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Delegating Decisions in Strategic Settings
Paul E. Dunne, Paul Harrenstein, Sarit Kraus, and Michael Wooldridge

Abstract—We formalise and investigate the following problem.
A number of decisions must be delegated to a collection of agents;
once the decisions are delegated, the agents to whom the decisions
are delegated will then make these decisions rationally and
independently, in pursuit of their own preferences. A principal is
able to determine how decisions will be delegated, and seeks to
do so in such a way that, when the decisions are ultimately made,
some overall goal is satisfied. The principal delegation problem, is
then, given such a setting, whether it is possible for the principal
to delegate decisions in such a way that, if all the agents to
whom decisions have been delegated then make their respective
decisions rationally, the principal’s goal will be achieved in
equilibrium. We also distinguish the distributed allocation problem
where the agents can delegate decisions among themselves. Here
we not only require that the principal’s goal will be achieved
in equilibrium, but moreover that the allocation to the agents is
stable, in the sense that no coalition of agents can redistribute the
decisions delegated to them among themselves so as to be better
positioned to satisfy their individual goals in equilibrium. We
formalise these problems using Boolean games, which provides a
very natural framework within which to capture the delegation
problem: decisions are directly represented as Boolean variables,
which the principal assigns to agents. After motivating and for-
mally defining the principal and distributed delegation problems,
we investigate these computational complexity of several varieties
of these problems, along with some issues surrounding it.

Impact Statement—Our research concerns the ubiquitous prob-
lem of how to incentivise agents to decide on courses of action
that are simultaneously desirable from the global perspective
and rational from a local game-theoretic perspective. The design
of mechanisms so as to achieve this is through steering the
strategic capabilities of interested agents by delegating decisions
to them in specific ways. We distinguish the cases in which the
delegation is effectuated by a principal and where the agents
are delegating decisions among one another. Our reliance on
the mathematical framework of Boolean games to formalise the
principal and distributed delegation problems offers valuable
insights into the computational complexity of these problems.
The delegation problem touches on many important applications,
not only in everyday life, but also in Artificial Intelligence, in
particular Multi-Agent Systems.

Index Terms—Game theory; mechanism design; logic; knowl-
edge representation; computational complexity.

I. INTRODUCTION

Throughout our lives, we must inevitably delegate to other
agents decisions whose outcome will affect us, even though
we know full well that the agents we delegate the decisions
to are self-interested, and will make these decisions in their
own interest. Examples of this problem are legion. Thus,
one can think of the chair of a university department, who
must allocate teaching and admin responsibilities to faculty
members, who may have the interests of their research area
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Fig. 1. The PM’s predicament. Different policy decisions in the departments
of Finance, Energy, and Trade affect the future course the country is to take.
The three circles in the bottom right of each cell indicate the preferences of
the three ministerial candidates, the environmentalist, the free-trade libertarian,
and populist, respectively. A filled circle indicates approval, an empty circle
disapproval. The PM strives for a joint equilibrium decision that at a majority
of the ministers approve.

prevail over a well-balanced curriculum, diversity of research,
or a well-balanced budget. Or of a film studio producing a
film and has to appoint a director, a screen writer, as well
as a casting manager. In computer science, the designer of a
multi-agent system can be seen to delegate tasks to multiple
largely autonomous agents. In each case some leeway in the
execution of the delegated task has to be granted, and we
face the problem how to best delegate which responsibilities
to which decision makers. In this paper, we formally analyse
this issue, which we will refer to as the principal delegation
problem, so as to investigate its computational properties. We
also study a more cooperative setting, where the agents have to
assign responsibilities among one another in the absence of a
principal. This setting would be more appropriate, for instance,
in the case where a couple of friends who are organising a
party and who have to divide the tasks of finding a venue,
hiring a DJ, and engaging a catering service. Or in the case
where four allied powers occupying an enemy city have to
decide who is to be responsible for the city’s food supply, its
infrastructure, and its public security. This problem we refer
to as the distributed delegation problem.

To illustrate the principal delegation problem we use the
following fictional political scenario as a running example.

Example 1: Consider the case of a Prime Minister of a
not further specified Western European country, who has to
reshuffle their cabinet. There are vacancies in the departments
of Finance, of Trade, and of Energy. In the upcoming months,
in each of these departments there is an important decision
to be made. The minister of Finance will have to decide
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whether or not to raise taxes, the minister of Trade will have
to decide whether to renegotiate a free-trade agreement with
trade-block A or enter a new one with trade-block B, and the
Energy minister will have to commit to a coal-phase out or
pursue other measures. How these decisions will affect the
(environmental) future of the country is tabulated in Fig. 1.

There are three candidates, an environmentalist, a free-
trade libertarian, and a populist, each of whom has different
(but dichotomous) preferences over what the country’s future
should look like. Thus the environmentalist prefers green
(italicised) outcomes, and the free-trade libertarian prefers not
to raise taxes, unless the country ends up in trade-block B
without a coal phase-out. The populist wants to join trade-
block B, unless there is going to be a green economy, in which
case only A is acceptable.

The prime minister is confronted with the task of appoint-
ing ministers for each of the three ministries from among
the three candidates. Different ways of appointing the three
ministers lead to different outcomes, as the candidates will
have to pursue their goals with different strategic capabilities.
Moreover, the prime minister themselves may have their own
objectives, in our case, a stable cabinet in which a majority of
the three ministers supports the political course that results as
a consequence of the ministers’ decisions. How can the prime
minister achieve this?

By making the libertarian Finance minister, assigning the
populist to Energy, and putting the environmentalist in charge
of the Trade department, it can easily be checked that there is
a unique Nash equilibrium, in the sense that it is the only
outcome where none of the ministers would like to revise
their decision unilaterally. This equilibrium would result in
a future based on solar and wind energy. Alternatively, if the
environmentalist, the libertarian, and the populist are respon-
sible for Energy, Trade, and Finance, respectively, another but
also unique equilibrium ensues, resulting in a sophisticated
green economy in block A. In either case, the prime minister’s
objective of majority support in the cabinet is fulfilled as
well. This will not always be the case though. For instance,
if the populist were to decide which trade-block to join, the
libertarian whether to raise taxes, and the environmentalist on
the coal phase-out, then there is no equilibrium, let alone one
that is acceptable to the Prime Minister. /

The formal model we use to frame the delegation problem
is based on Boolean games, which were originally introduced
by [1, 2, 3, 4, 5]. In a Boolean game, the agents are players,
and each player i is assumed to have a goal, represented as a
propositional formula γi over some set Φ of Boolean variables.
Each player i has some subset Φi of the variables Φ, with the
idea being that the variables Φi are under the unique control
of player i. The choices/strategies available to i correspond
to all the possible allocations of truth (>) or falsity (⊥) to
the variables in Φi. A player would ideally like to choose
an allocation for its variables so as to satisfy its goal γi, but
whether i’s goal is in fact satisfied will depend on the choices
made by others; and whether their goal is satisfied will in turn

t t̄ t t̄

a 1, 0, 1 1, 1, 0 1, 0, 0 0, 1, 0

ā 1, 0, 0 0, 1, 1 0, 1, 1 1, 0, 1

c c̄

(a) Allocation αa|t|c

a ā a ā

c 1, 0, 1 1, 0, 0 1, 1, 0 0, 1, 1

c̄ 1, 0, 0 0, 1, 1 0, 1, 0 1, 0, 1

t t̄

(b) Allocation αc|a|t.

t t̄ t t̄

c 1, 0, 1 1, 1, 0 1, 0, 0 0, 1, 1

c̄ 1, 0, 0 0, 1, 0 0, 1, 1 1, 0, 1

a ā

(c) Allocation αc|t|a

c c̄ c c̄

a 1, 0, 1 1, 0, 0 1, 1, 0 0, 1, 0

ā 1, 0, 0 0, 1, 1 0, 1, 1 1, 0, 1

t t̄

(d) Allocation αa|c|t

Fig. 2. Partial game of Example 1 under four different allocations, αa|t|c,
αc|a|t, αt|c|a, and αa|c|t, of departments to ministers. In each game, the
environmentalist chooses rows, the free-trade libertarian columns, and the
populist matrices. Nash equilibria are underlined.

depend on the choice made by i, and others.1

Example 2: Thus, in Example 1, the binary decisions re-
lating to tax levels, the coal phase-out, and the choice of
free-trade agreement can be formalised, respectively, as three
propositional variables t, c, and a, which each can take the
value > (tax increase, coal phase out, free-trade with A)
or ⊥ (no tax increase, no coal phase-out, free-trade with B).
The players are the candidates and each can be uniquely
appointed minister to one or more of the three departments,
or to none. /

Boolean games have two main features that make them well-
suited to studying delegation problems. First, the strategies
of the players are given by subsets of variables over which
they have unique control. This affords a natural set-theoretic
structure. Setting the truth-value of a given propositional
variable could be regarded as a subtask that is delegated to
the player controlling that variable. The subtask of setting
the truth-value of a propositional variable can in principle be
delegated to any of the players and independently of the other
variables assigned to their control. Second, in a Boolean game,
player satisfaction depends in a systematic way on the truth-
values assigned to the propositional variables, but not on the
identity of the players who assigned the truth-value to the
variables. Loosely speaking, different ways in which control
over the variables is distributed over the players may affect the
strategic structure of the game, but not its preference structure.
Also see Fig. 2 for an illustration of this point.

In the variant of Boolean games that we use to model the
delegation problem, we therefore assume that some of the
variables in Φ may be initially unallocated, i.e., not assigned to
any player’s variable set Φi. We have seen how the unallocated
variables are assigned to the players may essentially affect the
Nash equilibria of the resulting game where all variables are
allocated. An external principal (corresponding to the prime

1As one reviewer aptly observed, the principal delegation problem could
also be modelled as a Stackelberg game [6, 7, pp.97–98], where the principal
is the leader and the players the followers. Boolean games, however, allow us
to focus more on the internal structure of the allocations rather than on the
leader-follower hierarchy.
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q q̄ q q̄

p 1, 0, 1 0, 1, 0 0, 1, 0 1, 0, 1

p̄ 0, 0, 0 0, 0, 0 1, 0, 1 0, 1, 0

r r̄
(a) Partial game P under α

p p̄ p p̄

q 1, 0, 1 0, 0, 0 0, 1, 0 1, 0, 1

q̄ 0, 1, 0 0, 0, 0 1, 0, 1 0, 1, 0

r r̄
(b) Partial game P under α′

Fig. 3. Partial game of Example 3 under allocations α and α′. Player 1
chooses rows, player 2 chooses columns, and player 3 chooses matrices.

minister in the example above) must allocate these variables
to players within the game, i.e., the decision about which
unallocated variable is assigned to which player is determined
by the principal. Once the principal has made an allocation,
then the resulting Boolean game is played in the normal
way. Thus, a player i is able to determine values for all the
variables Φi that it is initially allocated, as well as values
for the variables that were allocated to them by the principal.
Note that the principal is not part of the resulting Boolean
game: the values chosen for variables Φ are made by the
players in the game. Thus the only way the principal can
influence a game is in choosing the allocation of originally
unallocated variables to players. The principal will make an
allocation with some overall objective in mind. We represent
the objective by a Boolean formula Υ over the variables Φ.
If the principal is successful in allocating variables to players,
then the result is that players will rationally choose values for
variables so that the objective Υ is satisfied in equilibrium.
Thus the overall problem faced by the principal is as follows:
Can I assign the unallocated variables to players in such a
way that if the players then play the resulting game rationally,
my objective Υ will be satisfied in equilibrium? We refer to
this as the principal delegation problem. This problem was
investigated before in [8] under the name of the delegation
problem.

The observation that the way variables are allocated to the
players essentially affects the Nash equilibria of the games
after allocation lies at the heart of the principal delegation
problem. It need not only be the principal who may have
an interest in how variables are allocated and which Nash
equilibria result as a consequence. This could also hold for
the players to whom tasks are being delegated. To illustrate
this point, consider the following example.

Example 3: Consider the situation wherein three students
are to prepare a common meal and have to decide who is to get
tomatoes (p) or beans (p̄) from the greengrocer’s, cheese (q)
or cream (q̄) form the creamery, and spaghetti (r) or rice (r̄)
from the grocer’s shop. They have varying preferences over
the meals they can make with the ingredients bought.

Fig. 3 depicts the two Boolean games that result in two
different ways, α and α′, in which these tasks are allocated. In
the former, the variables p, q, and r are controlled by player 1,
player 2, and player 3, respectively. In the latter, players 1
and 2 have exchanged control over p and q. Suppose both
player 1’s and player 3’s goal is given by (r → (p ∧ ¬q)) ∧
(¬r → (p ↔ ¬q)), and player 2’s goal by (r → (p ∧ ¬q)) ∧
(¬r → (p↔ q)).

In the game under allocation α, there is one Nash equilib-
rium, which renders true ¬p∧¬q ∧ r and satisfies no player’s
goal. By contrast, the unique equilibrium in the game under α′

satisfies p∧q∧r and as such is strictly better for both players 1
and 3 with respect to the equilibrium under α, whereas player 2
is indifferent between the equilibria that result under α and α′.
Therefore, the three players could have an incentive to form
a coalition and reallocate the variables they control among
one another. We could therefore say that allocation α is
blocked by the players, and therefore fails to be stable in the
game-theoretic sense of the word. Observe that, by the same
reasoning, the coalition consisting of players 1 and 2 could
be said to be similarly incentivised to collude and deviate.
Interestingly, and as the reader may verify, this is not the case
for the coalition with players 1 and 3, the two beneficiaries of
the first reallocation! Finally, given allocation α′, no coalition
can be found that would like to reallocate their variables so
as to guarantee a better Nash equilibrium: any such coalition
would have to involve player 2 and at least one other player,
but the latter would be worse off in any outcome where
player 2 is better off. /

In Section V, we formally address this possibility of coali-
tions of players blocking allocations, i.e., the possibility that
some coalitions cooperate by reallocating allocated variables
among its members, and to do so to their advantage. More
precisely, we consider the following distributed delegation
problem: Can we assign the unallocated variables to players in
such a way that is both stable, i.e., no coalition is incentivised
to reallocate the variables among themselves, and will satisfy
our objective Υ in equilibrium?

In the remainder of this paper, we formalise and study
the principal and distributed delegation problems, focussing
particularly on computational issues. After this introduction,
we present the formal preliminaries in Section II. Section III is
devoted to the fundamental principal delegation problem, both
in its weak and strong forms. In Section IV, we investigate
a variant of the principal delegation problem in which the
principal seeks an allocation that will result in an equilibrium
that maximises some objective function. Section V deals with
the distributed delegation problem. In Section VI, we conclude
by evaluating our results and discussing related work, and
pointing out directions for future research.

II. PRELIMINARY DEFINITIONS

We now introduce the variation of Boolean games that we
use in the present paper, which is directly descended from
previous Boolean game models (compare, e.g., [1, 3, 4, 5]).

a) Propositional Logic: Let {>,⊥} be the set of Boolean
truth-values, with “>” being truth and “⊥” being falsity. Let
Φ = {p, q, . . .} be a finite, fixed, and non-empty vocabulary of
Boolean variables. The set of well-formed formulae of propo-
sitional logic over Φ is then constructed using the conventional
Boolean operators “∧”, “∨”, “→”, “↔”, and “¬”, as well as
the constants “>” and “⊥”. We abuse notation by using >
and ⊥ to denote both the syntactic constants for truth and
falsity respectively, as well as their semantic counterparts. We
will often find it useful to abbreviate clauses such as p∧¬q∧r
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to pq̄r. A valuation is a total function v : Φ → {>,⊥},
assigning truth or falsity to every Boolean variable. We write
v |= ϕ to mean that the propositional formula ϕ is true under,
or satisfied by, valuation v, where the satisfaction relation |=
is defined in the standard way. Let V (Φ) denote the set of
all valuations over Φ, omitting the parameter Φ when clear
from the context. We write |= ϕ to mean that ϕ is valid, i.e.,
that v |= ϕ holds for all valuations v. We denote the fact that
|= ϕ↔ ψ by ϕ ≡ ψ.

b) Quantified Boolean Formulas: As well as proposi-
tional logic, we make use of Quantified Boolean Formulas
(QBFs). QBFs extend propositional logic with quantifiers ∃X
and ∀X , where X ⊆ Φ. A formula ∃Xϕ asserts that there
is some assignment of truth-values to the variables X such
that ϕ is true under this assignment, while a formula ∀Xϕ
asserts that ϕ is true under all assignments of truth-values to
the variables X . QBFs are very powerful: for example the
satisfiability of a propositional formula ϕ over variables Φ
can be expressed by the QBF ∃Φϕ. Quantifiers in QBFs can
be nested: the formula ∃X∀Y ϕ asserts that there is some
assignment of values to X such that no matter how values
for variables Y are assigned, the formula ϕ will be satisfied.

c) Boolean Games and Partial Boolean Games: A partial
(Boolean) game, which is formally given by a tuple

P = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn),

is populated by a set N of n agents, the players of the
game. Each player i is assumed to have a goal, characterised
by a propositional formula γi. Each player i controls a
possibly empty subset Φi of the overall finite set of Boolean
variables Φ = {p, q, . . .}, i.e., i has the unique ability to set
the value of each variable p in Φi to either > or ⊥. We will
require that no variable is controlled by more than one player,
i.e, for distinct players i and j, we assume Φi ∩ Φj = ∅.
Readers who are familiar with Boolean games might also
be expecting to see the requirement that every variable is
controlled by an player, but for the moment, we do not make
this assumption. Thus, in a partial game, it is possible that
some variables in Φ are not allocated to players, i.e., that
Φ1 ∪ · · · ∪ Φn 6= Φ. We let ΦU = Φ \ (Φ1 ∪ · · · ∪ Φn)
denote the set of unallocated variables. Two extremal points
are worth identifying: if ΦU = Φ and if ΦU = ∅. If the former,
Φ1 = · · · = Φn = ∅, and so all variables are unallocated. In
the latter case, there are no unallocated variables and so every
variable is assigned to some player. Then, ΦU = ∅, and we
also refer to the partial game as a Boolean game.

d) Outcomes, Preferences, and Choices: The outcomes
of a (partial) Boolean game over Φ are given by the set
of valuations V (Φ). The preferences of each player i over
the outcomes (valuations) are defined by the formula γi in
a very straightforward way: player i strictly prefers all those
outcomes that satisfy its goal γi over all those that do not,
but is indifferent between outcomes that both satisfy their
goal, and between outcomes that both do not satisfy their

goal.2 It is convenient to define for each player i a utility
function ui : V (Φ) → {0, 1} over outcomes which captures
these preferences such that, for all valuations v in V (Φ),

ui(v) =

{
1 if v |= γi,
0 otherwise.

Given outcomes v1 and v2, we write v1 �i v2 to mean
that ui(v1) ≥ ui(v2), with the corresponding strict �i and
indifferent ∼i subrelations defined in the usual way.

When playing a (partial) Boolean game, a player i will aim
to choose an assignment of values for the variables Φi under
their control so as to satisfy their goal γi. However, γi may
contain variables controlled by player distinct from i, who will
also be trying to get their goals satisfied; and their goals in
turn may be dependent on the variables Φi.

Formally, a choice for an player i is a function vi : Φi →
{>,⊥}, i.e., an allocation of truth or falsity to all the variables
under i’s control. Let Vi denote the set of choices for player i.
If an player i controls no Boolean variables at all, i.e., if Φi =
∅, we assume that i has only one action, which we denote
by ∅. A strategy profile is a tuple ~v = (v1, . . . , vn) in V1 ×
· · · × Vn consisting of exactly one choice for one player. The
strategy profile (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn) we also denote

by (~v−i, v
′
i).

There is a natural correspondence between outcomes and
strategy profiles, and we often treat outcomes for Boolean
games as valuations, for example writing (v1, . . . , vn) |= ϕ to
mean that the valuation defined by the outcome (v1, . . . , vn)
satisfies formula ϕ. Of course, for partial Boolean games,
where ΦU 6= ∅, this correspondence between outcomes and
strategy profiles does not hold in general.

e) Allocations: Partial games can be made into fully
fledged Boolean games by allocating any unallocated Boolean
variables to the players. Formally, an allocation is a total
function α : ΦU → N , with the intended interpretation that,
for p ∈ ΦU , under allocation α, variable p is allocated to
player α(p). With a small abuse of notation, we let αi denote
the set of variables allocated to player i under allocation α,
i.e., αi = {p ∈ ΦU : α(p) = i}. Let A (P ) denote the set of
all allocations over partial game P . Note that A (P ) will have
cardinality |N ||ΦU |, which is exponential in |ΦU |.

If ΦU = ∅, we will assume that there is a single
“empty” allocation possible. Consequently, the set of al-
locations is non-empty even for Boolean games. A par-
tial game P = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn) together
with an allocation α defines a Boolean game G(P, α) =
(N,Φ,Φ′1, . . . ,Φ

′
n, γ1, . . . , γn) where Φ′i = Φi ∪ αi for all

players i. We also say that Boolean game G(P, α) extends
partial game P via α. We let G (P ) denote the set of Boolean
games that may be obtained from partial game P through some
allocation, i.e., G (P ) = {G(P, α) : α ∈ A (P )}.

2We thus assume that players’ preferences are dichotomous, which is
traditional in the literature on Boolean games. Several richer models of player
preferences have been proposed as well (e.g., [9, 10, 11]). We expect that
adopting these models would only slightly affect the computational results
presented in this paper.
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f) Nash Equilibrium: The well-known notion of (pure)
Nash equilibrium (see, e.g., [12]) is readily defined for
Boolean games. For Boolean games, we say a strategy profile
~v = (v1, . . . , vn) is a Nash equilibrium if there is no player i
and no strategy v′i ∈ Vi for i such that (~v−i, v

′
i) �i (~v−i, vi).

We denote the Nash equilibrium outcomes of a Boolean
game G by N (G). As we are dealing with pure, i.e., non-
randomised, strategies, it can very well be that a (partial)
Boolean game has no equilibria, that is, it could be that
N (G) = ∅ for a given game G. If ~v = (v1, . . . , vn) is a
Nash equilibrium and v the corresponding valuation, then we
also say that v is sustained by a Nash equilibrium, or, with
some abuse of terminology, also that the valuation v is a Nash
equilibrium. Moreover, let S (P ) denote the set of allocations
over partial game P such that under these allocations, the
resulting game has a Nash equilibrium, i.e.,

S (P ) = {α ∈ A (P ) : N (G(P, α)) 6= ∅}.

As we argued above, the natural correspondence between
strategy profiles and valuations does not hold for partial
Boolean games. With preferences being defined over valua-
tions, this renders the definition of a Nash equilibria in partial
games as a property of strategy profiles problematic. Never-
theless, we can still define an outcome or valuation v : Φ →
{>,⊥} to be sustained by a Nash equilibrium in a partial
game P if there is no player i and no choice v′i ∈ Vi with
(v−i, v

′
i) �i v, where (v−i, v

′
i) is the valuation v′′ such that,

for all p ∈ Φ,

v′′(p) =

{
v′i(p) if p ∈ Φi,
v(p) otherwise.

In an effort to avoid convoluted formulations, we also say,
with a further abuse of terminology, that in such a case the
valuation v itself is a Nash equilibrium of the partial game P .
We now have the following simple but useful proposition,
which intuitively says that allocating variables to players
never results in new equilibria emerging. Rather, the outcomes
sustained by an equilibrium in a Boolean game are a subset
of the outcomes sustained by a Nash equilibrium of any
underlying partial game.

Proposition 1: Let P = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn) be
a partial Boolean game, and α : ΦU → N an allocation. Then,
every outcome that is sustained by a Nash equilibrium of
G(P, α) is sustained by a Nash equilibrium of P .

Proof: Let v be an outcome and assume for contraposition
that v is not sustained by a Nash equilibrium. Then, there is
some player i and strategy v′i such that (v−i, v

′
i) �i v. In that

case, v′i ⊆ Φi and hence also v′i ⊆ Φi ∪ αi. But then we may
also conclude that v is not sustained by a Nash equilibrium in
G(P, α) either.

g) Computational Complexity: Although largely self-
contained, our technical presentation is necessarily terse, and
readers may find it useful to have some acquaintance with
the theory of computational complexity (see, e.g., [13, 14]).
Throughout the paper, we assume familiarity with the classes
P, NP, coNP, and, more generally, the polynomial hierarchy,

i.e., the classes ∆p
0 = Σp

0 = Πp
0 = P and ∆p

k + 1 = PΣp
k ,

Σp
k + 1 = NPΣp

k , and Πp
k + 1 = coNPΠp

k , for k ≥ 0.

III. THE PRINCIPAL DELEGATION PROBLEM

We now come to the first main problem we con-
sider in this paper. We start with a partial game P =
(N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn), with associated unallocated
variable set ΦU . The set ΦU will represent the decisions that
are to be delegated to players in the game. The allocation
of ΦU to players is done by a principal, who has complete
freedom to allocate the variables ΦU to the players in N .3

Once an allocation is made, the partial game becomes a
Boolean game, and the players will then make rational choices,
resulting in some outcome. Recall that the way in which
the variables can be allocated to the players may affect the
strategic structure of the resulting Boolean game, in particular
which outcomes are sustained by Nash equilibria.

Now, we assume that the principal will in fact make the
allocation with a particular objective in mind, which we
represent by a Boolean formula Υ. The idea is that the
principal will try to choose an allocation so that, if the players
then play the resulting Boolean game rationally, they will
choose an outcome satisfying Υ.

Following [5]—who study the implementation of a princi-
pals’ goal in Boolean games with taxes rather than through
delegation—we will study two variations of the delegation
problem, which we refer to as weak and strong. In the weak
variation, the principal’s objective Υ is required to be satisfied
in some Nash equilibrium of the resulting Boolean game, while
in the strong variation, Υ is required to be satisfied in all Nash
equilibria.

A. Weak Principal Delegation

Formally, the WEAK PRINCIPAL DELEGATION problem is
defined as follows:

WEAK PRINCIPAL DELEGATION

Given: A partial game P with ΦU as the set of unal-
located variables, and an objective Υ in L(Φ)

Problem: Does there exist an allocation α : ΦU → N
such that Υ is satisfied in at least one Nash
equilibrium of the Boolean game G(P, α)?

We say this problem is “weak” because we only require that Υ
is satisfied in one Nash equilibrium of G(P, α). We will
consider stronger versions below. Notice that WEAK DELE-
GATION is equivalent to checking the following condition:

∃G ∈ G (P ) : ∃~v ∈ N (G) : ~v |= Υ.

The outermost existential quantifier emphasises that the task
of the principal can be understood as choosing a game from
the space of possible games G (P ).

If (P,Υ) is a positive instance of the WEAK DELEGATION
problem, then we say that Υ can be weakly implemented
in P . Again following [5], we refer to weakly implementing

3 For both the players and the principal, we assume the same epistemic
preconditions that hold for Nash equilibrium. In particular, we assume
principal and the players have common knowledge over all players’s goals.
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alloc. weak strong alloc. weak strong alloc. weak strong

αtca|| + − αa|tc| + + α|c|ta + +

α|tca| + − α|tc|a + + αt||ca + +

α||tca + + αc|ta| + + α|t|ca + +

αtc|a| + − α|ta|c + − αt|c|a + +

αtc||a + + αt|ca| + + αt|a|c + +

αta|c| + − α|ca|t + − αc|t|a − −
αta||c + − αa||tc + + αc|a|t + +

αca|t| + + α|a|tc + + αa|t|c + +

αca||t + − αc||ta + + αa|c|t + −

TABLE I
ALLOCATIONS IN EXAMPLE 1 TOGETHER WITH THEIR WEAK AND

STRONG IMPLEMENTABILITY.

a tautology—i.e., implementing Υ where Υ ≡ >—as sta-
bilisation. The rationale for this terminology is that weakly
implementing a tautology will result in a game that has at
least one Nash equilibrium. It is easy to see that > can be
weakly implemented in P if and only if there is at least one
allocation α such that G(P, α) allows for a Nash equilibrium.
To illustrate weak delegation, we recall Example 1.

Example 4: The prime minister’s predicament in the In-
troduction can be modelled as a partial Boolean game P =
({1, 2, 3},ΦU ,Φ1,Φ2,Φ3, γ1, γ2, γ3) with the environmental-
ist, the libertarian, and the populist being players 1, 2, and 3,
respectively, ΦU = {t, c, a}, Φ1 = Φ2 = Φ3 = ∅, and

γ1 = tca ∨ (a↔ (t↔ c̄)) γ2 = t↔ (ā ∧ c̄) γ3 = ā↔ (t ∧ c).

There are 33 = 27 allocations in total, each of which we
denote by αX|Y |Z where X , Y , and Z are understood as the
variables assigned to 1, 2, and 3, respectively. Thus, e.g., for
αa||tc we have that αa||tc1 = {a}, αa||tc2 = ∅, and α

a||tc
3 =

{t, c}. The four Boolean games depicted in Fig. 2 are obtained
by combining P with the allocations αa|t|c, αc|a|t, αt|c|a, and
αa|c|t.

The prime minister’s (principal’s) objective—majority sup-
port for the energy policy to be followed—is given by
ΥPM = (c ↔ a) ∨ t̄cā. Inspecting Fig. 2, we thus find that
assignments αa|t|c, αc|a|t, and αa|c|t all weakly implement the
prime minister’s objective, be it that the witnessing equilibrium
for αa|t|c is a future with solar and wind energy, whereas
for αc|a|t and αa|c|t this is a sophisticated green economy
in trade-block A. Also observe that αa|c|t also allows for
an equilibrium that does not meet the PM’s objective. By
contrast, αc|t|a does not weakly implement ΥPM, as it does not
allow for any equilibria at all. Table I tabulates all allocations
in which ΥPM can be weakly implemented. /

Since we have a domain with Boolean formulae, and there
are clearly exponentially many allocations of variables to
players, it comes as no surprise that the WEAK DELEGATION
problem is computationally hard. However, the good news
is that it is no harder than the problem of determining the
existence of pure strategy Nash equilibria in Boolean games,
as we now show.

Theorem 2: WEAK PRINCIPAL DELEGATION is Σp
2-complete.

Proof: Allocations α are clearly small with respect to the

size of the partial game, and verifying that outcomes are Nash
equilibria in Boolean games is in coNP (cf.,[3]). Recall that
Σp

2 = NPcoNP. It then follows that the WEAK DELEGATION
problem is in Σp

2 : guess an allocation α and an outcome ~v,
and verify both that ~v |= Υ and that ~v is a Nash equilibrium
in Boolean game G(P, α).

For hardness, we reduce the problem of checking whether a
Boolean game has any pure strategy Nash equilibria, which is
known to be Σp

2-complete (see, [3]). Given a Boolean game G
that we wish to check for the existence pure strategy Nash
equilibria simply define the corresponding partial game P to
be game G—so that ΦU = ∅—with objective Υ = >. Notice
that the only possible allocation is the empty allocation, which
defines the identity under the function G(· · · ). Now consider
the WEAK DELEGATION problem:

∃α ∈ A (P ) : ∃~v ∈ N (G(P, α)) : ~v |= Υ.

Since Υ = > and the only allocation possible is the empty
allocation, this reduces to: ∃~v ∈ N (G(P, α)) : ~v |= >. Since
the empty allocation is the identity under G(· · · ), and ~v |= >
for all ~v, this further reduces to ∃~v ∈ N (G), which is exactly
the problem of checking for the existence of pure strategy
Nash equilibria in Boolean games.

B. Strong Principal Delegation

The strong principal delegation problem differs from the
weak version in that it requires the objective Υ to be satisfied
in all Nash equilibria of the Boolean game that results from
an allocation. Formally, we define STRONG DELEGATION as
follows:

STRONG PRINCIPAL DELEGATION

Given: A partial game P with ΦU as the set of unal-
located variables, and an objective Υ in L(Φ)

Problem: Does there exist an allocation α such that both:
(i) G(P, α) has at least one Nash equilibrium,

(ii) all Nash equilibria of G(P, α) satisfy Υ?

To see how the strong delegation problem differs from the
weak delegation problem, we consider again the partial game
of Example 1 from the Introduction.

Example 5: In Table I we summarise which allocations
strongly implement the PM’s objective ΥPM, and which ones
do not. Strong implementability requires the existence of a
Nash equilibrium after the principal’s allocating the variables
(cf., condition (ii) in STRONG PRINCIPAL DELEGATION). This
is why ΥPM is not implemented by αc|t|a, the only allocation
that does not allow any equilibria. By contrast, the reason
why ΥPM is not strongly implemented by αa|c|t either is that
the existence of the equilibrium ac̄t (low emission plants),
which is supported by one minister only. Interestingly, there
is no allocation for this partial game under which all equilibria
only have minority support even though equilibria exist. /

Before appraising the computational complexity of strong
principal delegation, it is useful to introduce two related
auxiliary decision problems, OBLIVIOUS PARTIAL GAME and
STRONG PRINCIPAL DELEGATION-Ø. Before we do so, we
first recall the following result from [3], where a strategy vi for
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player i is a understood to be a winning strategy, if the (partial)
valuation defined by vi is completely under i’s control and,
irrespective of the choices made by other player or players, vi
ensures that i’s goal is satisfied.

Proposition 3 (Bonzon et al., [3]): Consider a two-player
zero-sum4 Boolean game G = ({1, 2},Φ,Φ1,Φ2, γ1, γ2).
Then, ~v = (v1, v2) is a pure strategy Nash equilibrium for G
if and only if v1 is a winning strategy for player 1 or v2 is a
winning strategy for player 2.

Now we introduce oblivious partial games as an auxiliary
concept as follows. Given a principal’s objective Υ, we say
that partial Boolean game P with unallocated variables ΦU is
oblivious, if for every allocation α, the resulting Boolean game
G(P, α) has at least one Nash equilibrium satisfying Υ, i.e.,
if for every α ∈ A (P ), there is at least one ~v ∈ N (G(P, α))
with ~v |= Υ. Informally, oblivious games have the property
that, whichever delegation of decisions to players is made,
there will be at least one acceptable valuation available, i.e.,
which is both an equilibrium and satisfies Υ.

We now consider the following decision problem OBLIVI-
OUS PARTIAL GAME.

OBLIVIOUS PARTIAL GAME

Given: A partial game P with ΦU as the set of unal-
located variables, and an objective Υ in L(Φ)

Problem: Is P an oblivious partial game given Υ?

We find that OBLIVIOUS PARTIAL GAME is Πp
3-complete.

Proposition 4: OBLIVIOUS PARTIAL GAME is Πp
3-

complete. The problem remains Πp
3-hard even when restricted

to three-player games.
Proof: First observe that an instance (P,Υ) of OBLIVI-

OUS PARTIAL GAME is accepted if and only if

∀ α ∈ A (P ) ∃ ~v ∈ V (Φ) such that ~v ∈ N (G(P, α)) and ~v |= Υ

This computation required to check this condition can easily
be carried out within Πp

3 .
For hardness we use a variant of the well-known quantified

Boolean formula validity problem QBF3,∀, where instances
of the form ψ(X,Y, Z) are accepted if for all assignments
x : X → {>,⊥} of values to X , there is an assignment
y : Y → {>,⊥} of values to Y such that for every assignment
z : Z → {>,⊥} of values to Z we have (x, y, z) |= ψ.

The variation we use, and which we call HALF-QBF3,∀,
restricts attention to valuations x : X → {>,⊥} that set
exactly half of the variables in X to >, i.e., an instance
ψ(X,Y, Z) of HALF-QBF3,∀ is accepted if and only if for all
x : X → {>,⊥} with |{p ∈ X : x(p) = >}| = |X|/2, there
is a y : Y → {>,⊥} such that for all z : Z → {>,⊥}:

(x, y, z) |= ψ(X,Y, Z).

We can straightforwardly show that, modified thus, the prob-
lem remains Πp

3-hard, for instance, by using the “padding
argument” methods in [15] (in particular, Lemma 3.7).

Given an instance ψ(X,Y, Z) of HALF-QBF3,∀, we con-
struct the three-player partial Boolean game Pψ , with play-

4That is to say, for every valuation v, exactly one of γ1 or γ2 is satisfied.

ers 1, 2, and 3, and

Φ1 = Y ∪ {r} Φ2 = Z ∪ {s} Φ3 = ∅ ΦU = X .

Furthermore, define the players’ preferences as follows:

γ1 = (EQ(X)→ ψ) ∨ (r ↔ s)

γ2 = (EQ(X) ∧ ¬ψ ∧ (r ↔ ¬s)) ∨ ¬MAJ (X)

γ3 = EQ(X)

Here r and s are fresh variables. Moreover, EQ(X) denotes
the propositional function that evaluates to true if and only
if the assignment sets exactly half of the variabels in X
to >. Similarly, MAJ (X) is the propositional function that
evaluates to true if and only if the assignment sets at least
half of X to >. Note that the propositional functions EQ(X)
and MAJ (X) can be encoded in polynomial size formulae
(see, e.g., [16]). Accordingly, the construction of Gϕ can be
effected in polynomial time. Finally, set Υ = >.

As clearly every valuation thus satisfies Υ, it now suffices to
show that ψ(X,Y, Z) is an accepting instance of HALF-QBF3,∀
if and only if for every allocation α : X → {1, 2}, the game
G(Pψ, α) has at least one Nash equilibrium.

First assume that ψ(X,Y, Z) is an accepting instance of
HALF-QBF3,∀ and consider an arbitrary allocation of α : ΦU →
{1, 2, 3} of X . We show that there is a Nash equilibrium
in G(Pψ, α). We distinguish two cases: (i) |α1∪α3| < |X|/2,
and (ii) |α1 ∪ α3| ≥ |X|/2.

If (i), it follows that |α2| > |X|/2. Let ~v∗ = (v∗1 , v
∗
2 , v
∗
3) be

any strategy profile such that v∗2(p) = ⊥ for all p ∈ Φ2 ∪ α2,
and v∗1(r) = ⊥. Then, (v∗1 , v

∗
2 , v
∗
3) |= ¬MAJ and (v∗1 , v

∗
2) |=

r ↔ s. Hence, (v∗1 , v
∗
2 , v
∗
3) satisfies both γ1 and γ2, but not γ3.

Observe, however, that player 3 cannot get their goal satisfied
by playing any other strategy, and we may conclude that ~v∗

is a Nash equilibrium of G(Pψ, α).
Now assume (ii). Then there is a X ′ ⊆ α1 ∪ α3 such that

|X ′| = |X|/2. Let x∗ : X → {>,⊥} be the partial valuation
such that x∗(p) = > if and only if p ∈ X ′. Having assumed
that ψ(X,Y, Z) is accepted as an instance of HALF-QBF3,∀,
there is some y∗ : Y → {>,⊥} with (x∗, y∗, z) |= ψ for all
z : Z → {>,⊥}. Define the strategy profile ~v∗ = (v∗1 , v

∗
2 , v
∗
3)

such that, for all p ∈ Φ1 ∪ α1 and q ∈ α3,

v∗1(p) =

{
> if p ∈ X ′ and x∗(p) = >, or p ∈ Y and y∗(p) = >,
⊥ otherwise

v∗3(q) =

{
> if q ∈ X ′ and x∗(q) = >,
⊥ otherwise.

Let furthermore v∗(p) = ⊥ for all p ∈ Φ2 ∪ α2. Observe that
thus both ~v∗ |= EQ(X) and ~v∗ |= ψ. Accordingly players 1
and 3 have their respective goals γ1 and γ3 achieved at ~v∗, and
have no incentive to deviate. Finally, to see that player 2 does
not have such an incentive either, and thus that ~v∗ is a Nash
equilibrium, consider an arbitrary strategy v′2 for player 2.
If there is some p ∈ α2 ∩ X such that v′2(p) 6= v∗2(p),
then v′(p) = >. Hence neither (v∗1 , v

′
2, v
∗
3) |= EQ(X) nor

(v∗1 , v
′
2, v
∗
3) |= ¬MAJ (X). Now consider the case where

v′2(p) = v∗2(p) for all p ∈ α2 ∩ X and v′2(p) 6= v∗2(p) for
some p ∈ Y ∪ {s}. Because ψ(X,Y, Z) is accepted as an
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instance of HALF-QBF3,∀, it then holds that (v∗1 , v
′
2, v
∗
3) |= ψ.

In either case we may conclude that (v∗1 , v
′
2, v
∗
3) 6|= γ2 and that

player 2 does not want to deviate.
For the opposite direction, assume for contraposition that

ψ(X,Y, Z) is not accepted as an instance of HALF-QBF3,∀.
Then, there is some x : X → {>,⊥} with x(p) = > for
exactly half of the variables p ∈ X such that for all y : Y →
{>,⊥} we can find a z : Z → {>,⊥} such that (x, y, z) 6|= ψ.
Let X> = {p ∈ X : x(p) = >} and X⊥ = {p ∈ X :
x(p) = ⊥}. Now consider the allocation α that assigns control
over all variables in X to player 3, i.e., α1 = α2 = ∅ and
α3 = X . We show that the Boolean game G(Pψ, α) does not
admit a Nash equilibrium. To this end, consider an arbitrary
strategy profile ~v = (v1, v2, v3). First observe that, if ~v(p) |=
EQ(X), it is not the case that v3(p) = > for exactly half
of the variables in X . Hence, player 3 would deviate to such
a strategy to get their goal achieved, and ~v is not a Nash
equilibrium.

For the remainder of the proof we may therefore assume
that ~v |= EQ(X). Now suppose furthermore that ~v |= ψ and,
without loss of generality, that ~v |= r. Having assumed that
ψ(X,Y, Z) is not accepted as an instance of HALF-QBF3,∀,
it follows that there is a strategy v′2 for player 2 such that
(v1, v

′
2, v3) |= ¬ψ. We may also stipulate that v′2(s) = ⊥, and

hence (v1, v
′
2, v3) |= (r ↔ ¬s). Accordingly, (v1, v

′
2, v3) |= γ2

and again it follows that ~v is not a Nash equilibrium.
Finally assume that ~v |= EQ(X)∧¬ψ. Then, if ~v |= r ↔ s,

it can easily be seen that player 2 would like to deviate by
setting s to the opposite value of r under ~v. If, on the other
hand, ~v 6|= r ↔ s, player 1 would like to deviate by matching
the value of r to that of s under ~v. In either case, ~v is not a
Nash equilibrium, which concludes the proof.

One consequence of Proposition 4 is that we can now easily
establish Σp

3-hardness for the variant of the strong delegation
problem where we allow N (P, α) to be empty. This problem
we refer to as STRONG PRINCIPAL DELEGATION-Ø and is
formally defined as follows.

STRONG PRINCIPAL DELEGATION-Ø

Given: A partial game P with ΦU as the set of unal-
located variables, and an objective Υ in L(Φ)

Problem: Does there exist an allocation α : ΦU → N
such that Υ is satisfied in all Nash equilibria
of the Boolean game G(P, α)?

We now have the following intermediate result.
Proposition 5: STRONG PRINCIPAL DELEGATION-Ø is Σp

3-
complete. The problem remains Σp

3-hard even when restricted
to three-player games.

Proof: Let P be a partial game and Υ a principal’s
objective. Then, by the laws of first-order logic, we have that
there is an allocation α ∈ A (P ) such that ~v |= Υ for all Nash
equilibria ~v of G(P, α) if and only if it is not the case that
for all allocations α ∈ A (P ) there is a Nash equilibrium ~v
of G(P, α) with ~v |= ¬Υ. Hence, the function f that maps
every pair (P,Υ) to (P,¬Υ) serves as a many-one reduction
from STRONG PRINCIPAL DELEGATION-Ø to the complement
of OBLIVIOUS PARTIAL GAME. Observing that for Υ′ = ¬Υ
we have ¬Υ′ = ¬¬Υ ≡ Υ, we find that it serves equally well

as a many-one reduction from the complement of OBLIVIOUS
PARTIAL GAME to STRONG PRINCIPAL DELEGATION-Ø. As
by Proposition 4 we know that OBLIVIOUS PARTIAL GAME
is Πp

3-complete, we may conclude that STRONG PRINCIPAL
DELEGATION-Ø is Σp

3-complete as well.
Although STRONG PRINCIPAL DELEGATION-Ø admits prob-

lem instances which are accepted in the case that N (P, α) =
∅, whereas the form of STRONG PRINCIPAL IMPLEMENTA-
TION does not allow this, it is not difficult to show that
the additional constraint cannot make the strong delegation
problem increase in complexity. Specifically, we are now in a
position to prove the main result of this section.

Theorem 6: STRONG PRINCIPAL IMPLEMENTATION is Σp
3-

complete. The problem remains Σp
3-hard even for three-player

games.
Proof: We recall that instances of STRONG PRINCIPAL

IMPLEMENTATION are given by pairs (P,Υ) with P =
(N,Φ.Φ1, . . . ,Φn, γ1, . . . , γn) a partial Boolean game and Υ
a propositional function. Let and ΦU ⊆ Φ the set of unal-
located decisions. Then, (P,Υ) is accepted as an instance of
STRONG PRINCIPAL IMPLEMENTATION if and only if

∃α(∀v(v ∈ N (P, α)→ v |= Υ) ∧N (P, α) 6= ∅),

which is equivalent to,

∃α(∀v(v 6∈ N (P, α) ∨ v |= Υ) ∧N (P, α) 6= ∅).

In order for N (P, α) to be non-empty, it must contain at least
one valuation w. Hence we can rewrite the expression as,

∃(α,w)(∀v(v 6∈ N (P, α) ∨ v |= Υ) ∧ (w ∈ N (P, α)))

To keep notation brief, we express the condition above as
∃(α,w)∀v χ1(α,w, v). Similarly the condition v 6∈ N (P, α)
is witnessed by an player i together with a partial valuation ui
of decisions in their control, i.e., v 6∈ N (P, α) is captured by,

∃(u, i)(v 6|= γk ∧ (v−i, ui) |= γk ∧ u ∈ {>,⊥}Φi∪αi),

which we subsequently express as ∃(u, k)χ2(α, v, u, i).
Finally that w ∈ N (P, α) requires that no j has a beneficial

deviation in the event of w 6|= γj by controlling the values of
Φi ∪ αi. This leads to w ∈ N (P, α) being of the form

∀(s1, s2, . . . , sn)

n∧
j=1

(w |= γj ∨ sj 6∈ {>,⊥}Φi∪αj ∨ (w−j , sj) |= γj)

which will be denoted as ∀~s χ3(~s, w, α). Combining these
expressions, it is immediate that (P,Υ) will define a positive
instance of PRINCIPAL STRONG DELEGATION if and only if

∃(α,w)∀(v,~s)∃(u, i)(χ1(α,w, v)∧χ2(α, v, u, i)∧χ3(~s, w, α))

It remains to note that the individual tests χ1, χ2 and χ3 can
be performed in time polynomial in the size of the representing
formulae.

For Σp
3-hardness, we reduce HALF-QBF3,∀ to the com-

plement of STRONG PRINCIPAL DELEGATION using a con-
struction that varies on the one presented in the proof for
hardness of OBLIVIOUS PARTIAL GAME in Proposition 4.
Given an instance ψ(X,Y, Z) of HALF-QBF3,∀, we thus con-
struct a partial game P ′ψ and define an objective Υ′ such
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that ψ(X,Y, Z) is an accepting instance of HALF-QBF3,∀ if
and only if for all allocations α ∈ A (P ′ψ), either there is
some ~v ∈ N (G(P ′ψ, α)) with ~v 6|= Υ′ or N (G(P ′ψ, α)) = ∅.

Thus let ψ(X,Y, Z) be an instance of HALF-QBF3,∀. Then,
we construct the five-player partial Boolean game P ′ψ , with
players 1, 2, and 3, such that

Φ1 = Y ∪ {r} Φ2 = Z ∪ {s} Φ3 = {t} ΦU = X .

Furthermore, define the players’ preferences as follows:

γ′1 = ((EQ(X)→ ψ) ∨ (r ↔ s)) ∧ ¬t
γ′2 = ((EQ(X) ∧ ¬ψ ∧ (r ↔ ¬s)) ∨ ¬MAJ (X)) ∧ ¬t
γ′3 = EQ(X)

Here r, s, and t are fresh variables, and MAJ (X) and EQ(X)
are as before. Let, moreover, Υ′ = t. Again, this construction
can be effected in polynomial time.

Now assuming that ψ(X,Y, Z) is an accepted instance of
HALF-QBF3,∀, we can reason along analogous lines as in the
proof of Proposition 4, that a Nash equilibrium ~v of G(P ′ψ)
with ~v 6|= t is guaranteed to exist.

For the opposite direction, assume that ψ(X,Y, Z) is not
an accepted instance of HALF-QBF3,∀. By considering the
allocation α ∈ A (P ′ψ) with α3 = X , we find, in an analogous
way as in the proof of Proposition 4, that G(P ′ψ, α) has no
Nash equilibrium ~v with ~v 6|= t. Now, conclude the proof
by noting that any strategy profile ~w = (w1, w2, w3) such that
w3(t) = > and w3(p) = > for exactly half of the propositional
variables p ∈ X , will be a Nash equilibrium in G(P ′ψ, α), be
it one with ~w |= t. To see this, observe that in ~w, player 3 has
their goal fulfilled. This is not the case for players 1 and 2,
but no matter how they deviate, t will remain true and falsify
their respective goals γ1 and γ2. Hence, ~w ∈ N (G(P ′ψ), α),
and a fortiori N (G(P ′ψ, α)) 6= ∅, as desired.

IV. DELEGATION AS OPTIMISATION

So far, we have assumed that the principal is motivated
to choose an allocation so that an objective Υ is satisfied in
equilibrium; the idea being that the objective represents what
the principal wants to achieve through delegation. We now
generalise this approach, by assuming that in delegating deci-
sions, the principal is attempting to maximise some objective
function of the form:

f : V (Φ)→ R+,

where V (Φ) is the set of valuations over Φ: Thus, an ob-
jective function assigns a positive real number f(v) to every
valuation v in V (Φ). Recalling that a strategy profile ~v for a
Boolean game corresponds to a valuation in V (Φ), we will
also write f(~v) to mean the value through f of the valuation
corresponding to ~v. Notice that our original formulation of
delegation with respect to objective formulae Υ is a special
case of the setting we are now considering, where the function
fΥ is defined for an objective formula Υ ∈ L as follows:

fΥ(~v) =

{
1 if ~v |= Υ

0 otherwise.

The objective function f gives the value to the principal of
every outcome ~v. But how can we use f to obtain the value
of an allocation? An allocation α for a partial game P will
define a Boolean game G(P, α), and this game will in turn
have an associated set of Nash equilibria N (G(P, α)). Our
basic idea is to define the value of an allocation α for a partial
game P through an objective function f to be the value of the
worst Nash equilibrium in N (G(P, α)) (cf., [17]). However,
there is a catch: what happens if N (G(P, α)) = ∅? In this
case, we say the value of α through f is undefined. Formally,
given a partial game P , allocation α ∈ A (P ), and objective
function f : V (Φ)→ R+, we denote the value of α through f
as f̂(P, α):

f̂(P, α) =

{
min{f(~v) : ~v ∈ N (G(P, α))} if N (G(P, α)) 6= ∅,
undefined otherwise.

Now, given a partial game P and an objective function f
as above, the optimal allocation will intuitively be the one
that maximises the value of f̂ . Here, however, we must deal
with the situation where there is no allocation that leads
to a game with Nash equilibria. Recalling that S (P ) =
{α ∈ A (P ) : N (G(P, α)) 6= ∅}, we are thus interested in
allocations that maximise the function f̂(·, ·) on S (P ), i.e.,
allocations α such that

α ∈ arg max
α∈S (P )

f̂(P, α).

To fix ideas and notations, we have the following example.
Example 6: We work with the partial game introduced in

Example 1. Consider the objective function f defined such
that f(v) = |{x ∈ Φ: v |= x}|, i.e., f counts the number
of variables assigned > in a valuation. Intuitively, f could
be seen as measuring the level of effort needed to get the
government’s policy through parliament. Hence,

f(t̄c̄ā) = 0 f(t̄c̄a) = f(t̄cā) = 1 f1(t̄ca) = 2

f(tc̄ā) = 1 f(tc̄a) = f(tcā) = 2 f1(tca) = 3

Inspecting Fig. 2, we find that f̂(P, αa|t|c) = 2 because at̄c is
the unique Nash equilibrium in G(P, αa|t|c) and f(at̄c) = 2.
By similar reasoning, we find that f̂(P, αc|a|t) = 3. As f
assumes a maximal value of 3, it thus follows that αc|a|t

is optimal with respect to f . Observe that f̂(P, αt|c|a) is
undefined as there are no equilibria in G(P, αc|t|a). /

Next, we want to consider the problem of computing
arg maxα∈S (P ) f̂(P, α) . A key difficulty here is with respect
to the issue of representing the objective function f . Rep-
resenting the function f in a problem instance by explicitly
listing all input/output pairs (~v, f(~v)) will not be practicable,
as there will be 2|Φ| such pairs in total. We need a compact
representation for f , and for the purposes of this paper, we use
a well-known scheme based on weighted Boolean formulae
(see, e.g., [9]).

Formally, we will say a feature is a pair (ϕ, x), where ϕ ∈ L
is a propositional formula, and x ∈ R+ is a positive real
number. A feature set, F , is simply a finite set of features, i.e.,
F = {(ϕ1, x1), . . . , (ϕk, xk)}. Every feature set F induces
an objective function fF , as follows:
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fF (~v) =
∑
{xi : (ϕi, xi) ∈ F and ~v |= ϕi}

The feature set corresponding to our original objective for-
mula Υ would be a singleton set {(Υ, 1)}. Now, standard
arguments from Boolean function theory tell us that (i) the
feature set representation is complete, in the sense that for
every objective function f there exists a feature set F such
that f = fF , and (ii) the feature set representation is more
compact than the explicit representation for many objective
functions f ; however (iii) there are objective functions for
which the smallest equivalent feature set will be broadly
of the same size, i.e., some objective functions will require
exponentially many features.

We first consider the following decision variant of the
optimal delegation problem.

OPTIMAL DELEGATION

Given: A partial game P , feature set F , and k ∈ R+

Problem: If the term maxα∈S (P ) f̂F (P, α) is defined, is
it the case that maxα∈S (P ) f̂F (P, α) ≥ k?

It is straightforward to establish the following:
Proposition 7: OPTIMAL DELEGATION is Σp

2-complete.
Proof sketch: Let partial game P , feature set F , and

allocation α be given. Then, the problem of determining
whether f̂F (P, α) is defined is Σp

2-complete. To see this,
merely observe that this problem is directly equivalent to
determining whether the game G(p, α) has a Nash equi-
librium. At this point, notice that the problem of decid-
ing whether maxα∈S (P ) f̂F (P, α) is equivalent to checking
whether S (P ) 6= ∅, which is Σp

2-complete by the proof of
Theorem 2. The claim then follows immediately from these
two observations.

With this result in place, we are can also address the
computational complexity of the following function problem.

OPTIMAL DELEGATION*
Given: A partial game P and feature set F

Provide: An allocation α that maximises the function
f̂F (P, ·), i.e., α ∈ arg maxα∈S (P ) f̂F (P, α),
if S (P ) 6= ∅, and ∅ otherwise.

We can now state the main result of this section.
Theorem 8: OPTIMAL DELEGATION* is in FPΣp

2 .
Proof: Check whether α∗(P, fF ) is defined, and if not

return 0. Otherwise, define a value µ as follows:

µ =
∑

(ϕi,xi)∈F

xi

That is, µ is the largest value that an optimal allocation could
possibly take. We thus have:

0 ≤ max
α∈S (P )

f̂(P, α) ≤ µ.

We can then use binary search to find the value f̂F (P, α∗)
of an optimal allocation α∗ maximising f̂F , by invok-
ing a Σp

2-oracle for the decision variant OPTIMAL DEL-
EGATION of the problem. We start by asking whether
maxα∈S (P ) f̂(P, α) ≥ 1

2µ; if the answer is “no”, then we

ask whether maxα∈S (P ) f̂(P, α) ≥ 1
4µ, while if the answer

is “yes”, we ask whether maxα∈S (P ) f̂(P, α) ≥ 3
4µ, and so

on. We will converge to the value of the optimal allocation
with at most polynomially many queries to a Σp

2-oracle for
the decision variant OPTIMAL DELEGATION of the problem
(cf., [13], p. 416). Given the value of the optimal allocation,
we can then find an optimal allocation with at most a further
|N × Φ| queries to a Σp

2-oracle.

V. THE DISTRIBUTED DELEGATION PROBLEM

Given a partial Boolean game, it may very well happen that
for some player the Nash equilibria under one allocation yields
them a higher payoff than the Nash equilibrium that arises
under another one. Thus, intuitively, the players’ preferences
over outcomes induce preferences over allocations. As players
may have a joint interest in some allocation being implemented
rather than another, they may benefit from reallocating the
propositional variables amongst themselves. Accordingly, the
game-theoretic concept of core stability, in the sense of
stability against coalition deviations, becomes relevant.

It is worth observing that in Example 3 under both α
and α′, player 3 is assigned control over the same propositional
variable r. Still, player 1’s goal is satisfied in the Nash
equilibrium that emerges under α′, but not in the one under α.
Thus, their preferences over allocations are not only dependent
on the variables assigned to her control, but also on the way
control over the remaining variables is distributed over the
other players. The allocation of a particular set of propositional
variables to one player can thus be said to impose externalities
on the other players. In this respect, our setting differs from
many other allocation settings studied in the literature.

In order to systematically extend the players’ preferences
over outcomes to preferences over allocations, a couple
of points deserve attention.

First, whether a group of players would prefer a real-
location α′ of the variables they have under their control
under an allocation α depends essentially on the outcomes
that ensue under α and α′. In the previous parts we used
the concept of Nash equilibrium to single these out. The
allocation problem, however, is in principle independent of
this choice for Nash equilibrium, in the sense that every other
way to select outcomes under specific allocations defines its
own set of delegation problems. Second, Nash equilibria in
Boolean games, even when all variables are allocated, are
guaranteed neither to exist nor to be unique. In view of these
concerns, we augment the model with an outcome function,
which associates with each allocation of a given partial game
a unique outcome. This enables us to approach the (distributed)
delegation problem from a generic point of view, while still
allowing us concentrate on more restrictive outcome functions
that select Nash equilibria whenever they exist. In the latter
case, the outcome function basically plays the role of an oracle
breaking ties among the equilibria. If under some allocation
no Nash equilibria exist, we stipulate the outcome function to
select an outcome that is least preferred by all players.

Formally, an outcome function for a partial Boolean game P
is a function

h : A (P )→ V (Φ) ∪ {0},
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q q̄ q q̄

p 0, 0, 0 1, 0, 1 1, 1, 0 0, 1, 1

p̄ 0, 1, 1 1, 1, 0 1, 0, 1 0, 0, 0

r r̄

(a) Allocation αa = αp|q|r

r r̄ r r̄

p 0, 0, 0 1, 1, 0 1, 0, 1 0, 1, 1

p̄ 0, 1, 1 1, 0, 1 1, 1, 0 0, 0, 0

q q̄

(b) Allocation αb = αp|r|q

r r̄ r r̄

q 0, 0, 0 1, 1, 0 0, 1, 1 1, 0, 1

q̄ 1, 0, 1 0, 1, 1 1, 1, 0 0, 0, 0

p p̄

(c) Allocation αc = αq|r|p

pr pr̄ p̄r p̄r̄

q 0, 0, 0 1, 1, 0 0, 1, 1 1, 0, 1

q̄ 1, 0, 1 0, 1, 1 1, 1, 0 0, 0, 0

∅
(d) Allocation αd = αq|pr|

Fig. 4. The partial Boolean game described in Example 7 under four different
allocations. Robber 1 chooses rows, robber 2 chooses columns, and robber 3
chooses matrices. In the pure Nash equilibria are indicated by the payoffs to
the players being underlined.

where 0 is an additional null outcome such that ui(0) = 0
for all players i. We say an outcome function h for a partial
Boolean game is Nash-consistent if h(α) selects a Nash
equilibrium of G(P, α), if there is one, and 0, otherwise.

We are now able to formally define the notions of stability
that we have sketched out above. Thus, we say that, given
outcome function h for a partial Boolean game P and alloca-
tion α, a coalition S of players (strongly) blocks α under h
if there is some allocation α′ with α−S = α′−S such that
h(α′) �i h(α) for all players i ∈ S. We also say that S
weakly blocks α under h if both h(α′) �i h(α) for all i ∈ S,
and h(α′) �i h(α) for some i ∈ S. Intuitively, S blocks an
allocation α if the players in S can reallocate the propositional
variables under their control among themselves such that h
yields a outcome that better for them all. Coalition S weakly
blocks α, if the players in S can reallocate the propositional
variables under their control among themselves such that h
yields a outcome that is not worse for any of the players in S
and strictly better for some.

An allocation α is now said to be (weak) core stable under
outcome function h whenever there is no coalition (strongly)
blocking α under h. Allocation α is strong core stable, if no
coalition S weakly blocks it. To illustrate these notions, let us
consider an example.

Example 7: Three robbers have to cross a forest, through
which lead two roads, the high road and the low road. The
robbers, however, are quarrelsome and the forest is infested
with wolves, who will eat any solitary robber. If all three rob-
bers go one road together, they will quarrel, and subsequently
be mangled by the wolves. Any group of two, however, will
survive. They now have to decide whether to take the high
road or the low road, or they can have one of the others make
the decision for them. The question is now, who has to decide
for whom which road to take? Obviously, at most two of the
robbers can survive and we assume that surviving is the only
thing they are interested in.

The situation can be modelled as a partial Boolean game,
where p, q, and r are the decision variables for which road

robber 1, robber 2, and robber 3 takes: if a variable is set to
true, then the high road is taken, else the low road. For alloca-
tions, we adopt the same conventions as in Example 4 and have
αX|Y |Z denote the allocation in which robbers 1, 2, and 3 are
assigned the variables in X , Y , and Z, respectively. Fig. 4
depicts the Boolean games under allocations αa = αp|q|r,
αb = αp|r|q , αc = αq|r|a, and αd = αq|pr|.

First consider the outcome function h such that,

h(α) =


pqr̄ if α(p) = 2,
p̄qr if α(p) = 3,
pq̄r if α(p) = 1.

Then, trivially, every allocation is (weakly) core stable, as it
can easily appreciated that under h there are always at least
two robbers’ goals are satisfied at h(α) for every allocation α
and at least two dissatisfied robbers are required for an
outcome to be strongly blocked. By contrast, the game does
not allow for core stable allocations under h. To see this
let α be arbitrary allocation. Then, α is blocked by coalition
{2, 3} if α(p) = 2, by {1, 3} if α(p) = 3, and by {1, 2},
if α(p) = 1. Now, observe, however, that h is not Nash
consistent. For example, for allocation αb we have αb(p) = 1.
Hence h(αb) = pq̄r, which however fails to be a Nash
equilibrium of G(P, αb) (see Fig. 4(b)).

Now let g be a Nash consistent outcome function with
g(α) = pqr̄ and g(α′) = pq̄r̄. Then, coalition {2, 3} (weakly)
blocks αa and allocation αa is not strong Nash core stable
under g. This is in contrast to allocation αb, which is strong
Nash core stable under g, as, with some effort, can be verified
by the reader. /

A first question that naturally arises is if, and under which
conditions, stable allocations are guaranteed to exist. The fol-
lowing proposition settles this issue, and features an interesting
contrast between weak and strong core stability.

Proposition 9: Strong core stable allocations are not guar-
anteed to exist for partial Boolean games, not even under
Nash-consistent outcome functions. By contrast, core stable
allocations are guaranteed to exist in partial Boolean games,
even under general outcome functions.

Proof: For the first part, consider the partial game
P = (N,Φ,Φ1,Φ2,Φ3, γ1, γ2, γ3) depicted in Fig. 5, where
N = {1, 2, 3}, Φ = {p, q, r, s}, Φ1 = {p}, Φ2 = {q}, and
Φ3 = {r}. Accordingly, ΦU = {s}, and there are three
allocations, α1, α2, and α3, each of which assigns control
over s to player 1, player 2, and player 3, respectively, i.e.,
αi(s) = i for 1 ≤ i ≤ 3. The three Nash equilibria of P
are given by pqrs, p̄q̄r̄s, and p̄q̄rs̄. Now consider outcome
function h:

f(α) =


pqrs if α = α1

p̄q̄r̄s if α = α3

p̄q̄rs̄ if α = α2

Moreover, it is easy to check that coalition {1, 3} weakly
blocks α1, coalition {2, 3} weakly blocks α3, and coali-
tion {1, 2} weakly blocks α2. We may conclude that strong
core stable allocations are not guaranteed to exists for partial
Boolean games. Noting that h defined to be Nash-consistent,
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q q̄ q q̄

p 1, 1, 0 1, 0, 0 1, 0, 0 0, 1, 0

s

p̄ 0, 1, 0 1, 0, 0 0, 0, 0 1, 0, 1

p 0, 0, 1 0, 1, 0 0, 1, 0 1, 0, 0

s̄

p̄ 0, 0, 0 0, 1, 1 1, 0, 0 0, 1, 0

r r̄

Fig. 5. Partial Boolean game showing that strong Nash stable allocations are
not guaranteed to exist. Players 1, 2, and 3 control variables p (choosing rows),
q (choosing columns), and r (choosing left or right matrix), respectively.
Variable s is unassigned, i.e., ΦU = {s}, and the player who controls s
decides whether the outcome falls in the upper two matrices (s) or in the
lower two matrices s̄. The three underlined outcomes, pqrs, p̄q̄r̄s, and p̄q̄rs̄,
are the Nash equilibria of the partial game, and they remain Nash equilibria
of the Boolean games unless s is assigned to player 3, player 2, or player 1,
respectively.

it moreover follows that strong Nash core stable allocations
are not guaranteed to exist either.

For the second part, consider an arbitrary partial game P
and outcome function h. Let α be an allocation that allocates
all unassigned propositional variables in ΦU to one player i.
If α is core stable under h, we are done, so assume that this
is not the case. Then, there is a coalition S and allocation α′

with α′−S = α−S such that uj(f(α)) = 0 and uj(f(α)) = 1
for all j ∈ S. Observe that i ∈ S and that α′k = ∅ for all
k /∈ S. Now assume for contradiction that there is a coalition T
blocking α′, i.e., there is an allocation α′′ with α′′−T = α′−T
such that uk(f(α′)) = 0 and uk(f(α′′)) = 1 for all k ∈ T .
Without loss of generality, we may assume that T is not empty,
and hence α′′ 6= α′. Observe that T ⊆ N \ S. Accordingly,
α′k = ∅ for all k ∈ T . It follows that α′′ = α′, a contradiction.
We may conclude the proof by observing that this argument
still holds if h is assumed to be Nash consistent.

We now define the distributed delegation problem, which
asks, for a given partial game, whether a stable allocation
can be found that satisfies the principal’s objective. We say
that outcome function h is polynomial if it yields h(α) in
polynomial time on input α. We state the problem generically,
but one can vary as to whether weak core stability or strong
core stability is to be considered, and whether the outcome
functions are required to be Nash consistent or not.

DISTRIBUTED DELEGATION

Given: A partial Boolean game P and polynomial
outcome function h, and a formula Υ in L(Φ)

Problem: Does there exist an allocation α that is core
stable under h such that Υ is satisfied at h(α)?

Before we show that DISTRIBUTED DELEGATION is not harder
than WEAK PRINCIPAL DELEGATION, we first establish the
computational complexity of a the related problem of deciding
whether a given allocation is core stable in a given game under

a given outcome function. Formally, we define the problem
ALLOCATION STABILITY as follows.

ALLOCATION STABILITY

Given: Partial game P , polynomial outcome func-
tion h, and allocation α

Problem: Is allocation α core stable under h in P ?

We now have the following auxiliary coNP-completeness
result, of which the hardness part can be interpreted as
saying that allocation is coNP-hard even when restricted
to polynomial and Nash consistent outcome functions. For
computationally more complex outcome functions the problem
may very well become harder as well.

Proposition 10: ALLOCATION STABILITY is coNP-
complete, even if restricted to Nash-consistent outcome
functions and strong core stability.

Proof: To see that ALLOCATION STABILITY is in coNP,
observe that for a given coalition S, and allocation α′, check
whether α−S = α′−S and whether h(α) 6|= γi and h(α′) |= γi
for all i ∈ S. Under the prevailing assumptions, these checks
can all be performed in polynomial time. Then, α is not core
stable if and only if all these checks yield a positive answer.

For coNP-hardness, we reduce from the complement of
SATISFIABILITY. Given a propositional formula ϕ on the
propositional variables Φ = {p1, . . . , pk}, construct partial
game Pϕ with five players, 0, 1, 2, i⊥, and i> and defined on
{p, q, r} ∪ Φ, where p, q, and r are fresh variables not in Φ.
Let Φ0 = {r}, and Φ1 = Φ2 = Φi⊥ = Φi> = ∅. Hence,
ΦU = Φ ∪ {p, q}. Let the players’ goals be given by:

γ0 = ⊥ γ1 = γ2 = ϕ ∧ pqr γi⊥ = γi> = pqr

Define v0 as the valuation with v0(x) = ⊥ for all x ∈ Φ ∪
{p, q, r}. Observe that v0 is a Nash equilibrium of Pϕ under α
for every allocation α. We now associate a valuation vα with
every allocation α. If α is such that α1 = {p} and α2 = {q} or
α1 = {q} and α2 = {p}, then let vα be such that vα(r) = >
and for x ∈ Φ ∪ {p, q}:

vα(x) =


> if x ∈ Φ and α(x) = i>, or

if x ∈ {p, q}, α1 = {q}, and α2 = {p},
⊥ otherwise.

For all other allocations α, set vα = v0. Now, define the out-
come function h∗ such that h∗(α) = vα for all allocations α.
It is worth observing that h∗ is Nash-consistent. Moreover,
on input α, the valuation h∗(α) can be computed in time
polynomial in the size of ϕ.

Now, let α∗ be any allocation such that α0 = ∅, α∗1 = {p},
and α∗2 = {q}. Accordingly, α∗i⊥ ∪ α

∗
i>

= Φ. Note that than
vα∗ |= p̄q̄ and that vα∗ is sustained by a Nash equilibrium in
G(Pϕ, α

∗). We now prove that:

α∗ is Nash core stable under h∗ iff ϕ is not satisfiable.

First assume that ϕ is satisfiable and that w : Φ → {⊥,>}
is a witnessing valuation. Let α′ be the allocation such that
α′0 = ∅, α′1 = {q}, α′2 = {p}, and

α′i⊥ = {x ∈ Φ : w(x) = ⊥} α′i> = {x ∈ Φ : w(x) = >}.
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Hence, vα′ |= pq and vα′ |= ϕ. Let S = {1, 2, i⊥, i>}. Then,
α∗−S = α′−S . As vα∗ 6|= γi whereas vα′ |= γi for all i ∈
S, coalition S blocks α∗. Accordingly, α∗ is not core stable.
As h∗ is Nash-consistent, α∗ is not Nash-core stable either.

For the opposite direction, assume that ϕ is not satisfiable
and for contradiction that there is a coalition S and an
allocation α′ such that α∗−S = α′−S , h∗(α∗) 6|= γi and
h∗(α′) |= γi for all i ∈ S. As v 6|= γi for all valuations v
and all i ∈ {0, 1, 2}, it follows that S = {i>, i⊥}. However,
h∗(α′) 6|= pqr for all allocations α′ with α∗{0,1,2} = α′{0,1,2},
and a contradiction ensues. Hence, α∗ is Nash core stable
under h∗.

For strong Nash stability, the arguments are analogous,
modulo a couple of obvious technical details.

Using similar proof techniques we now prove the main
result of this section. Here, as with ALLOCATION STABILITY,
the hardness part provides a lower bound that holds even
for polynomial and Nash-consistent outcome functions. For
outcome functions that are harder to compute, the problem
may become harder accordingly.

Theorem 11: DISTRIBUTED DELEGATION is Σp2-complete,
even for Nash-consistent outcome functions and strong Nash
core stability.

Proof: As allocations are small relative to the input, we
can check for a given allocation α whether h(α) |= Υ, and,
by virtue of Proposition 10, we can consult a coNP-oracle
to check whether α is (strong) (Nash) core stable. Then, a
(strong) (Nash) core stable allocation α exists under h if and
only if these two checks yield postive answers. Overall, we
obtain membership of Σp2.

To see that DISTRIBUTED DELEGATION is in Σp2-hard,
we reduce from QBF2,∃. Let Q = ∃X∀Y ϕ be a QBF2,∃
instance. We first construct a partial Boolean game PQ =
(N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn) along with a polynomial and
Nash-consistent outcome function h∗ and formula Υ such
that Q is valid if and only if there is a Nash core stable
allocation α∗ under h∗ in PQ.

Let PQ have nine players 0, i1, i2,i>, i⊥, j1, j2, j>, and j⊥.
Furthermore, let Φ = X ∪ Y ∪ {p, q, r}, where p, q, and r
are fresh variables not occurring in X ∪ Y . Furthermore, set
Φ0 = {r} and Φi = ∅ for any player i other than 0. Thus,
ΦU = X ∪ Y ∪ {p, q}. Define the players’s goal be given by:

γ0 = ⊥ γi1 = γi2 = ϕ ∨ pqr γi⊥ = γi> = pqr

γj1 = γj2 = ¬ϕ ∧ p̄q̄r γj⊥ = γj> = p̄q̄r

With every allocation α we now associate a valuation vα.
Let us call an allocation α “live” if αi1 ∪ αi2 = {p}, αj1 ∪
αj2 = {q}, X ⊆ αi⊥ ∪ αi> , and Y ⊆ αj⊥ ∪ αj> . For live
allocations α we set vα(r) = >, and for all z ∈ X∪Y ∪{p, q}:

vα(z) =


> if z ∈ X ∪ Y and z ∈ αi> ∪ αj> , or

if z ∈ {p, q}, p ∈ αi1 , and q ∈ αj1 , or
if z ∈ {p, q}, p ∈ αi2 , and q ∈ αj2 ,

⊥ otherwise.

For all other allocations α, set vα = v0. Now, define
the outcome function h∗ such that h∗(α) = vα for all
allocations α. Observe that h∗ is Nash-consistent. Moreover,

on input α, the valuation h∗(α) can be computed in time
polynomial in the size of α, which is again small relative
to ϕ. Finally, let Υ = ϕ ∧ pqr.

We prove that there is a core stable allocation α under h∗

with h∗(α) |= ϕ ∧ pqr if and only if Q = ∃X∀Y ϕ is valid.
For the “if”-direction, assume that Q = ∃X∀Y ϕ is valid.

Then, there is a v : X → {⊥,>} ∪ {p, q, r} such that for all
w : Y → {⊥,>}, we have that v∪w |= ϕ and v′(p) = v′(q) =
v′(r) = >. Then, there is also a live allocation α such that
h∗(α) = v. Hence h∗(α) satisfies ϕ ∧ pqr. Now assume for
contradiction there is some coalition S blocking α, i.e., there is
some α′ with α−S = α′−S such that ui(h∗(α′)) �i ui(h∗(α))
for all i ∈ S. Because of the latter, we find that α′ must
be a live allocation. Some reflection reveals that {j1, j2} ⊆
S ⊆ {j1, j2, j⊥, j>} and that h∗(α′) 6|= ϕ. It follows that
h∗(α)(x) = h∗(α′)(x) for all x ∈ X . But then it would follow
that h∗(α′) |= ϕ, a contradiction.

For the “only if”-direction, assume that Q = ∃X∀Y ϕ is not
valid. Then for every v : X → {⊥,>}, there is some w : Y →
{⊥,>} such that v ∪ w 6|= ϕ. To show that there is no Nash
stable allocation α with h∗(α) satisfying ϕ∧pqr, consider an
arbitrary α. Without loss of generality we may assume that α
is live, otherwise h∗(α) = v0 and h∗(α) 6|= ϕ ∧ pqr. Let
S = {j1, j2, j⊥, j>} and observe that h∗(α) 6|= γj for j ∈ S.
Without loss of generality, we may assume that α(p) = i1
and α(q) = j1. By assumption, there is some valuation v′

with v′ |= ¬ϕ and v′(x) = h∗(α) for all x ∈ X . Some
reflection reveals that we can define an allocation α′ such that
h∗(α′) = v′ and h∗(v) |= ¬ϕ ∧ p̄q̄r. Hence, h∗(α′) |= γj
for all j ∈ S. As moreover, α−S = α′−S , it follows that S
blocks α under h∗, and we may conclude that there is no Nash
stable allocation α with h∗(α) |= ϕ ∧ pqr.

A very similar construction shows that DISTRIBUTED AL-
LOCATION remains Σp

2-hard for strong Nash core stability.
It is worth observing that the outcome function is part of

the input of DISTRIBUTED DELEGATION. For specific (Nash-
consistent) outcome functions, the computational complexity
of the distributed delegation may need to be assessed indepen-
dently. For instance, one could be specifically be interested
in Nash-consistent choice functions that for each allocation
choose a Nash equilibrium that maximises social welfare.5

VI. DISCUSSION, RELATED WORK, AND FUTURE
DIRECTIONS

We have introduced and investigated the problem of how
to optimally delegate decisions to self-interested agents. We
modelled this delegation problem using the setting of Boolean
games. We argued that Boolean games provide a natural frame-
work within which to model the delegation of Boolean deci-
sions: individual decisions naturally map to Boolean variables,
owned by individual agents. We distinguished between the

5 One could also define stability on allocation-equilibrium pairs: (α,~v)
would then be stable if for all coalitions S, all allocations α′ with α−S =
α′−S , and all equilibria ~v′ under α, we have ~v �i ~v

′ for all i ∈ S. By an
argument analogous to the proof of Theorem 2, it can then be shown that the
accompanying decision problem whether a stable pair (α,~v) with ~v satisfying
objective Υ exists in a partial game is Σp

2 -complete, and reduces to deciding
the existence of a Nash equilibrium in a Boolean game.
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principal delegation problem, where one principal delegates
decisions to subordinate agents, and the distributed delegation
problem, where the subordinate agents can form coalitions and
allocate unallocated variables as they see fit.

Our main results have been mainly negative, in the sense
that, even in the elemental Boolean games framework, they
all point to a high computational complexity of the various
delegation problems we have investigated in this paper. WEAK
PRINCIPAL DELEGATION, STRONG PRINCIPAL DELEGATION
and DISTRIBUTED DELEGATION are all at least Σp

2-hard, while
OPTIMAL DELEGATION is FPΣp

2 -complete. By inspecting the
proof of Theorem 2 it can be recognised that the hardness
of WEAK PRINCIPAL DELEGATION reduces to the hardness
of deciding whether a Nash equilibrium exists in a Boolean
game. This raises the question whether the computational
complexity of the (principal) delegations problems could be
brought down by considering other solution concepts instead
of Nash equilibrium to single out the relevant outcomes under
a given allocation.

In this context it is worth emphasising that Theorem 11 es-
tablishes that the computational complexity of DISTRIBUTED
DELEGATION is the same for general polynomial and (poly-
nomial) Nash-consistent outcome functions. This indicates
that the intractability of the distributed delegation problem
cannot (solely) be attributed to the computational hardness
of checking and finding Nash equilibria in Boolean games.
The sheer number of allocations, which is exponential in the
number of unallocated variables, seems to be a major culprit,
and justifies the expectation that many efficient algorithms for
the distributed delegation problem will be based on limiting
the number of allocations that will have to be considered. In
an similar vein, one could explore the different ways in which
the problems presented in this paper can be restricted, e.g., by
considering restrictions on the players’ goals or the principal’s
objective function.

In our formal setting, we allow for allocations that con-
centrate control over variables in only a very few agents,
which may be undesirable for many applications. Moreover,
Section V suggests the existence of a trade-off between
stability of an allocation and extreme concentration of power in
a few agents. It would therefore be an interesting line of future
research to investigate the delegation problems in connection
with the various concepts of fairness, (social) welfare, and
efficiency (e.g., Pareto optimality) that have been suggested in
the literature (cf., e.g., [18], Part II).6

Our work can be seen to belong to a stream of work in mech-
anism design in Boolean games, which investigates mecha-
nisms so as to incentivise players to choose strategies that are
simultaneously desirable, commonly from a principal’s point
of view, and rational from a game theoretic perspective. The
mechanisms in point usually aim to modify the Nash equilibria
of the Boolean games by imposing taxes on the strategies that
are available to the players. This line of research was initiated
by [19] and was followed up by, e.g., [5, 20, 21, 22, 23, 24].
Our work on the principal and distributed delegation problems
in this paper has a cognate motivation, but importantly differs

6We are grateful to an anonymous reviewers for this suggestion.

in the way the players’ incentives are engineered, namely by
manipulating the strategies they have at their disposal rather
than by levying taxing on playing them.

The delegation problem is also closely related to the
principal-agent problem studied in economics (see, e.g., [25]).
A typical setting for the principal agent problem is where a
principal engages the services of an agent to work on behalf
of the principal, typically for a fee. The basic issue studied
in the principal-agent problem is that the agent will be self-
interested, and it may not be feasible for the principal to
observe the actions of the agent; in which case, how can
the principal be certain that the agent is indeed acting in the
principals interests? Typical solutions to the principal-agent
involve designing incentive schemes that will help to align
the preferences of the agent with those of the principal.

Our work is also relevant to logics of propositional con-
trol [26, 27, 28]. Originally developed in [26], these logics
are specifically intended to reason about scenarios in which
a collection of agents each have control over some set of
Boolean variables. In [27], Gerbrandy extended this work by
also allowing agents to share control over propositional vari-
ables. We should also point to other formalisms for reasoning
about delegation [29, 30]. However, in these other works, the
focus is rather different to out own. For example, in [29]
the focus is on decentralised trust management, while [31]
presents a logic of delegation based on the STIT (“see to it
that”) operator. The use of logical systems such as QBF and
DCL-PC to analyse delegation would also be worth pursuing
in more detail.

Other directions for future research include looking at the
problem from the perspective of Stackelberg (leader-follower)
games, introducing costs to delegation actions, so that we
can consider secondary preferences over allocations, and of
course investigating tractable instances of the problem, and
developing efficient heuristics for the decision problems we
present.
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