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Abstract 

 

In this paper, Multiperson Decision Making is explored 
based on Raw Relation Sets [1], in which three types of 
basic order relationships between any two objects are used 
to define the order relationships among a set of objects. 
Different order relationships among the same set of 
objects may be produced by different evaluators (or 
evaluation criteria) and there is also an order relationship 
among the evaluators themselves. In this paper, all 
evaluators are assumed to be of the same importance. This 
method emphasizes using qualitative (or un-weighted) 
order relationships but it is also capable of handling 
weighted order relationships. 
 
1. Introduction 
 

The following problem is frequently encountered in 
daily lives. A set of objects needs to be evaluated based on 
one or more criteria in order to rank them. For example, in 
Multiperson Decision Making [2], multiple people actively 
participate in arriving at a decision. Also, in the top-N 
query problem [5], multiple attributes serving as criteria 
are involved in a condition, we expect the DBMS to return 
the tuples that best satisfy the query condition, with better-
matched tuples ranked ahead. There are many similar 
applications. Generally, the critical common issues are: 

(1) How to appropriately describe the orders on the 
same set of objects for different evaluators/criteria? 

(2) How to aggregate these orders into a combined 
order while taking into consideration the fact that 
different evaluators/criteria may have different 
importance/priorities? 

(3) How to convert this combined order into a ranking? 
We call the problem with the above three issues the 

Order Fusion Problem [1].  
Order Fusion can be considered as a special case of Data 

Fusion [3], which plays a crucial role for capturing data 
representation and aggregation. As Data Fusion’s 
foundations, a variety of researches on both 
mathematically formal methods (e.g., Bayesian, Dempster-
Shafer, Fuzzy Logic) and somewhat ad hoc approaches 
(e.g., voting) have been studied for as long as hundreds of 
years. These approaches may also be applied to Order 
Fusion. However, most of these approaches have the 
following weaknesses regarding the above three issues: 

(1) The lack of a description of qualitative relationships, 
which may not satisfy transitivity. 

(2) The lack of a formal theory to support aggregation. 
(3) The lack of the ranking methodologies in terms of 

using qualitative information. 
About (1), all the current works prefer quantitative 

information rather than qualitative data. This leads to the 
lack of descriptions of the following two aspects: 
• Intransitivity: In a competition that t1 beats t2 and t2 

beats t3 does not necessarily mean t1 can beat t3. 
• Uncertainty: For instance, we may not know who is 

better between t1 and t2 because the match between 
them was canceled for some reason, say raining. 

About (2), there is a lack of convincing basis to justify 
why a particular formula used for aggregation is valid in 
current approaches. For instance, in Top-N query problem, 
Euclidean functions may be used as the distance function 
[6]. It is difficult to determine if there is a better function. 

Item (3) is the direct outcome of (1). Since most current 
researches deal with ranking problems involving only 
quantitative values, they do not need to distinguish the 
difference between Order and Rank. In this work, order 
means the direct relationships among the objects and rank 
means an overall linear list of the objects. A specific 
procedure must be developed to map an order to a rank. 

Therefore, Order Fusion is a hard problem, even for its 
special case – Multiperson Decision Making where all 
evaluators are assumed to be of the same importance, there 
exist difficulties as described in the following examples. 

The first example illustrates a case involving 3 objects 
and we have a good solution for ranking them. 

Example 1.1: Suppose chess players take part in 
tournaments of the same importance. In each tournament, 
players compete with each other. The order between two 
players can be decided by counting who wins more 
between them in all the tournaments. Then, we have a 
graph of order relationships among all the players. Notice 
that this graph is aggregated based on all the tournaments 
and may contain circles. By measuring the difference 
between games of winning and games of losing for each 
player based on the graph, we can rank all the players. � 

The next example illustrates a case involving only 2 
objects, yet we do not have a good solution to rank them. 

Example 1.2: Suppose two soccer teams take part in 
tournaments of the same importance. In each tournament, 
teams compete with each other. Suppose we have three 
tournaments T1, T2 and T3 involving two teams t1 and t2; in 
T1 and T2, t1 beats t2 with the same score of 1:0; in T3, t2 
beats t1 with a score of 7:0. Although t1 beats t2 twice, it is 



 

still hard to determine which team is better since t2 beats t1 
with a huge margin in its one win. People may have 
different opinions on which team is better. � 

For years, many researches have relied on Arrow’s 
Impossibility Theorem [4]: There is NO consistent method 
of making a fair choice based on the Fairness Criteria, and 
believed in “the presence of three or more 
objects/candidates” being the source of difficulty. 
However, as we can see from Example 1.2, even with 2 
objects (soccer teams), we still cannot reach a convincing 
answer while we can in Example 1.1 where 3 objects 
(chess players) are involved. Thus, it appears that rather 
than the “the presence of three or more candidates” 
condition being the necessary condition required in 
Arrow’s Impossibility Theorem, there must exist a more 
profound hidden factor that contributes making a 
consistent solution impossible in terms of the fairness 
criteria in Decision Making. We believe that it is the 
weights of the relationships among objects that cause the 
impossibility. For instance, we have a good solution in 
Example 1.1 since no weight is involved. The relationship 
that one player beats another is merely a qualitative order 
relationship, i.e., the relationship conveys the qualitative 
information “who beats whom” but no quantitative 
information “by what margin”. In other words, the order 
relationship is not weighted. On the other hand, we don’t 
have a good solution in Example 1.2 because the 
relationships are weighted, e.g., a win by 1:0 is different 
from a win by 7:0. 

In this paper, we introduce a new mathematical model - 
Raw Relation Sets - to tackle the issues of object 
description, object aggregation, and object ranking in 
Order Fusion, based on the statement above (i.e., weighted 
relationships are causing the problem) rather than on the 
Fairness Criteria to overcome the weaknesses of the 
existing solutions. Considering limited space however, we 
will emphasize how this new theory can be used to deal 
with the special case of Order Fusion - Multiperson 
Decision Making (also known as Voting) [2] as we 
mentioned above. How to use Raw Relation Sets to 
address Order Fusion can be found in [1]. 

The principle of the Raw Relation Sets is to use un-
weighted order relationships, instead of numeric values, to 
represent the information in the real world. We explore a 
method with which weighed relationships such as those in 
Example 1.2 can be transformed to equivalent un-weighted 
relationships such as those in Example 1.1. Therefore, to 
provide a solution to the former, we only need to provide 
an answer to the latter. As illustrated in Example 1.1, the 
solution usually is much easier to obtain when only un-
weighted relationships are present. 

The remainder of this paper is organized as follows. In 
Section 2, a detail description of Raw Relation Set is given 
to deal with the issue of object description. In Section 3, 
raw relation set operation or aggregation is described to 
deal with the issue of object aggregation in Multiperson 
Decision Making. In Section 4, methods of object ranking 

are introduced. Finally, a conclusion is given in Section 5. 
 

2. Raw Relation Sets 
 

One thing that makes decision making difficult is the 
meaning of “binary relationship”, which in fact consists of 
two pieces of information: direction and weight. For 
instance, position 1 is higher than position 3 with a bigger 
margin than that position 2 is higher than position 3. All 
the current researches have to evaluate these 2 factors and 
employ some kind of “balance” during the aggregation. 
Controversy usually occurs during balancing. 

Now, if we can redefine a ranking problem in a model so 
that a set of binary relationships (it is complete but needs 
not to be transitive) contains direction only, and each 
relationship between 2 objects is independent of others, 
then the problem of aggregation will become much easier. 
This is because in this case, a decision can be obtained for 
each relationship independently first and some kind of 
majority rule similar to that used in Example 1.1 can then 
be applied to these decisions during the aggregation. 

In this section, we present how to use Raw Relation Sets 
to describe preferences among objects with un-weighted 
relationships. Preference aggregation will be discussed in 
the next section. 

Example 2.1: A contest contains 3 voters: {v1, v2, v3} 
and 3 candidates: {c1, c2, c3}. The voters are of the same 
importance, i.e., their votes are of the same importance – 
this is a traditional ranking situation. The preferences are 
shown in Table 1. Position 1 is ahead of position 2, which 
in turn is ahead of position 3. The objective is to find the 
social choice or the overall ranking of the candidates. 

Voters: v1 v2 v3 
Position 1 c1 c2 c3 
Position 2 c2 c3 c1 
Position 3 c3 c1 c2 

Table 1: Social preferences for 3 candidates. 
The preferences of the voters result in a Condorcet’s 

effect, or paradox of voting, or has cyclical majorities, in 
which case c1 has a 2-to-1 majority over c2, c2 has a 2-to-1 
majority over c3 and c3 has a 2-to-1 majority over c1. 
Intuitively (a more formal reasoning can also be provided), 
these candidates should be assigned the same ranking. We 
now consider another situation by adding a new candidate 
named c1'. Suppose c1' has the same position as c1 in the 
preference of each voter, as shown in Table 2. 

Voters: v1 v2 v3 
Position 1 c1, c1' c2 c3 
Position 2 c2 c3 c1, c1' 
Position 3 c3 c1, c1' c2 

Table 2: Social preferences for 4 candidates. 
For this example, Borda’s method [2] and all other 

methods that use scoring functions will give the same 
score to each candidate (see Section 4). Hence, all the 4 
candidates will be ranked the same by these methods. 

However, in the real world, the value of a position may 
need to be changed with the distribution of the objects in 
order to better reflect the reality. Consider the following 2 



 

scenarios in a test: 
S1: All students get A except one who gets C; 
S2: All students get C except one who gets A. 
If A is treated as position 1 and C is treated as position 2, 

then the position 1 in S2 should have a higher value than 
the position 1 in S1 since only one student gets A in S2. 
Although we cannot tell how to adjust the values of the 
position 1 in the two cases, any method that does not 
consider the difference is probably too simplistic. 

Raw Relation Sets provides a platform for consensus 
ranking while addressing problems like the above. Based 
on this platform, the final ranking of these candidates is c3 
> c1, c1' > c2, i.e., c3 is ranked ahead of c1 and c1' which are 
in turn ranked ahead of c2. The formal justification will be 
provided in subsequent discussions. Intuitively, this is 
reasonable because c3 wins more than it loses, c2 loses 
more than it wins, and both c1 and c1' have the same 
numbers of wins and losses. � 

As stated above, we need to build a model to describe 
the preference for each voter. In this model, a binary 
relationship means nothing but a direction. The weight 
information, if exists, melts in those relationships. 

Definition 2.1: Let X be a set of objects. An Order on X, 
denoted as O(X), is a set of all the possible binary 
relationships among the objects in X. Specifically, for any 
two objects x, y ∈ X, exactly one of the following three 
relationships is true:  

x is Larger than y: denoted as (x, y); 
x is Equal to y: denoted as <=x, y=> or <=y, x=>; 
Unknown: No idea which one is larger, whether they are 

equal or comparable, denoted as <x, y> or <y, x>. � 
Notes: 
1) The relationship Larger has a generic meaning that 

subsumes better than, more important than, etc.  
2) Since x is Larger than y implies that y is smaller 

than x, it is unnecessary to define Smaller than separately. 
3) The relationship is not required to be transitive. In 

other words, that object x is Larger than object y, which in 
turn is Larger than object z, does not necessarily mean that 
x is Larger than z. Therefore, it permits the existence of a 
cycle. For instance, O(X) = {(x, y), (y, z), (z, x)} is an order 
on X. Here, X = {x, y, z}. This feature also demonstrates 
another important fact: the relationships are independent to 
each other. We cannot simply deduce a relationship based 
on other relationships. Each relationship is obtained by 
surveying the fact occurring in the real world, e.g., the 
competing result between two players. 

4) Unknown does not merely mean that we cannot 
decide whether there is a Larger or Equal relationship. 
More importantly, it sometimes means that the two objects 
are not comparable. For instance, we are not able to decide 
who runs faster between object ‘Author’ and object ‘Raw 
Relation Sets’. 

Definition 2.2: Suppose (x, y) ∈ O(X). The distance 
(object) from x to y, denoted by d(x, y), is a qualitative 
measure reflecting how much x is larger than y. � 

Note that distance is only defined for objects in the 

Larger relationship. The distance for Unknown 
relationship would be unknown if we must define it. The 
distance for Equal relationship would always be smaller 
than that for a Larger relationship. Distances for Unknown 
and Equal relationships would not be useful in our solution 
and therefore would not be defined. 

Example 2.2: Let X = {x, y, z} be a set and O(X) = {(x, 
y), (y, z), (x, z)}. If d(x, z) is larger than d(y, z), it reflects 
that the degree in which x is larger than z is greater than 
that in which y is larger than z. In other words, it reflects a 
sense that x is much larger than z. � 

Definition 2.3: Let X be a set of objects and O(X) be an 
Order on X. Suppose X2 is a set of distance objects on 
O(X). Then, we have a new Order O(X2). Generally, 
suppose Xi is a set of distance objects on O(Xi-1) and O(Xi) 
is an Order on Xi, i = 1, 2, … . Then, 

X* = ∪Xi is the distance closure on X, here X1 = X; 
O*(X)  = ∪O(Xi) is the Order closure on X. � 
Now we define raw relation set. 
Definition 2.4: Let X be a universal set. A raw relation 

set (or raw set for short) of X is 
R = ( X* ∪ O*(X) ) ∪ { <vi, vj> |  vi ∈ Xi, vj ∈ Xj, and i ≠ j }. � 
The second part of the union above means that the 

relationships between objects in different levels are always 
Unknown since they belong to different domains. 

To make a raw set more visible, an equivalent definition 
is given in terms of graph theory. 

Definition 2.5: A graph G consists of a set of objects 
called vertices V(G) and a set of edges E(G). Each edge is 
defined by a pair of ordered or un-ordered distinct vertices 
of G. E(G) consists of the following types of edges: 

(x, y): if there is a directed edge from x to y; 
<=x, y=>: if there is an undirected edge between x and y; 
<x, y>: if there is ‘no edge’ between x and y. � 
The following is equivalent to Definition 2.4. 
Definition 2.6: Let X be a universal set. A raw set R of X 

is a graph R_G defined as: 
V(R_G) = ∪ V(R_Gk); 
E(R_G) = ( ∪ E(R_Gk) )  ∪ { <v, v′> |  v ∈ V(R_Gi), v′ ∈ 

V(R_Gj), and i ≠ j }. 
Here, R_Gk is a cluster of exclusive complete sub-graphs 

of R_G, defined as: 
V(R_G1) = X; 
E(R_G1) =  { (vi, vj) |  vi is Larger than vj } ∪  

{<= vi, vj => |  vi is Equal to vj } ∪  
{<vi, vj> |Unknown between vi and vj }, here, vi, vj∈ X; 

V(R_Gk) =  { d(x, y) or ‘x, y’ | (x, y) ∈ E(R_Gk-1) }; 
E(R_Gk)  = { (vi, vj) |  vi is Larger than vj } ∪  

{<= vi, vj => |  vi is Equal to vj } ∪ { <vi, vj> |  
Unknown between vi and vj }, here, vi, vj∈ V(R_Gk) 
and 1 < k ≤ h, and h is a constant integer in [1, +∞]. � 

Note: Any two sub-graphs are connected by special 
edges of type ‘no edge’ (for Unknown relationships). A 
graph for a raw set can be considered as consisting of 
multiple levels of sub-graphs with R_G1 being at the first, 
top, or highest level and R_Gh being at the last, bottom, or 
the lowest level. A lower level graph is built from the 



 

graph at the immediate higher level. Essentially, the 
directed edges in a graph become the vertices in the graph 
at its next lower level. The edges in the graph at the lower 
level describe the distance relationships at the higher level. 
The number of levels h is referred to as the height of the 
raw set R, denoted as h = height(R). 

Now let’s see the raw relation sets for the preferences in 
Table 2 of Example 2.1. Three raw sets can be constructed 
for the three preferences corresponding the three voters. In 
Figure 2.1, we defined a raw relation set for the preference 
of voter v1. Since v1 considers c1 and c1' are in position 1, 
we have Equal relationship between these two candidates, 
i.e., there is undirected edge between them in the first level 
illustrated in the left sub-graph. In addition, because c2 is 
in position 2 and c3 is in position 3, we have Larger 
relationships from c1 and c1' to c2 and c3, and from c2 to c3 
as illustrated in the left sub-graph as well. The directed 
edges (they correspond to the Larger relationships) are 
labeled and they become the vertices in the next-level sub-
graph - the middle sub-graph. Since the distance between 
position 1 and position 3 is larger than both the distance 
between position 1 and position 2 and the distance between 
position 2 and position 3, and the later two distances are 
equal to each other, we have the corresponding 
relationships or the edges. Notice that the direct edges in 
this sub-graph means the distance between “the distance 
between position 1 and position 3” and “the distance 
between position 1 and position 2” or “the distance 
between position 2 and position 3”. Hence, those directed 
edges have the same weight. Thereby in the lowest level - 
the right sub-graph, we have only Equal edges among 
those distances. Following the same logic, we can 
construct the other raw relation sets for the preferences of 
voters v2 and v3 (see Figure 2.2 and 2.3). 

Figure 2.1: Raw set for v1’s preference. 

Figure 2.2: Raw set for v2’s preference. 

Figure 2.3: Raw set for v3’s preference. 
Now, each preference is defined as a raw set, which is a 

graph consisting of three-levels of sub-graphs. Notice that 
there is no weight on any edge. As we mentioned earlier, 
information regarding weights has melted in the three 
levels of the graph for each preference. 

The following special types of raw sets will be used in 
later discussions. 

Definition 2.7: If the relationships among n objects in X 
are all Equal, the corresponding raw set is referred to as an 
Equal n-raw set, denoted by En.� 

 
3. Raw Set Operation 
 

Different from the traditional set operations, a raw set 
operation itself is a raw set. 

Definition 3.1: A raw set operation (or raw operation for 
short) is a raw set Op. V(Op_G1) serves as a committee C 
whose members’ priorities on a decision are defined by 
Op. Each of the n (= |C| = |V(Op_G1)|) members has a 
decision Ii (1≤i≤n) serving as the input, which is a raw set 
on X. As the output of Op, the aggregated decision R = 
Op(I1, I2,…, In) of C is also a raw set on X. � 

Intuitively, committee C can be thought of as a set of 
evaluators. Each Ii is an order among the objects in X 
produced by an evaluator. There is an order among the 
evaluator objects in the committee based on the priorities 
(importance) of these evaluators. The raw operation 
aggregates the decisions {Ii | i = 1, 2, …, n} into an overall 
decision (order) on X based on the order on C. 

Since most Multiperson Decision Making applications 
involve En raw set operation, i.e., no committee member is 
more important than any other committee members on the 
committee’s decision, we will focus this raw operation. 
The discussion on the case of employing general raw 
operations for Order Fusion is given in [1]. 

For each pair of objects x and y, each member in the 
committee has identified a relationship or made a decision 
for them. In the following we discuss some principles for 
reaching the committee’s decision. 

Principle 1: In a committee with only one member, that 
member’s decision is the committee’s decision. 

This principle is easy to accept. � 
Principle 2: If the number of members with decision (x, 

y) (or (y, x)) in a committee is larger than that of members 
with decision (y, x) (or (x, y), respectively), then the 
aggregated decision is (x, y) (or (y, x), respectively). 
Otherwise, If the numbers are the same, then the 
aggregated decision is <=x, y=> unless all of the members’ 
decisions are Unknown. In the later case the aggregated 
decision is <x, y>.� 

This principle can be explained as follows. Consider two 
players, if player x wins over player y more than he/she 
loses, the decision is (x, y), i.e., x is better than y. If the 
opposite is true, then (y, x). If all games are cancelled, then 
the decision is Unknown (i.e., <x, y>). Otherwise, if they 
win and lose the same number of times, then the two are 
tied (i.e., <=x, y=>).  

Based on these two principles, we now have a postulate 
described as an algorithm to summarize the above 
explanations. 

The members’ decisions can be divided into the 
following four groups: 

Gx: all members in this group have decision (x, y); 
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Gy: all members in this group have decision (y, x); 
Ge: all members in this group have decision <=x, y=>; 
Gn: all members in this group have decision <x, y>. 
Postulate (Majority Rule): Suppose C is a committee 

with Numx = |Gx|, Numy = |Gy|, Nume = |Ge|, and Numn = 
|Gn|. The aggregated decision is returned based on the 
following algorithm: 

Decision (Numx, Numy, Nume, Numn) 
BEGIN 
(1) If (Numx = Numy = Nume = 0) return < x, y >; 
(2) Else If ( Numx > Numy ) return (x, y); 
(3) Else If ( Numy > Numx ) return (y, x);  
(4) Else return <= x, y =>. 
END � 
The Majority Rule works for a pair of objects only. 

When we apply it to all the relationships of the relevant 
raw sets, we need to repeat using the Majority Rule for 
each relationship. Hence, we have the following 
procedure, which is a special case studied in [1]. 

Definition 3.2: Op is a raw operation on raw sets, if: 
• Op is a raw set, whose first level vertices N1, N2, …, 

Nn ∈ V(Op_G1) serve as the parameters; 
• I1, I2, … In are all raw sets on domain X, which will be 

taken as the inputs of V(Op_G1); 
• R is a raw set on domain X, as the output of Op. 
RawOp(Op, I1, I2, … In) 
BEGIN 
1.   h ← MAX( Height(I1), Height (I2), …, Height (In) ); 
2.   FOR k ← 1 TO h DO 
3. E(R_Gk) ← Empty; 
4. IF ( k = 1 ) THEN 
5. V(R_Gk) ← X; 
6. ELSE 
7. V(R_Gk) ← all the directed edges in R_Gk-1; 
8. FOR each pair ‘x, y’, x, y ∈ V(R_Gk) DO 
9. FOR i ← 1 TO n DO 
10. Get the relationship of ‘x, y’ in Ii_Gk ; 
11. Put these relationships into the 

corresponding vertices in Op_G1 ; 
12. ENDFOR(i) 
13. Get Numx, Numy, Nume, Numn; 
14. r = Decision(Numx, Numy, Nume, Numn)  
15. Add r into E(R_Gk); 
16.  ENDFOR(each pair) 
17. ENDFOR(k) 
END 
Notes: 
1) The algorithm employs the top-down procedure to 

produce raw set R. It finds the relationships for any 2 
objects x and y from all the input raw sets (Line 10) and 
applies the Majority Rule to those relationships so as to 
produce the aggregated relationship for x and y. 

2) The loop controller in Line 2 is used to scan all the 
levels, while the loop controller in Line 8 is used to find all 
the relationships in a single level. 

3) In Line 14, the Majority Rule applies on those 
individual decisions. The result or the aggregated decision 

is a part of k-th level of the final aggregated decision or the 
aggregated raw set, which is filled gradually in Line 15.  

4) Some other issues need to be addressed in this 
algorithm. Due to space limitation, they are not addressed 
here but they can be found in [1]. 

Example 3.1 Multiperson decision making (continue 
Example 2.1). Now we apply the Algorithm RawOp, 
which is E3 since we have 3 voters and all of them have the 
same importance, to the raw sets in Example 2.1. 

First, the inputs of RawOp are three preferences, which 
are the three raw sets (n = 3) described in Figure 2.1, 
Figure 2.2, and Figure 2.3. Since each of these raw sets has 
three levels, we have h = 3 in Line 1. In Line 2, k is set to 1 
to indicate we start from level 1 of those three raw sets. 
Since, we want to find all the relationships (edges) of level 
1 in the aggregated raw set, we first initialize the set of 
those relationships by setting it empty in Line 3. We also 
initialize the set of the related objects, which is V(R_G1) in 
Line 5 (when we come back again to this point next time, 
i.e., for other levels, we use Line 7 instead) by assigning 
the value {c1, c1', c2, c3}. 

Now in Line 8 we get into another loop to deal with each 
pair of objects in V(R_G1), which is {c1, c1', c2, c3} at this 
point. Suppose the first pair is ‘c1, c2’, i.e., c1 is x while c2 
is y. Since n = 3 in this example, we need to get each 
relationship between ‘c1, c2’ from each input raw set by 
running the loop in Line 10. Note that for this example, 
RawOp (i.e., the raw sets of the committee consisting of 
the three voters) has only one level because all the voters 
are of the same importance. Op_G1 contains three voters: 
v1, v2, v3. 

Therefore in Line 11, we set v1’s decision as (c1, c2) that 
is defined in v1’s preference. By the same logic, we set v2’s 
decision as (c2, c1) and set v3’s decision as (c1, c2). Then in 
Line 13, we have Numx = 2 since c1 is Larger than c2 two 
times. Also we have Numy = 1, Nume = 0, and Numn = 0. In 
Line 14, case (2) of the Majority Rule occurs, leading to r 
= (c1, c2). This result is put into E(R_G1) in Line 15. 

Then we go back to Line 8 five times and find out that 
the other aggregated decisions are (c3, c1), (c2, c3), <=c1, 
c1'=>, (c1', c2), (c3, c1'). These six relationships (including 
(c1, c2)) construct E(R_G1), which is the first level of the 
aggregated raw set illustrated as the left sub-graph in 
Figure 3.1. In E(R_G1) we have 5 Larger relationships, 
labeled α, α’, β, Y, Y’, respectively, as shown in Figure 3.1. 

Now we go back to Line 2 again. This time k is 2, which 
means we are going to deal with the second level of raw 
sets. Therefore we will execute Line 7 instead of Line 5 
and V(R_G2) is {α, α’, β, Y, Y’}, which will be the vertices 
of the second level of the aggregated raw sets as shown in 
the right sub-graph in Figure 3.1. 

Again, we run into Line 8. Suppose the pair ‘x, y’ is ‘α, 
β’. First, <=α, β=> is in the second level of v1’s preference 
(raw set). We have <α, β> according the second level of 
v2’s preference because α does not exist in the second level 
of v2’s preference we have no way to decide the 
relationship between them. Following the same logic, we 



 

have <α, β> according the second level of v3’s preference. 
Therefore this time we have Numx = 0,  Numy = 0, Nume 

= 1, and Numn = 2. In Line 14 we obtain r = <=α, β=>, 
which is illustrated in the right sub-graph of Figure 3.1, 
serving as another relationship in the aggregated raw set. 

In the same way, we can find all the other relationships 
for the second level of the aggregated raw set. Because all 
those relationships are Equal, we do not have level 3, the 
algorithm will then stop immediately. Figure 3.1 is the 
aggregated raw sets representing the committee’s decision. 

Figure 3.1 The raw sets for the final decision. 
The raw set contains cycles. The raw set describing the 

decision does not provide a linear object rank to which 
people often would like to see in practice. In next section 
we discuss how to convert a raw set to a linear list or how 
to rank the objects in a raw set. 

 
4. Ranking 
 

Ranking vertices is one of the primary issues in Graph 
Theory. The methods are mostly divided into two groups: 
path-oriented (PO) and weight-oriented (WO) [7]. Since 
WO works for any cases even when a cycle is involved, 
we usually apply WO to implement object ranking. 
Besides, WO always yield a unique solution  

To apply a WO approach to rank vertices (objects) in an 
aggregated raw set, we need to bring weight back to our 
directed graph after aggregation has been done. Once a 
new directed graph with weighted edges is obtained, we 
assign a weight to each vertex, which is the difference 
between the sum of the weights on inbound edges and that 
on outbound edges. We then rank the vertices according to 
their weights. This ranking procedure may repeat many 
times from the bottom to the top in the aggregated raw set 
until we obtain the top level ranking or the candidate 
ranking. The intuition behind this method of assigning a 
weight to a node is that an inbound edge corresponds to a 
loss and an outbound edge corresponds to a win and thus 
the weight reflects the difference between wins and losses. 
Due to space limitation and the fact that some issues have 
already been discussed in Graph Theory, we will not go 
any further with object ranking in this paper. 

According to the discussion above, we have the final 
ranking for Example 2.1, which is: 

c3 > c1 , c1' > c2. 
This is because, based on Figure 3.1, all the directed 

edges are considered having the same weight since no one 
prevails over others based on the second level (right sub-
graph) of Figure 3.1. Based on the first level, c3 wins more 
than it loses while c2 loses more than it wins. Both c1 and 
c1' have the same numbers of wins and losses. 

It can be seen that no variation of Borda methods will 

obtain the above ranking for this example. This is because 
no matter how people assign values to the positions, all the 
candidates will have the same score. Suppose a candidate 
receives score s1 if s/he is ranked at the first position by 
any voter. This assumption makes sense because the voters 
in our example are of the same importance. Similarly, let 
s2 and s3 be the scores associated to the second and third 
positions, respectively. Now suppose we have a scoring 
function B(p1, p2, p3), which combines individual scores of 
a candidate into a combined score, where p1, p2 and p3 are 
the scores that a candidate receives from v1, v2 and v3, 
respectively. Since those voters are of the same 
importance, we should have the following equalities: B(p1, 
p2, p3) = B(p1, p3, p2) = B(p2, p1, p3) = B(p2, p3, p1) = B(p3, 
p1, p2) = B(p3, p2, p1), i.e., the order of the parameters is not 
significant. This means that the combined scores for the 
three candidates have the same value. Therefore, the three 
candidates will be ranked the same. As traditional 
distance/aggregate functions such as min, max, sum and 
Euclidean are variations of Borda functions, it raises 
question about their validity for generating combined 
rankings. A good method should consider both the ranking 
positions of different objects in individual orders and the 
distributions of these objects at different positions.  

 
5. Conclusions 
 

This paper proposed a new method to solve the 
Multiperson Decision Making problem when all evaluators 
are of the same importance. This method is based on the 
theory of Raw Relation Sets [1]. By concentrating on un-
weighted direct relationships between objects and by 
converting weighted relationships into equivalent un-
weighted ones, a simple and powerful rule – majority rule 
can be applied to perform preference aggregation. Through 
a simple example, it was shown that the proposed method 
can provide more reasonable solutions than any variation 
of the Borda method. 
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