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Abstract

Computing and storing probabilities is a hard problem
as soon as one has to deal with complex distributions over
multiples random variables. The problem of efficient repre-
sentation of probability distributions is central in term of
computational efficiency in the field of probabilistic reason-
ing. The main problem arises when dealing with joint prob-
ability distributions over a set of random variables: they
are always represented using huge probability arrays. In
this paper, a new method based on a binary-tree represen-
tation is introduced in order to store efficiently very large
Joint distributions. Our approach approximates any multi-
dimensional joint distributions using an adaptive discretiza-
tion of the space. We make the assumption that the lower is
the probability mass of a particular region of feature space,
the larger is the discretization step. This assumption leads
to a very optimized representation in term of time and mem-
ory. The other advantages of our approach are the ability
to refine dynamically the distribution every time it is needed
leading to a more accurate representation of the probabil-
ity distribution and to an anytime representation of the dis-
tribution.

1. Introduction

Computing and storing probabilities is a hard problem as
soon as one has to deal with complex distributions over mul-
tiples random variables. In the field of Bayesian networks
[12], this problems arises frequently. Indeed, a Bayesian
network stores a joint probability distribution over a set of
random variables as a product of simple conditional prob-
abilities such as P(X;...X,) = [[i; P(X;|pa(X;))
[14]. The term P(X;|pa(X;)) denotes the probability of X;
given the parents of X; in the network (a graph). The par-
ents of a random variable are those which have a direct in-
fluence on X; [11]. Beyond the problem of inference and

learning with Bayesian networks and more general proba-
bilistic graphical models [7], the problem of efficient repre-
sentation of probability distributions is also central in term
of computational efficiency of the legacy algorithms to deal
with such probabilistic models. The main problem arises
when dealing with joint probability distributions over a set
of random variables. Indeed, many inference and learning
algorithms in the domain'of Bayesian reasoning decompose
the calculus over a set of small subset of random variables.
The size of those subsets depends on the topology of the
graphical model and inference and learning algorithms are
more efficient with small subsets [5, 8]. However, the space
and time needed to compute with those subsets depends also
on the dimension of the variables. Then the problem is to
have an efficient representation of small joint probability
distributions, i.e. of multi-dimensional probability distribu-
tions.

We will restrict our purposes to discrete and discretized
continuous random variables. In this case, the joint distri-
butions are usually represented using probability tables (or
conditional probability tables in the case of Bayesian net-
works) as defined in [6]. A probability table is simply an ar-
ray of probability values which has a size equal to the num-
ber states of the variable (or the product of states of each
variables in the case of a joint distribution). Besides, it is
easy to compute with discrete variables but the complex-
ity of the calculus grows exponentially with the number of
variables. For example, if A, B and C are three discrete ran-
dom variables with ten states (say ay,...,a10,b1,.-.,b10
and ¢y, ..., C1o), then the probability table used to represent
P(ABC) stores 10° values.

Another example is the conditional tables used to
represent, for example, P(A|B;...Bs). Its associ-
ated probability table has the same space complexity as
P(A,B;...B3).If A, B; ... By are binary random vari-
ables, 232 values are needed to store the table. This is huge
and clearly outperforms the capabilities of actual comput-
ers.

A more efficient way to store those probability tables




is needed in order to deal with such very large joint dis-
tributions. In this paper, a new method based on a binary-
tree representation is introduced in order to store efficiently
very large joint distributions. Our approach approximates
any multi-dimensional and discrete-valued joint distribution
using an adaptive discretization of the feature space defined
by the random variables.

The discretization is based on the assumption that the re-
gions in the space where the probability mass is high, have
to be more accurately represented than the regions where
the probability mass is low. The advantages of using such a
tree representation are as following:

e the space complexity of the representation is reduced
due to the preliminary assumption: less information is
needed to store low mass probability regions, unless
the probability tables which store an equal quantity of
information for each region of the feature space.

o the number of points could grow dynamically, and
thus, it is possible to refine the accuracy of the rep-
resentation every time it is needed,

e every time a new point, which denotes an area of equal
probability in the space, is inserted in the tree, the nor-
malization constant is incrementally updated during
the insertion of the point in the tree.

These advantages leads to two important facts:

e the probability of a random point drawn from the fea-
ture space is a sufficient statistic to represent the proba-
bility of the area around it. However, if another point is
drawn near the first point, then the area is partitioned
into smaller areas until the two points are separated
into two distinct partitions.

e due to the incremental construction process of our ap-
proach, each time a new point is inserted in the tree,
the probability distribution is refined. Such a represen-
tation is named an anytime representation: an approx-
imate representation of the probability distribution is
available each time it is needed. But, the accuracy of
the represention grows along time [10, 15].

The method that will be presented in this paper has been
successfully implemented in a larger system dedicated to
inference in Bayesian networks and based on the Bayesian
programming paradigm. This method is also a part of an
European patent [3]. This system is largely used in our re-
search team for Bayesian robots programming: approximate
and efficient representation of large probability distributions
is a success key for real-time robotics [9] since it allows to
deal with complex Bayesian representation of the world and
to fusion efficiently data issued from various sensors in or-
der to control the robot. A more general survey of Bayesian
programming is available in [1].

The organization of this paper is as follows. In Section 2,
the multi-resolution binary trees (MRBT) are presented. Af-
ter a description of general principles, an algorithm to con-
struct such a tree is proposed. Examples of such trees and
a discussion about time and space complexity will follow.
Section 3 presents advantages in using MRBT for particular
situations and discuss the current limitations of the model.
The final section brings conclusion and opens up new per-
spectives.

2. Multi-resolution binary tree (MRBT)
2.1. Definition

A MRBT is a binary tree which partitions the feature
space into a set of regions (or hypercube in the case of high-
dimensional spaces) and fit a simple model in each one to
represent the probability of this region. We choose a sim-
ple model to be more efficient: a point X is drawn from
the space and the probability of the region is: P(R) =
P(X).Vrwhere Vgis the volume of the region. We made
the assumption that the probability of the drawn point is a
sufficient statistic to represent the probability of the region.
Consequently, a region is represented by one and only one
point. Besides, learning a MRBT is an incremental process
where points are drawn sequentially from the feature space
and used to characterizes small regions of the space. The
more points there is, the smaller are the regions. The conse-
quence of such an approach is that it is thus possible to re-
fine incrementally the representation of the probability dis-
tribution.

Our approach is based on classical methods like CART
(classification and regression trees) which makes a tree
without any assumption on the size and form of the regions,
thus leading to higher computational costs {4]. Other ap-
proaches to deal with probability distributions exist. For ex-
ample, the probability tree [13] represents a probability dis-
tribution over a set of discrete random variables using a n-
ary tree. Each inner node represents a variable of the joint
distribution and each inner node has as many children as
states the variable it represents has. For a given configura-
tion of the variables, the real number stored in the leaf is the
probability of the configuration if we reach the leaf by start-
ing from the root node and for each inner node we follow
the child corresponding to that configuration.

The accuracy of a probability tree is fixed by the total
number of configurations of the set of variables. However,
it is possible not to represent certain configurations of the
variables leading to a smaller tree.

Then, a MRBT is a better tradeoffs between space and
time because, it is possible to choose the accuracy of the
representation. For a probability tree, each leaf is the prob-
ability of one and only one point (corresponding to a partic-
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Figure 1. Dichotomic divided feature space

ular configuration) in the feature space. For a MRBT, a leaf
could contain either the probability of one point, either the
probability of a region of the space.

2.2. A simple example

Let’s consider a system described with two discrete ran-
dom variables. The combined feature space of this two vari-
ables is a two-dimensional space, easily represented by a
plan as shown in figure . Let’s consider there exists a process
which is able to randomly draw points from the space ac-
cording to the probability distribution P(X;, X5). A good
drawing process would draw a sufficient quantity of points
from areas where the probability mass is high and few
points where it is low.

In order to approximate the probability distribution, the
main assumption is that the probability of a drawn point is
also the probability of the region it belongs to. A region
is determined using a dichotomic process: for each point
drawn from the space, the region it belongs to is divided into
two smaller regions. The sub-region which contains the ini-
tial point holds its former probability, and the sub-region
which contains the new point, holds the probability of the
new point. By this way, the probability distribution is re-
fined progressively.

Figure 2.2 shows the feature space of X;and X,divided
by using several drawn points. Figure 2 shows the probabil-
ity of each region. The gray level is a function of the prob-
ability of the region (the darker the region the higher the
probability).

Moreover, the quality of the probability representation
with a MRBT depends on the quality of the points draw-
ing process. Popular methods are useful like an optimiza-
tion method, an exhaustive covering of the feature space, a
Monte-Carlo method, etc...

Figure 2. Approximative probability distribu-
tion based on the drawn points

2.3. The learning process

The learning of a MRBT is an incremental process which
has the anytime property: each time a new point is in-
serted, the MRBT holds an approximate representation of
the probability distribution. This is useful when the learn-
ing time or the learning space are bounded. It is often the
case in robotics where embedded computers have always
serious limitations in term of computational and memory
ressources. The learning process acts as follow:

1. the first drawn point don’t partition the space and acts
as the root of the tree;

2. apoint P is drawn from the feature space with a prob-
ability p;

3. if P already exists then it is simply ignored;

4. if P is a new point, then :

() find the node (i.e. the region of the space) of the
tree featuring a point P, and which contains the
new point P,

(b) split the region into two sub-regions, one dimen-
sion after the others. For example, if the space
features three variables X, Xsand X3, then the
space will be split depending on X, then Xs,
then X3, then X, ,etc...

(c) the node (which was a leaf) becomes two new
child nodes (which are new leafs), one featuring
P with a probability p. and the other featuring
P with a probability p.

(d) If one leaf contains P and P,again, then this leaf
is recursively split into smaller regions accord-
ing to the same process used for the MRBT con-
struction and until P and P, belong to two differ-
ent region.

This process is repeated until no new points are available
or the upper bound defined for the allocated memory or the
time limit has been reached.
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Figure 3. Simple example with only tree
points

2.4. An more complex example

Let’s consider the example in figure 3 (this is a reminder
from figure 2.2). Each time a point is introduced in a re-
gion already containing an old point, this region is divided
into two regions of equal dimensions. The split is made se-
quentially along each dimension, as shown in the previous
section. The internal nodes become a likelihood equal to the
sum of its children’s probabilities. Accordingly, the root be-
comes the total likelihood of the tree which is used as the
normalization constant. To reduce the computational cost
during the learning phase, the probabilities associated to
each node and leaf are never normalized.

Let’s now consider the example in figure 4. The Cyr
points is very near from Cjand Crinducing several sub-
regions with a probability proportional to the probability
which contains C;at last. Solving such a conflict boils down
to learn a MRBT where Cis the initial root of the MRBT.
The region named R}, Ry, Ry have a probability equal to

(resp.):

P(Ry) = P(C\)Vg
P(R{) = P(C1)Vgry
P(R{") P(C1)Vry

The MRBT in figure 5 has two main partitions. The
right subtree was generated with many real drawn points,
Cs,C3,Cy, Cs, Cg, while the left subtree was generated
with only two points Cyand Cy. This two points are very
near and a lot of subdivisions are needed in order to accu-
rately report the difference between Cand Cr and because
of the dichotomic approach.

3. Using MRBT

This new approach is very efficient in the domain of
Bayesian reasoning and find many applications especially
for reasoning under uncertainty. Indeed, it is possible to rep-
resent any discrete probability distribution without having
to deal with huge probability tables. Efficiency is necessary
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Figure 4. A more complex example with re-
cursively learned regions
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Figure 5. A MRBT with a conflicts between
Ciand C;

when one has to compute and to use probability distribu-
tions in real time. In the case of probabilistic artificial intel-
ligence, a probability distribution represent the knowledge
on has about a fact or a conjunction of facts (joint prob-
ability distribution). Data fusion [2], artificial intelligence,
robotics are all applications where it is necessary to deal
with probabilistic and Bayesian reasoning. In general, ba-
sic uses of such distributions are essentially:

e computing the probability of a particular point of the
feature space,

¢ drawing points from the distribution,

s finding the best probability (for an action selection for
example).




3.1. Probability of a particular point

In the case of a CPT, finding the probability P(X) of a
particular point X is as simple as reading an array at a par-
ticular position. In the case of the MRBT, it is necessary
to go through the binary tree. Given the coordinate of the
point and given that each node of the tree contains charac-
teristic information about the region it represents, it is easy
to go all over the tree from the root node to a leaf. We have
seen that the probability of each node is the probability of
the region and is equal to:

P(R) = P(c;).Vr

where P(c;)is the probability of the point which character-
izes the region and Vgis the volume of the region. When the
leaf has been reached, the probability of the initial point X

is:
_ P&
PX) = P(root)

where P(root) is the normalization constant stored at the
root of the tree. The main problem with this approach is that
the complexity of finding a point is O(log(n)) where n is
the number of drawn point used to make the MRBT. In the
case of CPT, the same problem has trivially a complexity
of O(1). But the tradeoff between time and space using a
MRBT allows to store complex probability distributions by
using much less memory than CPTs.

3.2. Drawing a point

To draw a point from a MRBT, the algorithm is the same
as finding the probability of a point. Let’s consider pya ran-
dom value given by a uniform drawing process. Each level
of the MRBT is a dichotomy on the repartition function
of the probability distribution. At each node, the children
which fits the best py; is chosen and the process follows on
until a leaf is reached. Given the fact that each point of the
leaf region has the same probability as each other point in
this region, a point is chosen by uniformly and randomly
drawing it from this region.

The complexity of this algorithm is O(log(n)) which is
better than using F'(X), the repartition function of the prob-
ability distribution P(X) represented by the MRBT. Go-
ing all over a CPT to randomly draw a point according to a
probability distribution has a complexity of O(n).

3.3. Best probability

Finding the point with best probability is as easy as find-
ing an occurrence of an element in any binary tree. But, dur-
ing the construction of the MRBT, it is possible to store the
leaf which currently corresponds to the maximum probabil-
ity of the distribution. When one needs to draw a point of

maximum probability, it is thus easy to draw a point from
this previously stored region. If there is more than one re-
gion having the maximum probability, a linked list of max-
imum probability region is stored during the construction
of the MRBT. Drawing a point of maximum probability is
thus the same algorithm of that drawing a point in general.
But in this case, the linked list is used in place of the whole
MRBT.

4. Conclusion and future works

This paper has presented a novel approach to represent a
probability distribution with many advantages:

e the storing space is much less high than the one needed
when using probability tables,

e itis possible to refine the distribution by inserting more
points as necessary,

e the space and time needed to construct a MRBT could
be bounded in the case of real-time reasoning,

e it is possible to accurately approximate continuous
probability distributions with any accuracy.

Based on classical methods like CART and probability
trees, our approach adds the ability to have a useful approx-
imate probability distribution at any time. The other main
advantage is the possibility to refine the distribution every
time it is needed.

Actually this representation is not still optimal in term
of tradeoffs between time and space ressources. The main
problem is related to the initial drawing process used to con-
struct the MRBT. If the drawing process gives points in the
same region, then the MRBT will be very unbalanced. If
the drawing process gives points uniformly on the feature
space, then the MRBT will be well-balanced but the ac-
curacy will be not very good. Indeed, the regions with a
low probability mass will be as accurately represented as
those which have a high probability mass. Future works will
be based on re-balancing and better sampling approach to
ensure a well-balanced MRBT without a loss of accuracy
in the probability distribution representation. This problem
is also related to the ever growing size of the MRBT: it
should be useful to decrease the size of the tree by prun-
ing parts representing low probability mass region. This is
necessary in memory-limited system (like a robot embed-
ded computer) where the size of the tree is bounded by a
hard limit. In this case, the problem is to prune parts of the
tree which are not useful for the purpose of the system. Fu-
ture works will focus on pruning and balancing strategies
in order to decrease the time complexity for operations like
finding the probability of a point and marginalizing a joint
distribution.
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