylized curves should be. Our method learns from ex-
ample, so it can be applied in a vast array of applications.
Our approach is to use a Hidden Markov Model to cap-
ture both the consistency of local structure for the desired
refined shape and the method of control for those curves.
The refined curves are represented by the hidden states and

Figure 8. Example of synthesis using the sim-
ple shapes training set. Curves on the left are
the input strokes while curves on the right
are the generated ones. This example dis-
plays the generated curves as a mixtures of
the training set. Various sizes of the same
shape can be generated.

Figure 10. Training set used to for skyline.
The left Figure shows the control curve and
the right Figure shows the output.

the control curves are represented by the observation states.
Synthesizing a new curve consists of choosing the maxi-
mum likelihood hidden stated sequence that accounts for
all the observations. Experimental results display how the
shape of a synthesized stroke exhibits the properties of the
training data while acting in accordance to the shape of the
input stroke. The model and algorithm are constructed such
that they can be implemented well within physical mem-
ory and computational limitations and can be trivially inte-
grated with supplementary analytical preferences and con-
strains.

The examples displayed in experimentation can be fur-
ther elaborated by the inclusion of additional attributes such
as pen thickness and stroke properties. These additional at-
tributes can be directly accommodated in the model we
have presented, simply as additional parametric variables
encoded along the curves.

In this discussion we have assumed that when a style
is generated, we knowa priori which family of statistical
biases we should apply. Given several style families with
similar control schemes, in practice, it may be that in one

Figure 11. Samples of a training set simulat-
ing non-holonomic motions. Paths on the left
display the constrained motions while paths
on the right display the associated uncon-
strained control paths. Where specified, ar-
rows indicate additional constraints on the
direction of motion to account for the orien-
tation of the robot. The full set consists of the
above at several orientations.

Figure 12. The above was generated using
the training example for non-holonomic con-
straints. The input path (top) is a hand-drawn
path with several desired directions of mo-
tion (shown by arrows). The resulting path
(bottom) consists of parts of a D-shape turn,
a U-shape turn and a parallel parking style
motion in order to end up in the right motion
directions at the corresponding points.

part of the illustration we want one style and in another
part we expect a different style. For example, in Figure 9
we had to manually select the refinement models for each
curve stroke. How to automatically incorporate two differ-
ent types of bias in the system and, further, how to make a
transition between them remains a topic we are still investi-
gating.

One significant open issue is the application of global
and semantic constraints to the curves being synthesized.

Figure 13. The figure above was generated
using training examples for non-holonomic
constraints. The input path (top) is a hand
drawn path with a restriction on the initial di-
rection of motion. Below shows the gener-
ated path where point (B) marks a direction
reversal.

For example, when a silhouette of a face is being generated,
it would be desirable (outside the science fiction domain) to
assume we wish to generate a single eye, a single nose, a
single mouth followed by a chin and then enforce closure.
While this can be enforced by specialized constraints, a fu-
ture goal is to use the current framework to learn such at-
tributes and embed them in the synthesis.

References

[1] R. Bowden. Learning statistical models of human motion. In
IEEE Workshop on Human Modelling, Analysis and Synthe-
sis, CVPR2000, July 2000.

[2] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling.International Conference on Computer
Vision, September 1999.

[3] S. P. Engelson. Learning robust plans for mobile robots from
a single trial. InAAAI/IAAI, Vol. 1, pages 869–874, 1996.

[4] G. Farin.Curves and Surfaces for Computer Aided Geomet-
ric Design. Academic Press, 1992.

[5] A. Finkelstein and D. H. Salesin. Multiresolution curves. In
SIGGRAPH ’94 Proceedings, July 1994.

[6] A. R. Forrest. The twisted cubic curve: A computer-
aided geometric design approach.Computer Aided Design,
12(4):165–172, July 1980.

[7] A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz. Curve
analogies. In13th Eurographics Workshop on Rendering,
June 2002.

[8] P. Jodoin, E. Epstein, M. Granger-Pichi, and V. Ostro-
moukhov. Hatching by example: a statistical approach. In
NPAR 2002 : Second International Symposium on Non Pho-
torealistic Animation and Rendering, June 2002.

[9] D. Keren and M. Werman. Bayesian interpolation.ARPA Im-
age Understanding Workshop, November 1994.

[10] M. Learning. Tom mitchell. InMcGraw Hill, 1997.
[11] J. Miura. Hierarchical vision-motion planning with uncer-

tainty: Local path planning and global route selection.
[12] Y. N. W. Stefano Soatto, Gianfranco Doretto. Dynamic tex-

tures. International Conference on Computer Vision, pages
439–446, July 2001.

[13] X. Wang. Learning planning operators by observation and
practice. InArtificial Intelligence Planning Systems, pages
335–340, 1994.

[14] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In K. Akeley, editor,Sig-
graph 2000, Computer Graphics Proceedings, pages 479–
488. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[15] S. Zhu, Y. Wu, and D. Mumford. Filters, random fields and
maximum entropy, towards a unified theory for texture mod-
eling. International Journal of Computer Vision, 27(2):107–
126, 1998.

