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Abstract—Real data often appear in the form of multiple in-
complete views. Incomplete multiview clustering is an effective
method to integrate these incomplete views. Previous methods only
learn the consistent information between different views and ignore
the unique information of each view, which limits their cluster-
ing performance and generalizations. To overcome this limitation,
we propose a novel View Variation and View Heredity approach
(V3H). Inspired by the variation and the heredity in genetics, V3H
first decomposes each subspace into a variation matrix for the cor-
responding view and a heredity matrix for all the views to represent
the unique information and the consistent information respectively.
Then, by aligning different views based on their cluster indicator
matrices, V3H integrates the unique information from different
views to improve the clustering performance. Finally, with the help
of the adjustable low-rank representation based on the heredity
matrix, V3H recovers the underlying true data structure to reduce
the influence of the large incompleteness. More importantly, V3H
presents possibly the first work to introduce genetics to clustering
algorithms for learning simultaneously the consistent information
and the unique information from incomplete multiview data. Ex-
tensive experimental results on fifteen benchmark datasets validate
its superiority over other state-of-the-arts.

Impact Statement—Incomplete multiview clustering is a popular
technology to cluster incomplete datasets from multiple sources.
The technology is becoming more significant due to the absence
of the expensive requirement of labeling these datasets. However,
previous algorithms cannot fully learn the information of each
view. Inspired by variation and heredity in genetics, our proposed
algorithm V3H fully learns the information of each view. Compared
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improvement on multiple datasets, V3H has wide potential appli-
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I. INTRODUCTION

IN MOST real-world applications, the collected data always
appear in multiple views or come from different sources [1]–

[4], which are called multiview data [5]. As an illustration,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is the strain of coronavirus that causes coronavirus disease 2019
(COVID-19) [6]–[8]. When we analyze the structural proteins
of SARS-CoV-2 to study vaccines, the S (spike), E (envelope),
M (membrane), and N (nucleocapsid) proteins can serve as
four views [9]–[12]. Also, the financial data often come from
multiple sources, and each data source corresponds to a view.
Multiview clustering provides a natural way to integrate these
views [13]–[16].

Recently, many multiview clustering algorithms have been
proposed [17]–[19]. Most of them assume that each view is
complete. But real-world data often suffer from incomplete-
ness [20]–[22]. For example, when detecting COVID-19, the
blood test, the temperature measurement, and the neuroimage
can be regarded as three views of the detection. But when the
disease first broke out, most individuals only perform one or
two tests due to the lack of detection conditions. As such, this
incompleteness may lead to the lack of columns or rows in the
view matrix, which fails previous algorithms.

To cluster incomplete multiview data, some efforts have been
made. PVC [23] aligns the same samples in different views
by constructing a latent subspace. To solve the incomplete
multi-modality clustering problem, IMG [20] transforms the
collected incomplete multiview data to a complete represen-
tation in a latent space. To extend PVC to more than two
views, MIC [24] extends MultiNMF [25] based on weighted
nonnegative matrix factorization (NMF) [26] and L2,1-norm
regularization. To decrease the impact of a large missing rate,
DAIMC [27] extends MIC by combining semi-nonnegative ma-
trix factorization (semi-NMF) [28] andL2,1-norm regularization
regression. To solve the multiview co-clustering with incomplete
data problem, [5] integrates complex patterns of incomplete
multiview data. To explore the local structure, UEAF [29] learns
a consensus representation for all views.

However, these incomplete multiview clustering methods still
have three main drawbacks. First, these methods only consider
the consistent information between all the views and ignore the
unique information of each view. For example, DAIMC per-
forms clustering by aligning the consistent information. When
clustering the data with little alignment information, DAIMC
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cannot achieve satisfactory performance due to ignoring the
unique information. The unique information from each view
can help us better analyze the geometry of the corresponding
view. Second, these methods are difficult to learn nonlinear
information between samples. Most of these methods are based
on NMF. NMF is a linear operation, which only extracts the
linear structure information among samples from the data. When
processing some datasets with nonlinear structures, these meth-
ods may ignore much important nonlinear information among
samples, which limits the application of these methods. Third,
these methods do not perform well in some datasets with rel-
atively large missing rates. Based on these samples presented
in all views, these algorithms learn the structure information of
datasets for clustering. As the missing rate increases, the number
of presented samples will decrease significantly. Thus, these
algorithms cannot learn enough information and will obtain
poor clustering performance. If we directly use these methods to
process important data, it is difficult to learn accurate data infor-
mation because of the above drawbacks. As an illustration, if we
use these methods to directly analyze the data of SARS-CoV-2,
these methods are difficult to obtain satisfactory results, which
may lead to slow research progress on COVID-19. Therefore,
incomplete multiview clustering still contains significant issues.

To address these issues, we propose a novel View Variation
and View Heredity approach (V3H). By introducing biological
heredity and biological variation, the theory of genetics can ef-
fectively analyze the consistent trait information and the unique
trait information in the biological world [30]–[32]. Inspired by
the theory, V3H first learns a subspace from each view and
decomposes each subspace into a heredity matrix shared by all
the views and a variation matrix of the corresponding view. The
shared heredity matrix can extract the consistent information
between all the views, while each variation matrix can learn the
unique information of the corresponding view. Based on each
variation matrix, V3H constructs a graph Laplacian to obtain a
corresponding cluster indicator matrix. Then, V3H aligns differ-
ent views by minimizing the disagreement between each cluster
indicator matrix and the consensus cluster indicator matrix. To
measure the disagreement, V3H introduces the linear kernel into
the Laplacian for spectral clustering. Finally, instead of learning
the low-rank representation of all the subspaces, V3H designs
an adjustable low-rank representation model via the η-norm of
the variation matrix and the τ -norm of error matrices. V3H’s
contributions are mainly summarized as follows:
� To our best knowledge, V3H is a pioneering work to

introduce genetics into the clustering algorithm, which will
promote the intersection between the clustering algorithm
and other disciplines. Moreover, it is also the first attempt
to learn both the consistent information and the unique
information of incomplete views simultaneously based on
the subspace decomposition.

� By minimizing the disagreement between each cluster
indicator matrix and the consensus, V3H can learn a satis-
factory cluster indicator matrix for each view and integrate
the unique information of these views, which improves its
clustering performance. By introducing the linear kernel
into the Laplacian, V3H learns the nonlinear structure in

the dataset, which guarantees its applicability in datasets
with nonlinear structure.

� Based on the adjustable low-rank representation model,
V3H can recover the underlying true data structure as
needed, which helps us cluster the multiview data with
a relatively large missing rate.

� Experimental results on fifteen benchmark datasets demon-
strate the superiority of V3H over other state-of-the-arts.
Impressively, in terms of three evaluation metrics, V3H
improves the clustering performance by more than 20% in
representative cases.

The rest of the paper is organized as follows. Section II
presents some related works. Section III describes the notation
and the background. Section IV first motivates V3H’s main idea,
then proposes our V3H approach, and finally solves it efficiently.
Section V evaluates V3H’s performance. Section VI concludes
the paper.

II. RELATED WORKS

The most relevant work of this paper is incomplete multiview
clustering, and we present some related works in this section.
Recently, many incomplete multiview clustering methods have
been proposed [20], [23], [24], [27], [29]. Based on the num-
ber of views clustered, we can divide these methods into the
following two categories.

(i) Incomplete two-view clustering (e.g., PVC and IMG).
Incomplete two-view clustering methods can only cluster in-
complete data with two views. PVC [23] learns the common
and private latent spaces based on NMF [26], [33] and L1-norm
regularization. But PVC simply projects samples from each view
into a common subspace and overlooks the global information
among the two views. To obtain better clustering performance
on multi-modal visual datasets, IMG [20] extends PVC and
removes the nonnegative constraint to simplify optimization.
But both PVC and IMG can only solve the incomplete two-view
clustering problem, which limits their application to incomplete
data with more than two views.

(ii) Incomplete multiview clustering (e.g., MIC, DAIMC and
UEAF). Incomplete multiview clustering methods can cluster
incomplete data with more than two views. As the first method
for incomplete multiview clustering, MIC [24] first fills the
missing samples in each incomplete view with average feature
values, then learns a common latent subspace based on weighted
NMF and L2,1-norm regularization. But MIC only simply fills
the missing samples with average feature values and if we cluster
the data with a relatively large missing rate, this simply filling
may result in a serious deviation. To align the information of
the presented samples, DAIMC [27] extends MIC via weighted
semi-NMF [28] andL2,1-norm regularized regression. To obtain
the robust clustering results, UEAF [29] performs the unified
common embedding aligned with incomplete views inferring
framework. Both DAIMC and UEAF rely too much on align-
ment information. When clustering the dataset without enough
alignment information, DAIMC and UEAF always obtain unsat-
isfactory performance because the loss of alignment information
will reduce the availability of their models.
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Note that besides three main drawbacks in Section I, the
previous methods have the above drawbacks. These drawbacks
always result in unsatisfactory clustering performance, which
limits the real-world applications of these methods.

III. NOTATION AND BACKGROUND

For convenience, we define some notations through the paper.

All the matrices are written in uppercase. [n]
def
= {1, 2, . . . , n}.

For a matrix A, its ij-th element and i-th column are denoted
by Ai,j and Ai separately; its trace is denoted by Tr(A); its
Frobenius norm is denoted by ||A||F ; its L2,1-norm is denoted
by ||A||2,1; its nuclear norm is denoted by ||A||∗. | · | is the
absolute operator; < ·, · > is the inner product operator; 1 is a
column vector with all elements as 1; I is an identity matrix.
For a complete multiview dataset, it is denoted by {U (v)}nv

v=1 ∈
Rn×dv , where dv is the feature dimension of the v-th view,
n is the sample number, and nv is the view number. When
suffering from incompleteness, {U (v)}nv

v=1 can be updated to
{X(v)}nv

v=1 ∈ Rmv×dv , where mv is the number of presented
samples in the v-th view. For the v-th view, Z(v) is its subspace
matrix; N (v) is its variation matrix; L(v) denotes its Laplacian
graph; E(v) is its error matrix; F (v) is its cluster indicator
matrix. For all the views of {X(v)}nv

v=1, H is the consensus
cluster indicator matrix;M is the heredity matrix; c is the cluster
number. α, β and η are nonnegative hyper-parameters.

A. Incomplete Multiview Data

The v-th original view matrix (including missing and pre-
sented samples) is represented as U (v) ∈ Rn×dv , n and dv are
the number of samples and features, respectively. By removing
the missing samples, we can update the v-th original view matrix
to a new view matrix X(v) ∈ Rmv×dv , where mv is the number
of presented samples (mv < n). To indicate the update, we
define an incomplete index matrix W (v) ∈ Rmv×n [29]

W
(v)
i,j =

⎧⎨
⎩

1, if the i-th sample is the j-th presented
sample in the v-th view;

0, otherwise.
(1)

B. Multiview Subspace Clustering

As an effective complete multiview clustering method, mul-
tiview subspace clustering (MVSC) integrates different views
by first performing subspace clustering on each view and then
unifying these subspaces to learn a cluster indicator matrix [34].
The framework of MVSC is as follows

min
F

∑
v

(||U (v) −U (v)Z(v) −E(v)||2F + β||E(v)||1

+ ηTr(F TL
(v)
Z F ))

s.t. F TF = I,Z(v)T 1 = 1,Z
(v)
i,i = 0, i ∈ [n], (2)

where F is the cluster indicator matrix; for the v-th view, L(v)
Z

is its Laplacian graph. Z(v)
i,i =0 means that all diagonal elements

of Z(v) are 0.

C. Biological Variation and Biological Heredity in Genetics

In genetics, biological heredity denotes the passing on of traits
from parents to their children; biological variation represents
the unique trait information of their children. By introducing
biological heredity and biological variation, genetics provides
some theories to analyze the consistent trait information and the
unique trait information in the biological world [35], [36]. In
genetics,P denotes the observed trait information. Based on the
theory for quantitative traits influenced by maternal [35]–[37],
P is partitioned as

P = BH +BV , (3)

where BH denotes the biological heredity representation (i.e.,
consistent trait information) and BV denotes the biological
variation representation (i.e., unique trait information). Based
on Eq. (3), genetics can explain the observed biological traits
from the genetic level.

IV. PROPOSED V3H APPROACH

By showing the characteristics of incomplete multiview data,
we first present the motivation of our proposed V3H approach.
Then we model V3H as the joint of the view variation and
the view heredity. Finally, we design a seven-step procedure
to optimize V3H.

A. Motivation

Real-world incomplete multiview data have the two main
characteristics [38]: (i) the common samples presented in all
views can be used to extract the consistent information from
different views and to integrate these views; (ii) these samples
existing in partial views can learn the unique information of
the corresponding views. Therefore, our motivation is to simul-
taneously learn consistent information and unique information
from incomplete multiview data for clustering. Borrowing the
idea of genetics in Section III-C, we propose some definitions in
Definition 1, which relies on the following assumptions: (i) for an
incomplete multiview dataset {X(v)}nv

v=1 ∈ Rmv×dv , each of its
subspaces is the perturbation of a consensus subspace; (ii) each
subspace can represent the data structure of the corresponding
view.

Definition 1: (Parent Subspace, Child Subspace, View Hered-
ity, View Variation). For the {v}nv

v=1-th view matrix X(v) ∈
Rmv×dv , Z(v) ∈ Rmv×mv denotes its subspace, which is cal-
culated by Eq. (2). Assume that all the subspaces originate from
a consensus subspace Z∗. Thus, Z∗ is defined as the parent sub-
space and Z(v) is defined as the child subspace. M is defined as
the heredity matrix, which represents the consistent information
shared by all the views. N (v) is defined as the variation matrix
of the v-th view, which represents the unique information of
the v-th view. The view heredity is the phenomenon that the
consistent information exists in both parent subspace and child
subspace. The view variation is the phenomenon that the unique
information only exists in the corresponding child subspace. In
general, different subspaces {Z(v)}nv

v=1 have different variation
matrices {Z(v)}nv

v=1, but share the same heredity matrix M .
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Ideally, we want to obtain the optimal representation by
learning the parent subspace Z∗ because Z∗ contains most of
the available information on the data. However, it is difficult to
learn an available Z∗ due to missing samples and noises.

Therefore, we adopt a clever method to avoid learning Z∗

directly. Instead, we can learn both the heredity matrix M
and the variation matrix N (v) as an alternative to learning
Z∗. For Z(v), it can be decomposed into a heredity matrix
M and a variation matrix N (v). We assume that for a specific
incomplete multiview dataset, when the missing rate changes,
the dimensions of its heredity matrix and variation matrices do
not change. This assumption can guarantee that we can integrate
the subspaces with different dimensions.

In Eq. (3), the genetics analyzes the influence of biological
heredity and biological variation on biological traits. Inspired
by this, to integrate the heredity matrix and variation matrices,
we design a subspace decomposition model as follows

W (v)TZ(v)W (v) = M − pN (v), (4)

where p is adjustable as needed; W (v)TZ(v)W (v) is composed
of M ∈ Rn×n and N (v) ∈ Rn×n. For Eq. (3) and Eq. (4),
W (v)TZ(v)W (v) corresponds to P ; M corresponds to BH ;
−pN (v) corresponds to BV . Compared with Z(v) ∈ Rmv×mv ,
bothM andN (v) have larger matrix sizes (n > mv). Since each
column of Z(v) corresponds to a sample, Z(v) only contains
the information of mv presented samples. Both M and N (v)

contain the information of n samples (i.e., all the samples in-
cluding the missing samples and the presented samples). Eq. (4)
can learn three kinds of information: the consistent information
between views (learned by M ), the unique information (learned
by N (v)), and the relationship information between samples
(learned by W (v)TZ(v)W (v)). Since these three kinds of infor-
mation are exactly expected in the clustering process, solving
Eq. (4) can become a feasible alternative to learning Z∗. Note
that we have three variables (Z(v), M , and N (v)), but we only
have one equation (Eq. (4)). Therefore, in the next section, we
add some constraints on M and N (v) to solve Eq. (4).

B. View Variation for View Alignment

Inspired by the phenomenon that the expression traits of
parents and children are similar [39], [40], we attempt to align
the expression traits of parent subspace and child subspace.1 We
treat the cluster indicator matrices as the expression traits of the
corresponding views because we can obtain better clustering re-
sults after aligning these cluster indicator matrices. To formulate
the alignment, we design the following view alignment model

min
F (v),H

∑
v

(Tr(F (v)TL
(v)
N F (v)) + γDis(F (v),H)), (5)

where γ is a nonnegative hyper-parameter, F (v) ∈ Rn×c is
the cluster indicator matrix of the v-th view, and H ∈
Rn×c is the consensus cluster indicator matrix of all the

1In Section IV-A we can note that one view matrix X(v) and its subspace
matrix Z(v) are in one-to-one correspondence. For ease of description, we still
refer to this subspace-based alignment as view alignment.

views. Tr(F (v)TL
(v)
N F (v)) is used to learn the cluster in-

dicator matrix of each view; Dis(F (v),H) means the dis-
agreement between F (v) and H; L

(v)
N ∈ Rn×n is the nor-

malized graph Laplacian, where L
(v)
N = G(v) − S(v), S(v) =

(|N (v)|+ |N (v)|T )/2, and G
(v)
i,i =

∑
j S

(v)
i,j (i ∈ [n], j ∈ [n]).

For the measure of Dis(F (v),H), a popular method is us-
ing the linear kernel function, which is simple and widely
used. However, the linear kernel function can only learn linear
structural information in most cases, and it is difficult to learn
nonlinear information.

An ideal method is to design a linear kernel function that can
learn nonlinear structures. Fortunately, the linear kernel used
in the Laplacian for spectral clustering can learn the nonlinear
structure of the data [41]. Thus, we choose the linear kernel
function to measure the disagreement Dis(F (v),H). Therefore,
Dis(F (v),H) is defined as follows

Dis(F (v),H) = ||F (v)F (v)T −HHT ||2F , (6)

where F (v)F (v)T is the linear kernel of F (v) and HHT is the
linear kernel of H . Therefore, we rewrite Eq. (5) as

min
F (v),H

∑
v

(Tr(F (v)TL
(v)
N F (v)) + γ||F (v)F (v)T −HHT ||2F ).

(7)

Combining Eq. (2), (4), and (7), we can obtain

min
F (v)

∑
v

(||X(v) −X(v)Z(v) −E(v)||2F + β||E(v)||1

+ αTr(F (v)TL
(v)
N F (v)) + γ||F (v)F (v)T −HHT ||2F )

s.t. W (v)TZ(v)W (v) = M − pN (v),F (v)TF (v) = I,

HTH = I,N (v)1 = 1,N
(v)
i,i = 0, i ∈ [n], (8)

where the constraint N (v)1 = 1 treats all samples equally,
which can learn the unique information of the v-th view; the
constraint N (v)

i,i = 0 can ensure that each sample can only be
represented as the combination of other samples [42].

C. View Heredity for Adjustable Low-Rank Representation

Most real-world multiview data often have the low-rank sub-
space representations, which can be used to recover the underly-
ing true data structure [43]–[45]. Thus, the reasonable low-rank
representation can improve the performance of subspace-based
clustering. Outlier Pursuit [46] is a popular technology to obtain
the proper low-rank representation, which is formulated as

min
M ,E(v)

||M ||∗ + β
∑
v

||E(v)||2,1, (9)

where ||M ||∗ is used to approximate the rank of M ; ||E(v)||2,1
can learn the low-rank representation of E(v).

In fact, on the one hand, the rank approximation of M
by the nuclear function will lead to a large deviation, which
may result in unusable clustering results. On the other hand,
L2,1-norm is indifferentiable at the point of zero, which renders
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Fig. 1. Data flow of our proposed V3H approach. Given an incomplete dataset {X(v)}nv
v=1, V3H learns the corresponding subspace matrices {Z(v)}nv

v=1. In

Section IV-A, V3H decomposes Z(v) into a heredity matrix M and a variation matrix N (v). In Section IV-B, by constructing a normalized graph Laplacian L
(v)
N ,

V3H aligns the cluster indicator matrix F (v) with the consensus cluster indicator matrix H . In Section IV-C, V3H leverages η-norm and τ -norm for adjustable
low-rank representation. Section V shows the clustering results.

Fig. 2. Performance of η-norm and τ -norm.

the derivate of L2-norm at sparse rows senseless. Besides, two
cases fail Eq. (9): (i) If a dataset suffers from incompleteness
or noises, its heredity matrix M is often unavailable. When the
unavailable heredity matrix is used directly in Eq. (9), we will
have difficulty obtaining the satisfactory low-rank representation
because calculating the rank of the unavailable heredity matrix
will produce a large deviation. (ii) When handling different
clustering tasks, we often need different E(v) with different
sparsity [47]. The adjustable sparsity of E(v) is necessary.
Therefore, Eq. (9) also has two drawbacks: unavailable heredity
matrix and non-adjustable sparsity.

The nonconvex relaxation of matrix rank is a popular tech-
nique. Evoked by [48]–[50], to learn available M , we propose
η-norm defined by

||M ||η =
∑
i

(η + wi)σi(M)

η + wiσi(M)
, (10)

where η is adjustable as needed (η > 0); w is the weight vector
(wi > 0); σi(M) is the i-th singular value of M .

Note that different from the common norm (e.g., L2,1-norm
and LF -norm, etc.), our proposed η-norm is not a real norm.
η-norm has the following characteristics:

1) η-norm is unitarily invariant, and ||M ||η = ||UMV ||w
for any orthonormal U ∈ Rm×m and V ∈ Rn×n;

2) when η → ∞, we have ||M ||η → ||M ||w,∗, where || · ||w,∗
is the weighted nuclear norm [51];

3) when η → 0, we have ||M ||η → rank(M ).
To show the advantage of our proposed η-norm, we compare

η-norm with several rank relaxation approaches (i.e., σi/(1 +
σi) and 1− exp(−σi) in Fig. 2(a)). As shown in Fig. 2(a),
η-norm (η = 0.001 in this figure) is closer to the true rank than
other approaches. Thus, by learning the satisfactory low-rank
representation, η-norm can ensure the availability of the heredity
matrix.

Similar to Eq. (10), to learn an adjustable sparse representa-
tion, we adopt the τ -norm of matrix E(v) defined by

||E(v)||τ =
∑
i

(1 + τ)||E(v)
i,: ||2

τ + ||E(v)
i,: ||

, (11)

where τ is adjustable for different tasks. Based on matrix E(v),
we design a diagonal matrix D

(v)
E defined by

D
(v)
Ei,i

=
(1 + τ)(||E(v)

i ||+ 2τ)

(||E(v)
i ||+ τ)2

. (12)

Theorem 1: For any matrix E(v), we have

∂||E(v)||τ
∂E(v)

= D
(v)
E E(v). (13)
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Proof:

∂||E(v)||τ
∂E

(v)
i,:

=
∂((1 + τ)||E(v)

i,: ||22/(1 + τ ||E(v)
i,: ||2))

∂E
(v)
i,:

=
(1 + τ)(||E(v)

i ||+ 2τ)

(||E(v)
i ||+ τ)2

E
(v)
i,:

D
(v)
i,i E

(v)
i,: =

(1 + τ)(||E(v)
i ||+ 2τ)

(||E(v)
i ||+ τ)2

E
(v)
i,: . (14)

Obviously, ∂||E(v)||τ/∂E(v)
i,: = D

(v)
i,i E

(v)
i,: in all the cases. �

Similar to η-norm, τ -norm has the following characteristics:
1) τ -norm is nonnegative and global differentiable;
2) when τ → ∞, we have ||E(v)||τ → ||E(v)||2F and

D
(v)
E → I;
3) when τ → 0, we have ||E(v)||τ → ||E(v)||2,1 and

D
(v)
Ei,i

→ 1/||E(v)
i,: ||2.

To verify the adjustability of τ -norm, we compare τ -norm
with L2,1-norm and F-norm in Fig. 2(b). When τ is rela-
tively small (τ = 0.1), τ -norm is near to F-norm. As τ de-
creases, ||E(v)||τ is closer to ||E(v)||2,1, and E(v) becomes
more sparse. Since we can choose different τ to adjust the
sparsity, τ -norm has wider applications than L2,1-norm and
F-norm.

Therefore, considering both the available low-rank subspaces
(Eq. (10)) and the adjustable sparsity (Eq. (11)), we can obtain
the adjustable low-rank representation as follows

min
M ,E(v)

||M ||η + β
∑
v

||E(v)||τ . (15)

D. Objective Function

Combining the view alignment (Eq. (8)) and the adjustable
low-rank representation (Eq. (15)), we have

min
M ,N(v),Z(v),E(v),F (v),F ∗

||M ||η +
∑
v

(β||E(v)||τ

+ αTr(F (v)TL
(v)
N F (v)) + γ||F (v)F (v)T −HHT ||2F )

s.t. F (v)TF (v) = I,HTH = I,N (v)1 = 1,N
(v)
i,i = 0,

W (v)TZ(v)W (v) = M − pN (v),X(v) = X(v)Z(v) −E(v).
(16)

Eq. (16) is a nonconvex function, which is often difficult to
optimize directly. In the next section, we will design an iteration
procedure to optimize it.

E. Optimization

To optimize Eq. (16), we design the following augmented
Lagrangian function

J = ||M ||η +
∑
v

(αTr(F (v)TL
(v)
N F (v)) + β||E(v)||τ

+ γ||F (v)F (v)T −HHT ||2F +
ω

2
(||W (v)TZ(v)W (v)

Algorithm 1: V3H.

Input: {X(v)}nv
v=1, {W (v)}nv

v=1, α, β, γ, λmax, and c.
Initialize E(v) = Z(v) = M = N (v) = 0,
C

(v)
1 = C

(v)
2 = 0, F (v), F ∗, and ω.

repeat
for v = 1 to nv do

Update Z(v) by Eq. (26);
Update N (v) and ζ based on Eq. (30), Eq. (31), and
the constraint N (v)

i,: 1− 1 = 0;

Update E(v) by Eq. (34);
Update F (v) by Eq. (36);
Update C

(v)
1 ,C

(v)
2 , and ω by Eq. (38);

end for
Update M by Eq. (18) and DC programming;
Update H by Eq. (37);

Until converges
Output: F (v), H , M , N (v) and clustering results.

−M + pN (v) +
C

(v)
2

ω
||2F + ||X(v) −X(v)Z(v) −E(v)

+
C

(v)
1

ω
||2F − ζ(v)

T

(N (v)1− 1))), (17)

where matrices C
(v)
1 , C(v)

2 and vector ζ(v) are Lagrange mul-
tipliers, ω is a nonnegative penalty parameter. Eq. (17) is not
convex for all variables simultaneously, and it is difficult to solve
Eq. (17) in one step. Thus, we design the following seven-step
procedure to update each variable iteratively [52].

Step 1: Update M . Fixing the other variables, the problem to
update M is degraded to solve the following problem

M = argmin
M

ω

2
||W (v)TZ(v)W (v) −M + pN (v)

+
C

(v)
2

ω
||2F + ||M ||η. (18)

To solve Eq. (18), we first develop the following theorem.
Theorem 2: We first set A = W (v)TZ(v)W (v) + pN (v) +

C
(v)
2 /ω. The SVD operation of A is A = UΣAV

T , where
ΣA = diag(σA). Set H(M) = h ◦ σM be a unitarily invariant
function, where h(σ) = Σi(η + wi)σi(M)/(η + wiσi(M))
and ω > 0. Based on Eq. (18), we have

min
M

H(M) +
ω

2
||M −A||2F . (19)

Then an optimal solution to Eq. (19) isM ∗ = UΣ∗
MV T , where

Σ∗
M = diag(σ∗) and σ∗ = proxh,ω(σA). proxh,ω(σA) is the

Moreau-Yosida operator, which is defined as

proxh,ω(σA) = argminh(σ) +
ω

2
||σ − σA||22. (20)

Proof: Since A = UΣAV
T , we have ΣA = UTAV . De-

notingQ = UTMV which has the same singular values asM ,
we have

H(M) +
ω

2
||M −A||2F (21a)

= H(Q) +
ω

2
||Q−ΣA||2F (21b)
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≥ H(ΣQ) +
ω

2
||ΣQ −ΣA||2F (21c)

= H(ΣM ) +
ω

2
||ΣM −ΣA||2F (21d)

= h(σ) +
ω

2
||σ − σA||22

≥ h(σ∗) +
ω

2
||σ∗ − σA||22. (21e)

Eq. (21b) holds because the Frobenius norm is unitarily in-
variant, Eq. (21c) holds due to the Hoffman-Wielandt in-
equality, and Eq. (21d) holds based on ΣQ = ΣM . Therefore,
Eq. (21d) is a lower bound of Eq. (21a). Due to ΣM = ΣQ =
Q = UTMV , the singular value decomposition (SVD) of M
is M = UTΣMV . By minimizing Eq. (21e), we learn σ∗.
Hence M ∗ = Udiag(σ∗)V T , which is the optimal solution of
Eq. (19). Thus, Theorem 2 is proved. �

Note that Eq. (20) is a combination of concave and convex
functions, which motivates us to leverage the difference of
convex (DC) programming algorithm [53]. The algorithm de-
composes a nonconvex function as the difference of two convex
functions and iteratively optimizes it by linearizing the concave
term at each iteration. For the i-th inner iteration, gi = ∂h(σi)
denotes the gradient of h(·) at σi, where σi is the updated
value of σ(M) after the i-th inner iteration. Udiag(σA)V

T

is the SVD of W (v)TZ(v)W (v) + pN (v) +C
(v)
2 /ω. For the

(i+ 1)-th inner iteration, we have

σi+1 = argmin < gi, σ
i > +

ω

2
||σi − σA||22, (22)

which admits the following closed-form solution

σi+1 =
(
σA − gi

ωi

)
. (23)

After several iterations, it at least converges to a locally optimal
point σ∗. Then M = Udiag(σ∗)V T .

Step 2: Update Z(v). Fixing the other variables, the problem
to update Z(v) is degraded to minimize

J(Z(v)) =

∥∥∥∥∥W (v)TZW (v) −M + pN (v) +
C

(v)
2

ω

∥∥∥∥∥
2

F

+

∥∥∥∥∥X(v) −X(v)Z(v) −E(v) +
C

(v)
1

ω

∥∥∥∥∥
2

F

. (24)

Setting the derivative J(Z(v)) w.r.t Z(v) to 0, we have

2W (v)

(
W (v)TZW (v) −M + pN (v) +

C
(v)
2

ω

)
W (v)T

+ 2X(v)T

(
X(v) −X(v)Z(v) −E(v) +

C
(v)
1

ω

)
= 0. (25)

Based on the definition of W (v), we can find W (v)W (v)T = I .
By solving Eq. (25), we can update Z(v) by

Z(v) = (I +X(v)TX(v))−1
(
X(v)T

(
X(v) −E(v)

+
C

(v)
1

ω

)
+W (v)

(
M − pN (v) − C

(v)
2

ω

)
W (v)T

)
. (26)

Step 3: Update N (v) and ζ. Fixing the other variables, the
problem to update N (v) is degraded to minimize

J(N (v)) =
ω

2

∥∥∥∥∥W (v)TZ(v)W (v) −M + pN (v) +
C

(v)
2

ω

∥∥∥∥∥
2

F

+ αTr(F (v)TL
(v)
N F (v))− ζ(v)

T

(N (v)1− 1). (27)

We define K(v) = W (v)TZ(v)W (v) −M +C
(v)
2 /ω, and

Eq. (27) can be equivalent to

J(N (v)) =
ωp

2
||N (v) − 1

p
K(v)||2F +

α

2

m∑
i,j

||F (v)
i,:

− F
(v)
j,: ||22N (v) − ζ(v)

T

(N (v)1− 1). (28)

Note that Eq. (28) is independent to each row. Defining
T

(v)
i,j =||F (v)

i,: − F
(v)
j,: ||22, we transform minimizing Eq. (28) into

min
N

(v)
i,: ≥0,N

(v)
i,i =0

ωp

2
||N (v)

i,: − 1

p
K

(v)
i,: ||22 +

α

2
N

(v)
i,: T

(v)T

i,:

− ζ
(v)T

i (N
(v)
i,: 1− 1)

⇔ min
N

(v)
i,: ≥0,N

(v)
i,i =0

ωp

2
||N (v)

i,: +
α

2ωp
T

(v)
i,: − 1

p
K

(v)
i,: ||22

− ζ
(v)T

i (N
(v)
i,: 1− 1). (29)

Defining Y
(v)
i,j = K

(v)
i,j /p− α/(2pω)T

(v)
i,j + ζ

(v)
i /(pω), we

can obtain the optimal N (v) by

N
(v)
i,j =

{
max(Y

(v)
i,j , 0), i 	= j;

0, otherwise,
(30)

where max(Y
(v)
i,j , 0) is used to ensure that all elements of N (v)

are not less than 0. Based on the constraint N (v)
i,: 1− 1 = 0, we

can update ζ
(v)
i by

ζ
(v)
i =

ωp

m− 1

⎛
⎝1−

m∑
j=1,j 	=i

(
1

p
K

(v)
i,j − α

2pω
T

(v)
i,j

)⎞⎠ . (31)

Step 4: Update E(v). Fixing the other variables, the problem
to update E(v) is degraded to minimize

J(E(v)) =
ω

2
||X(v) −X(v)Z(v) −E(v)

+
C

(v)
1

ω
||2F + β||E(v)||τ . (32)

Deriving J(E(v)) w.r.t. E(v), we can have

∂J(E(v))

∂E(v)

= ω

(
E(v) +X(v)Z(v) −X(v) − C

(v)
1

ω

)
+ βD

(v)
E E(v).

(33)



240 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 3, DECEMBER 2020

Setting ∂J(E(v))/∂E(v) = 0, we can update E(v) by

E(v) =

(
I +

β

ω
D

(v)
E

)−1
(
X(v) −X(v)Z(v) +

C
(v)
1

ω

)
.

(34)

Step 5: UpdateF (v). Fixing the other variables, we can update
F (v) by

minαTr(F (v)TL
(v)
N F (v)) + γ||F (v)F (v)T −HHT ||2F )

⇔ minαTr(F (v)TL
(v)
N F (v) + γ(||F (v)F (v)T ||2F

+ ||HHT ||2F − Tr(F (v)F (v)THHT )). (35)

Note that ||F (v)F (v)T ||2F = ||HHT ||2F = c, and c is a constant
for a specific dataset. Thus, we transfer Eq. (35) into

minTr(F (v)T (αL
(v)
N − γHHT )F (v)). (36)

Obviously, we can solve Eq. (36) by the eigenvalue decompo-
sition. The optimal F (v) is the eigenvector set that corresponds
to the first c smallest eigenvalues of matrix (αL

(v)
N − γHHT ).

Step 6: Update H . Similar to Step 5, we update H by

min−γ
∑
v

Tr(F (v)F (v)THHT )

⇔ maxTr

(
HT

(∑
v

(γF (v)F (v)T )

)
H

)
. (37)

By the eigenvalue decomposition, we can learn the optimal H ,
which is also the eigenvector set corresponding to the first c
largest eigenvalues of matrix (

∑
v(γF

(v)F (v)T )).

Step 7: Update C
(v)
1 ,C

(v)
2 and ω. We can update them by

C
(v)
1 = C

(v)
1 + ω(X(v) −X(v)Z(v) −E(v))

C
(v)
2 = C

(v)
2 + ω(W (v)TZW (v) −M + pN (v))

ω = min(ϕω, ωmax), (38)

where ϕ and ωmax are constants.
The V3H algorithm is shown in Algorithm 1. We provide its

codes in Code Ocean (DOI:10.24 433/CO.2 119 636.v1) and
Github (https://github.com/ZeusDavide/TAI_V3H.git).

F. Convergence and Complexity

1) Convergence Analysis: To optimize our proposed V3H,
we need to solve seven subproblems in Algorithm 1. Each sub-
problem has a closed solution w.r.t the corresponding variable.
The objective function is bounded, and all the above seven steps
do not increase the objective function value. Thus, the objective
function can reduce monotonically to a stationary value, and
V3H can at least find a locally optimal solution.

2) Complexity Analysis: From Section IV-E, the major com-
putational costs of our proposed V3H mainly come from the
operations like matrix inverse, SVD, and eigenvalue decompo-
sition. Therefore, Steps 1, 5, and 6 are the main computational
costs. For Step 2, its major computational costs are from the
inverse operation (I +X(v)TX(v))−1. Since both I and X(v)

TABLE I
STATISTICS OF THE DATASETS, WHERE “#. FEATURES” MEANS THE TOTAL

FEATURE DIMENSION OF ALL THE VIEWS

are not updated in each iteration, we can pre-compute the inverse
operation before the iteration for simplicity. For Steps 1, 5, and 6,
they have the same computational complexityO(n3). Therefore,
the whole computational complexity of V3H is aboutO(invn

3),
where i is the iteration number, nv is the view number, and n is
the sample number.

Note that the complexity of V3H has nothing to do with
the feature dimension dv . Since most real-world data are high-
dimensional [54], V3H will have wide applications.

V. PERFORMANCE EVALUATION

We first illustrate the clustering performance of the proposed
V3H, then verify V3H’s convergence, and finally analyze the
sensitivity of V3H’s parameters.

A. Datasets

We conduct experiments on fifteen well-known popular
datasets: 3-Sources,2 20 New Groups (20-NGs),3 100 Leaves
(100-Ls),4 BBC with 3 views (BBC (3v)),5 BBC with 4 views
(BBC (4v)),6 BBCSport with 2 views (BS (2v)),7 BBCSport with
4 views (BS (4v)),8 BUAA [55], Coil [56], Digit,9 NUS [57],
ORL [58], Outdoor Scene (Scene) [59], Yale,10 and Extended
YaleB (YaleB) [60].

For these datasets, most multiview clustering algorithms often
cluster their common subsets for simplicity. To compare fairly
with these algorithms, we use the same size datasets for clus-
tering. The important statistics of used datasets are shown in
Table I, and the detailed statistics are as follows:

1) 3-Sources: it is a news dataset that has 948 samples col-
lected from 3 views: BBC with 3560 features, Reuters with 3631
features and The Guardian with 3068 features. Following [29],

2[Online]. Available: http://mlg.ucd.ie/datasets/3sources.html
3[Online]. Available: http://lig-membres.imag.fr/grimal/data.html
4[Online]. Available: https://archive.ics.uci.edu/ml/datasets/One-hundred+

plant+species+leaves+data+set
5[Online]. Available: http://mlg.ucd.ie/datasets/segment.html
6[Online]. Available: http://mlg.ucd.ie/datasets/segment.html
7[Online]. Available: http://mlg.ucd.ie/datasets/segment.html
8[Online]. Available: http://mlg.ucd.ie/datasets/segment.html
9[Online]. Available: http://archive.ics.uci.edu/ml/datasets.html
10[Online]. Available: http://vision.ucsd.edu/content/yale-face-database

https://github.com/ZeusDavide/TAI_V3H.git
http://mlg.ucd.ie/datasets/3sources.html
http://lig-membres.imag.fr/grimal/data.html
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/segment.html
http://archive.ics.uci.edu/ml/datasets.html
http://vision.ucsd.edu/content/yale-face-database
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Fig. 3. Results on 3-Sources, 20-NGs, and 100-Ls datasets.

we select a subset with 169 samples, which are categorized into
6 clusters.

2) 20-NGs: it is a document dataset that has 500 samples
from 3 views. Each view has 500 features. These documents are
categorized into 5 clusters.

3) 100-Ls: it has 1600 samples from 100 clusters. Each sample
appears in 3 views, and each view has 64 features.

4) BBC (3v) and 5) BBC (4v): the original BBC dataset has
685 samples, which are described by 3-4 views categorized into
5 clusters. Following [61], we choose a subset with 282 samples
described by 3 views. These views include 2582 features, 2544
features, 2465 features, respectively. Following [62], we also
choose the full dataset described by 4 views. These views include
4659 features, 4633 features, 4665 features, and 4684 features,
respectively.

6) BS (2v) and 7) BS (4v): the original BBCSport dataset has
737 samples, which are described by 2-4 views and categorized
into 5 clusters. Following [63], we select a subset with 544
samples described by 2 views. These views include 3183 features
and 3203 features, respectively. Following [29], we also use a
subset with 116 samples described by 4 views. These views
include 1991 features, 2063 features, 2113 features, and 2158
features, respectively.

8) BUAA: it has 180 image samples, which are categorized
into 10 clusters. Each image is described by 2 views, and each
view has 100 features.

9) Coil: it is an image dataset that has 1440 samples consisting
of 20 clusters. Each image appears in three different views:
Intensity with 1024 features, LBP feature with 3304 features,
and Gabor feature with 6750 features.

10) Digit: it has 2000 samples categorized into 10 clusters.
It has 5 views: FOU with 76 features, FAC with 216 features,
KAR with 64 features, PIX with 240 features, and ZER with 47
features.

11) NUS: it consists of 2400 samples categorized into 12
clusters. Besides, each image is described by 6 views: CH with
65 features, CM with 226 features, CORR with 145 features,
ED with 74 features and WV with 129 features.

12) ORL: it is an image dataset, which is described by 3 views.
The dataset has 400 samples categorized into 40 clusters. These
views include 4096 features, 3304 features and 6750 features,
respectively.

13) Scene: it is an image dataset that has 2688 samples
consisting of 8 clusters. Each image is described by 4 views:
GIST with 512 features, color moment with 432 features, HOG
with 256 features and LBP with 48 features.
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Fig. 4. Results on BBC (3v), BBC (4v) and BS (2v) datasets.

14) Yale: it has 165 samples categorized into 15 clusters. It
is described by 3 views: Intensity with 4096 features, LBP with
3304 features and Gabor with 6750 features.

15) YaleB: it is a face image dataset that has 2414 samples
described by 3 views. These views include 2500 features, 3304
features and 6750 features, respectively. Following [64], we
choose a subset with 650 samples.

B. Compared Methods

We compare our proposed V3H with the following state-of-
the-art methods, which are most relevant to our work:

1) CSMSC [1] learns a consistent representation and a set of
specific representations from complete multiview data;

2) DAIMC [27] extends MIC based on weighted semi-NMF
and L2,1-Norm regularization regression;

3) IMG [20] transforms the collected incomplete multiview
data to a complete representation in a latent space;

4) MIC [24] extends MultiNMF based on weighted NMF and
L2,1-Norm regularization;

5) MultiNMF [25] extends NMF to multiview scenes by
jointing these views;

6) PVC [23] aligns the same samples in different views by
constructing a latent subspace;

7) UEAF [29] learns a consensus representation for all views
by extending MIC;

8) Concat-K-means clustering (CK), and 9) Concat-
Spectral clustering (CS). CK and CS are two baselines that
concatenate all views into one single view for clustering. (i)
CK: we first fill the missing samples with the average features
for each view. Then we concatenate the features of all the
views, and perform K-means clustering on the concatenated
view. (ii) CS: similar to CK, we perform spectral clustering on
the concatenated view.

For CSMSC and MultiNMF, they cannot directly handle
incomplete multiview data. Following [27], we first fill the
missing samples with average feature values. Then we perform
CSMSC and MultiNMF. Since IMG and PVC cannot perform
clustering on the incomplete data with more than two views,
we use these methods on all the two-views combinations and
report average results for fairness. Since our proposed V3H
has three parameters, α, β, and γ, we adjust them to get the
best performance (see Section V-D). Since p, η, τ , and wi are
adjustable as needed, we set p = 1, η = 10−3, τ = 10−2, and
wi = 1 in our experiment for simplicity.
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Fig. 5. Results on BS (4v), BUAA, and Coil datasets.

Following [20], we repeat each incomplete multiview clus-
tering experiment 10 times to obtain the average performance.
Following [27] and [24], we randomly delete some samples
from each view to get incomplete views. We set the missing
rate (PER) from 0 (each view is complete) to 0.5 (each view has
50% samples missing) with 0.1 as an interval.

Evaluation Metric: Following [29], we evaluate the ex-
perimental results by three popular metrics: Accuracy (ACC),
Normalized Mutual Information (NMI) and Purity. For these
metrics, the larger value represents better performance.

C. Clustering Performance and Analysis

Fig. 3–7 show the clustering results on these real-world
datasets. Obviously, our proposed V3H significantly performs
better than other state-of-the-art methods in most cases. Espe-
cially, when we cluster the YaleB dataset with PER = 0.2 (Fig.
7(g), 7(h), and 7(i)), V3H gains large improvements at least
23.24% in ACC, 22.42% in NMI, and 22.46% in Purity over the
best performing compared method PVC.

For convenience, we first divide the compared methods into 3
groups: single-view methods (CK and CS), two-view methods
(IMG and PVC) and multiview methods (CSMSC, DAIMC,

MIC, MultiNMF and UEAF). Then, based on the experimental
results, we compare and analyze the performance of different
groups. Finally, we critically analyze each method.

V3H versus single-view methods: compared with single-
view methods, V3H achieves better performance on all the
datasets. For instance, when clustering the Scene dataset with
PER=0.5 (Fig. 7(a), 7(b), and 7(c)), compared with CK and CS,
V3H raises the clustering results at least 31.10% in ACC, 25.73%
in NMI, and 30.54% in Purity, respectively. It is because the
Scene dataset has 4 views. CK and CS only simply concatenate
these views, which cannot learn the relationship information
between different views. On the contrary, V3H can extract the re-
lationship information by integrating different views. Therefore,
integrating effectively different views is necessary for multiview
clustering.

V3H versus two-view methods: compared with two-view
methods, V3H obtains better clustering results in all the cases.
For the datasets with more than 2 views (e.g., BS (4v), 3-Sources,
20-NGs, etc.), V3H performs better than PVC and IMG. When
we cluster the BS (4v) dataset with PER=0.5 (Fig. 5(a), 5(b) and
5(c)), compared with PVC and IMG, V3H raises the clustering
results at least 24.14% in ACC, 43.10% in NMI, and 34.47%
in Purity, respectively. The reason is that PVC and IMG can
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Fig. 6. Results on Digit, NUS, and ORL datasets.

only integrate two views, and structural information of the rest
views is not learned, which illustrates the necessity of integrating
all the views. As for the two-view datasets (e.g., BUAA and
BS (2v)), V3H still outperforms PVC and IMG. For the BUAA
dataset with PER=0.2 (Fig. 5(d), 5(e) and 5(f)), compared with
PVC and IMG, V3H improves the performance at least 3.51%
in ACC, 1.07% in NMI, and 5.97% in Purity, respectively. The
main reason is that the BUAA dataset contains the nonlinear
structural information, V3H can learn the information based on
the linear kernel used in the Laplacian for spectral clustering.

V3H versus multiview methods: compared with multiview
methods, V3H also achieves better clustering performance
in most cases. When we cluster the BBC (4v) dataset with
PER=0.5 (Fig. Fig. 4(d), 4(e), and 4(f)), compared with multi-
view methods, V3H raises the performance at least 25.84% in
ACC, 18.95% in NMI, and 22.92% in Purity, respectively. It is
because each view of the BBC (4v) dataset includes the unique
information. V3H can learn the unique information through the
corresponding variation matrix, while the unique information is
ignored by multiview methods. More impressively, as PER on
the dataset increases, V3H achieves satisfactory and relatively
stable clustering results, while the performance of all multiview
methods drops significantly. It is because based on the subspace
decomposition in Eq. (4), V3H can learn the information from

both the presented samples and the missing samples. But these
multiview methods can only learn information from the pre-
sented samples.

In summary, all the methods are analyzed as follows:
1) CK and CS: for most clustering tasks, the performance

of CK and CS are close because they simply concatenate all
views. Although this concatenation is easy to operate, CK and
CS always perform poorly due to ignoring the relationship be-
tween different views. Therefore, CK and CS often have limited
applications in multiview datasets.

2) PVC and IMG: for the incomplete two-view datasets,
PVC can obtain pretty clustering performance by establishing a
latent subspace from two views. Similarly, IMG also performs
well in incomplete two-view clustering by introducing manifold
learning into PVC. But when clustering the data with more than 2
incomplete views, PVC and IMG cannot obtain an optimal latent
subspace due to ignoring the global structure of the multiview
data. Thus, it is difficult for them to obtain satisfactory results
in incomplete multiview clustering tasks.

3) CSMSC, DAIMC, MIC, MultiNMF, and UEAF: when
clustering complete multiview datasets, CSMSC, MIC, and
MultiNMF can perform well by learning a subspace from each
view. As the missing rate increases, the clustering results of these
three methods drop significantly. The reason is that these three
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Fig. 7. Results on Scene, Yale, and YaleB datasets.

methods simply fill the missing samples with the average feature
values, which neglects the hidden information of the missing
samples. Since real-world data are often incomplete, these three
methods are difficult to be widely used. For these datasets with
little alignment information, DAIMC and UEAF always obtain
unsatisfactory clustering results because they learn the consen-
sus representation by aligning these views. These drawbacks
limit the application of these methods.

4) Our proposed V3H: by aligning cluster indicator matrices
from different views and learning the low-rank representation,
V3H can perform satisfactorily in most cases, which shows its
wide application. Moreover, when the missing rate is relatively
large (e.g., PER=0.4 or PER=0.5), V3H has more obvious
superiority over other state-of-the-arts, which illustrates its ef-
fectiveness in high-incompleteness applications.

D. Parameter Sensitivity

In terms of {α, β, γ}, we conduct the hyper-parameter exper-
iments on 3-Sources dataset. Similar to [27], we set PER=0.5
and report V3H’s NMI versus α, β, and γ within the set of
{100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6}.

As shown in Fig. 8(a) and 8(b) our proposed V3H obtains
stable and satisfactory clustering performance across a wide

range of these parameters. Thus, V3H is insensitive to the
variation of the parameters. Also, V3H obtains the best clustering
results when we set α=10−3, β= 10−4 and γ=10−1, which are
the recommended values.

E. Convergence Study

Based on the recommended values of these hyper-
parameters, we study the convergence by conducting the
experiments on the Coil dataset with different PERs, i.e.,
PER=0.1, PER=0.3, PER=0.5. Fig. 8(c) show that the con-
vergence curve versus the iteration number, and “Obj fun
val” represents “objective function value,” which is calcu-
lated by (||M ||η +

∑
v(β||E(v)||τ + αTr(F (v)TL

(v)
N F (v))−

γTr(F (v)F (v)TF ∗F ∗T ))) /(||X(v) −X(v)Z(v) −E(v)||2F +

||W (v)TZ(v)W (v) −M + pN (v)||2F ), similar to [65]. Obvi-
ously, our proposed V3H has converged just after 10 iterations
for all PERs, which shows its fast convergence.

Note that the convergence curves under different PERs are
close to each other. This is because, based on Eq. (4), we can
learn the information of all samples (including presented sam-
ples and missing samples). When PER changes, the dimensions
of M and N (v) do not change.
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Fig. 8. Convergence and parameter studies.

Besides, when the iteration number is the same, obj(PER =
0.5) > obj(PER = 0.3) > obj(PER = 0.1). The reason is as
follows: in the objective function, only the dimensions of E and
Z(v) will change as the missing rate increases. Thus, only the
values of ||E(v)||τ and ||X(v) −X(v)Z(v) −E(v)||2F will rely
on missing rate. In fact, for a robust algorithm, its error matrix
E will generally be small. Therefore, we can approximate the
numerator of obj as a constant. As the missing rate increases,
the value of ||X(v) −X(v)Z(v) −E(v)||2F will decrease, and
the objective function value will increase.

VI. CONCLUSION

In this paper, we propose a novel View Variation and View
Heredity approach (V3H) for incomplete multiview clustering.
As far as we know, V3H is the first attempt to introduce genetics
into the clustering method. Also, it can learn the consistent
information and the unique information based on view variation
and view heredity respectively. Extensive experiments on fifteen
datasets demonstrate the superiority of V3H over other state-of-
the-art methods. Impressively, when clustering the YaleB dataset
with the missing rate of 0.2, V3H improves at least 23.24%
in ACC, 22.42% in NMI, and 22.46% in Purity over the best
performing compared method.

Our proposed V3H is an offline approach for high-
dimensional incomplete multiview clustering. A larger chal-
lenge is to cluster large-scale high-dimensional data. In the
future, we will introduce online learning into V3H for the
large-scale high-dimensional data about COVID-19. We collect
a large amount of data about COVID-19 every day, and online
learning is an effective way to process these data. Based on
online learning, we will process these data.
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