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Abstract—The black-box nature of machine learning models hin-
ders the deployment of some high-accuracy medical diagnosis algo-
rithms. It is risky to put one’s life in the hands of models that medical
researchers do not fully understand or trust. However, through
model interpretation, black-box models can promptly reveal signif-
icant biomarkers that medical practitioners may have overlooked
due to the surge of infected patients in the COVID-19 pandemic.
This research leverages a database of 92 patients with confirmed
SARS-CoV-2 laboratory tests between 18th January 2020 and 5th
March 2020, in Zhuhai, China, to identify biomarkers indicative
of infection severity prediction. Through the interpretation of four
machine learning models, decision tree, random forests, gradient
boosted trees, and neural networks using permutation feature im-
portance, partial dependence plot, individual conditional expecta-
tion, accumulated local effects, local interpretable model-agnostic
explanations, and Shapley additive explanation, we identify an
increase in N-terminal pro-brain natriuretic peptide, C-reaction
protein, and lactic dehydrogenase, a decrease in lymphocyte is
associated with severe infection and an increased risk of death,
which is consistent with recent medical research on COVID-19
and other research using dedicated models. We further validate
our methods on a large open dataset with 5644 confirmed patients
from the Hospital Israelita Albert Einstein, at São Paulo, Brazil
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from Kaggle, and unveil leukocytes, eosinophils, and platelets as
three indicative biomarkers for COVID-19.

Impact Statement—The pandemic is a race against time. We
seek to answer the question, how can medical practitioners employ
machine learning to win the race in the pandemic? Instead of
targeting at a high-accuracy black-box model that is difficult to
trust and deploy, we use model interpretation that incorporates
medical practitioners’ prior knowledge to promptly reveal the most
important indicators in early diagnosis, and thus, win the race in
the pandemic.

Index Terms—Artificial intelligence in health, artificial
intelligence in medicine, interpretable machine learning.

I. INTRODUCTION

THE sudden outbreak of COVID-19 has caused an unprece-
dented disruption and impact worldwide. With more than

100 million confirmed cases as of February 2021, the pandemic
is still accelerating globally. The disease is transmitted by inhala-
tion or contact with infected droplets with an incubation period
ranging from 2 to 14 days [1], making it highly infectious and
difficult to contain and mitigate.

With the rapid transmission of COVID-19, the demand for
medical supplies goes beyond hospitals’ capacity in many coun-
tries. Various diagnostic and predictive models are employed
to release the pressure on healthcare workers. For instance,
a deep learning model that detects abnormalities and extract
key features of the altered lung parenchyma using chest CT
images is proposed [2]. On the other hand, Rich Caruana et
al. [3] exploit intelligible models that use generalized additive
models with pairwise interactions to predict the probability of
readmission. To maintain both interpretability and complexity,
DeepCOVIDNet is present to achieve predictive surveillance
that identifies the most influential features for the prediction of
the growth of the pandemic [4] through the combination of two
modules. The embedding module takes various heterogeneous
feature groups as input and outputs an equidimensional em-
bedding corresponding to each feature group. The DeepFM [5]
module computes second and higher order interactions between
them.

Models that achieves high accuracy provide fewer interpre-
tations due to the tradeoff between accuracy and interpretabil-
ity [6]. To be adopted in healthcare systems that require both
interpretability and robustness [7], the multitree XGBoost al-
gorithm is employed to identify the most significant indicators
in COVID-19 diagnosis [8]. This method exploits the recursive
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Fig. 1. Difference between the usual workflow of machine learning, and our approach.

tree-based decision system of the model to achieve high inter-
pretability. On the other hand, a more complex convolutional
neural network (CNN) model can discriminate COVID-19 from
non-COVID-19 using chest CT image [9]. It achieves inter-
pretability through gradient-weighted class activation mapping
to produce a heat map that visually verifies where the CNN
model is focusing.

Besides, several model-agnostic methods have been proposed
to peek into black-box models, such as partial dependence
plot (PDP) [10], individual conditional expectation (ICE) [11],
accumulated local effects (ALE) [12], permutation feature im-
portance [13], local interpretable model-agnostic explanations
(LIME) [14], Shapley additive explanation (SHAP) [15], and an-
chors [16]. Most of these model-agnostic methods are reasoned
qualitatively through illustrative figures and human experiences.
To quantitatively measure their interpretability, metrics such as
faithfulness [17] and monotonicity [18] are proposed.

In this article, instead of targeting a high-accuracy model, we
interpret several models to help medical practitioners promptly
discover the most significant biomarkers in the pandemic, as
illustrated in Fig. 1.

Overall, this article makes the following contributions.
1) Evaluation: A systematic evaluation of the interpretability

of machine learning models that predict the severity level
of COVID-19 patients. We experiment with six interpreta-
tion methods and two evaluation metrics on our dataset and
receive the same result as research that uses a dedicated
model. We further validate our approach on a dataset from
Kaggle.

2) Implication: Through the interpretation of models trained
on our dataset, we reveal N-terminal probrain natriuretic
peptide (NTproBNP), C-reaction protein (CRP), lactic de-
hydrogenase (LDH), and lymphocyte (LYM) as the most
indicative biomarkers in identifying patients’ severity
level. Applying the same approach on the Kaggle dataset,

we further unveil three significant features, leukocytes,
eosinophils, and platelets.

3) Implementation: We design a system that healthcare pro-
fessionals can interact with its AI Models to incorpo-
rate model insights with medical knowledge. We re-
lease our implementation, models for future research and
validation.1

II. PRELIMINARY OF AI INTERPRETABILITY

In this section, six interpretation methods, partial depen-
dence plot, individual conditional expectation, accumulated lo-
cal effects, local interpretable model-agnostic explanations, and
Shapley additive explanation are summarized. We also summa-
rize two evaluation metrics, faithfulness, and monotonicity.

A. Model-Agnostic Methods

In healthcare, restrictions to using only interpretable models
bring many limitations in adoption while separating explana-
tions from the model can afford several beneficial flexibili-
ties [19]. As a result, model-agnostic methods have been devised
to provide interpretations without knowing model details.

1) Partial Dependence Plot: PDPs reveal the dependence
between the target function and several target features.
The partial function ˆfxs(xs) is estimated by calculating
averages in the training data, also known as the Monte
Carlo method. After setting up a grid for the features we
are interested in (target features), we set all target features
in our training set to be the value of grid points, then
make predictions and average them all at each grid. The
drawback of PDP is that one target feature produces 2D
plots and two produce 3D plots while it can be pretty hard

1Our source code and models are available at https://github.com/
wuhanstudio/interpretable-ml-covid-19.

https://github.com/wuhanstudio/interpretable-ml-covid-19
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for a human to understand plots in higher dimensions

f̂xs(xs) =
1

n

n∑

1

f̂(xs, x
i
c). (1)

2) Individual Conditional Expectation: ICE is similar to PDP.
The difference is that PDP calculates the average over the
marginal distribution while ICE keeps them all. Each line
in the ICE plot represents predictions for each individual.
Without averaging on all instances, ICE unveils heteroge-
neous relationships but is limited to only one target feature
since two features result in overlay surfaces that cannot be
identified by human eyes [20].

3) Accumulated Local Effects: ALE averages the changes in
the predictions and accumulate them over the local grid.
The difference with PDP is that the value at each point
of the ALE curve is the difference to the mean prediction
calculated in a small window rather than all of the grid.
Thus ALE eliminates the effect of correlated features [20]
which makes it more suitable in healthcare because it is
usually irrational to assume young people having similar
physical conditions with the elderly.

4) Permutation Feature Importance: The idea behind permu-
tation feature importance is intuitive. A feature is signifi-
cant for the model if there is a noticeable increase in the
model’s prediction error after permutation. On the other
hand, the feature is less important if the prediction error
remains nearly unchanged after shuffling.

5) Local Interpretable Model-Agnostic Explanations: LIME
uses interpretable models to approximate the predictions
of the original black-box model in specific regions. LIME
works for tabular data, text, and images, but the explana-
tions may not be stable enough for medical applications.

6) Shapley Additive Explanation: SHAP borrows the idea
of Shapley value from game theory [21], which repre-
sents contributions of each player in a game. Calculating
Shapley values is computationally expensive when there
are hundreds of features, thus Lundberg and Lee [15]
proposed a fast implementation for tree-based models to
boost the calculation process. SHAP has a solid theoretical
foundation but is still computationally slow for a lot of
instances.

To summarize, PDP, ICE, and ALE only use graphs to visu-
alize the impact of different features while permutation feature
importance, LIME, and SHAP provide numerical feature impor-
tance that quantitatively ranks the importance of each feature.

B. Metrics for Interpretability Evaluation

Different interpretation methods try to find out the most
important features to provide explanations for the output.
But as Doshi-Velez and Kim [6] questioned, “Are all models
in all defined-to-be-interpretable model classes equally inter-
pretable?” And how can we measure the quality of different
interpretation methods?

Faithfulness: Faithfulness incrementally removes each of the
attributes deemed important by the interpretability metric, and
evaluate the effect on the performance. Then it calculates the

correlation between the weights (importance) of the attributes
and corresponding model performance and returns correlation
between attribute importance weights and the corresponding
effect on classifier [17].

Monotonicity: Monotonicity incrementally adds each at-
tribute in order of increasing importance. As each feature is
added, the performance of the model should correspondingly
increase, thereby resulting in monotonically increasing model
performance, and it returns true of false [18].

In our experiment, both faithfulness and monotonicity are
employed to evaluate the interpretation of different machine
learning models.

III. EMPIRICAL STUDY ON COVID

In this section, features in our raw dataset and procedures
of data preprocessing are introduced. After preprocessing, four
different models: Decision tree, random forest, gradient boosted
trees, and neural networks are trained on the dataset. Model
interpretation is then employed to understand how different
models make predictions, and patients that models make false
diagnoses are investigated respectively.

A. Dataset and Perprocessing

The raw dataset consists of patients with confirmed SARS-
CoV-2 laboratory tests between 18th January 2020 and 5th
March 2020, in Zhuhai, China. Our Research Ethics Committee
waived written informed consent for this retrospective study
that evaluated deidentified data and involved no potential risk to
patients. All the data of patients have been anonymized before
analysis.

Tables in the Appendix list all 74 features in the raw dataset
consisting of body mass index (BMI), complete blood count
(CBC), blood biochemical examination, inflammatory markers,
symptoms, anamneses, among others. Whether or not health care
professionals will order a test for patients is based on various
factors such as medical history, physical examination, and etc.
Thus, there is no standard set of tests that are compulsory for
every individual which introduces data sparsity. For instance,
left ventricular ejection fraction (LVEF) are mostly empty be-
cause most patients are not required to take the color doppler
ultrasound test.

After pruning out irrelevant features, such as patients’ medical
numbers that provide no medical information, and features that
have no patients’ records (no patient took this test), 86 patients’
records with 55 features are selected for further investigation.
Among those, 77 records are used for training, cross-validation,
and 9 reserved for testing. The feature for classification is
Severity01 which indicates normal with 0, and severe with 1.
More detailed descriptions about features in our dataset are listed
in the Appendix.

Feature engineering is applied before training and interpreting
our models, as some features may not provide valuable infor-
mation or provide redundant information.

First, constant and quasi-constant features were removed. For
instance, the two features, PCT2 and Stomachache, have the
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TABLE I
FEATURE CORRELATION

same value for all patients providing no valuable information in
distinguishing normal and severe patients.

Second, correlated features were removed because they pro-
vide redundant information. Table I lists all correlated features
using Pearson’s correlation coefficient.

1) There is strong correlation between cTnICKMBOrdinal1
and cTnICKMBOrdinal2 because they are the same test
among a short range of time which is the same for LYM1
and LYM2.

2) LDH and HBDH levels are significantly correlated with
heart diseases, and the HBDH/LDH ratio can be calculated
to differentiate between liver and heart diseases.

3) Neutrophils (NEU1/NEU2) are all correlated to the im-
mune system. In fact, most of the white blood cells that
lead the immune system’s response are neutrophils. Thus,
there is a strong correlation between NEU1 and WBC1,
NEU2 and WBC2.

4) In the original dataset, there is no much information
about N2L2 which is correlated with NTproBNP, thus
NTproBNP remains.

5) The correlation between BMI and weight is straight for-
ward because BMI is a person’s weight in kilograms
divided by the square of height in meters.

Third, statistical methods that calculate mutual information
is employed to remove features with redundant information.

Mutual information is calculated using (2) that determines
how similar the joint distribution p(X, Y) is to the products of
individual distributions p(X)p(Y). Univariate test measures the
dependence of two variables, and a high p-value indicates a less
similar distribution between X and Y.

I(X;Y ) =
∑

x,y

p(x, y)log
p(x, y)

p(x)p(y)
. (2)

After feature engineering, there are 37 features left for training
and testing.

B. Training Models

Machine learning models outperform humans in many differ-
ent areas in terms of accuracy. Interpretable models such as the
decision tree are easy to understand, but not suitable for large
scale applications. Complex models achieve high accuracy while
giving less explanation.

For healthcare applications, both accuracy and interpretability
are significant. Four different models are selected to extract

TABLE II
FEATURES WITH MUTUAL INFORMATION

TABLE III
STRUCTURE OF NEURAL NETWORKS

information from our dataset: Decision tree, random forests,
gradient boosted trees, and neural networks.

Decision Tree: DT is a widely adopted method for both
classification and regression. It’s a nonparametric supervised
learning method that infers decision rules from data features.
The decision tree try to find decision rules that make the best
split measured by Gini impurity or entropy. More importantly,
the generated decision tree can be visualized, thus easy to
understand and interpret [22].

Random Forest: RF is a kind of ensemble learning
method [23] that employs bagging strategy. Multiple decision
trees are trained using the same learning algorithm, and then
predictions are aggregated from the individual decision tree.
Random forests produce great results most of the time even
without much hyperparameter tuning. As a result, it has been
widely accepted for its simplicity and good performance. How-
ever, it is rather difficult for humans to interpret hundreds of
decision trees, so the model itself is less interpretable than a
single decision tree.

Gradient Boosted Trees: Gradient boosted trees is another
ensemble learning method that employs boosting strategy [24].
Through sequentially adding one decision tree at one time,
gradient boosted trees combine results along the way. With
fine-tuned parameters, gradient boosting can result in better
performance than random forests. Still, it is tough for humans
to interpret a sequence of decision trees, and thus, considered as
black-box models.

Neural Networks: Neural networks could be the most promis-
ing model in achieving a high accuracy and even outperforms
humans in medical imaging [25]. Though the whole network is
difficult to understand, deep neural networks are stacks of simple
layers, thus can be partially understood through visualizing
outputs of intermediate layers [26].

As for the implementation, there is no hyperparameter for the
decision tree. For random forests, 100 trees are used during the
initialization. The hyperparameters for gradient boosted trees
are selected according to prior experience. The structure for
neural networks is listed in Table III. All these methods are
implemented using scikit-learn [27], Keras, and python3.6.
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TABLE IV
CLASSIFICATION RESULTS ON OUR DATASET

TABLE V
FIVE MOST IMPORTANT FEATURES

After training, gradient boosted trees and neural networks
achieve the highest precision on the test set. Among 9 patients
in our test set, four of them are severe. Both the decision tree
and random forests fail to identify two severe patients, while
gradient boosted trees and neural networks find all of the severe
patients.

C. Interpretation (Permutation Feature Importance)

First, we use permutation feature importance to find the most
important features in different models. In Table V, CRP2 and
NTproBNP are recognized as most important features by most
models.

According to medical knowledge, CRP, which increases when
there’s inflammation or viral infection in the body. CRP levels
are positively correlated with lung lesions and could reflect
disease severity [28]. NTproBNP refers to N-terminal prohor-
mone of brain natriuretic peptide, which will be released in
response to changes in pressure inside the heart. The CRP level
in severe patients rises due to viral infection, and patients with
higher NT-proBNP (above 88.64 pg/mL) level had more risks
of in-hospital death [29].

D. Interpretation (PDP, ICE, ALE)

After recognizing the most important features, PDP, ICE, and
ALE are employed to further visualize the relationship between
CRP and NTproBNP.

In the PDPs, all of the four models indicate a higher risk
of turning severe with the increase of NTproBNP and CRP
which is consistent with the retrospective study on COVID-19,
as depicted in Fig. 2. The difference is that different models
have different tolerances and dependence on NTproBNP and
CRP. Averagely, the decision tree has less tolerance on a high
level of NTproBNP (>2000 ng/ml), and gradient boosted trees
give a much higher probability of death as CRP increases. Since
PDPs only calculate an average of all instances, we use ICEs to
identify heterogeneity as illustrated in Fig. 3.

ICE reveals individual differences. Though all of the models
give a prediction of a higher risk of severe as NTproBNP and
CRP increase, some patients have a much higher initial proba-
bility which indicates other features have an impact on overall
predictions. For example, elderly people have higher NTproBNP
than young people and have a higher risk of turning severe as
illustrated in Fig. 4.

In the ALEs, as NTproBNP and CRP get higher, all of the
four models give a more positive prediction of turning severe,
which coincides with medical knowledge.

E. Misclassified Patients

Even though the most important features revealed by our
models exhibit medical meaning, some severe patients fail to
be recognized. Both gradient boosted trees and neural networks
recognize all severe patients and yield a recall of 1.00, while the
decision tree and random forests fail to reveal two of them.

Patient No. 2 (normal) is predicted with a probability of 0.53
of turning severe which is around the boundary (0.5). While
for patient No. 5 (severe), the model gives a relatively low
probability of turning severe (0.24).

F. Interpretation (False Negative)

Suppose different models represent different doctors, then the
decision tree and random forests make the wrong diagnosis for
patient no. 5. The reason human doctors classified the patient
as severe is that he actually needed a respirator to survive. To
further investigate why the decision tree and random forests
make wrong predictions, LIME, and SHAP are employed.

LIME: Features in green have a positive contribution to the
prediction (increasing the probability of turning severe), and fea-
tures in red have a negative effect on the prediction (decreasing
the probability of turning severe).

SHAP: Features pushing the prediction to be higher (severe)
are shown in red, and those pushing the prediction to be lower
(normal) are in blue.

1) Wrong Diagnoses: Take the decision tree as an exam-
ple, in the Fig. 5(a), the explanation by LIME illustrates that
NTproBNP and CRP are two features (in green) that have a
positive impact on the probability of turning severe. Even though
patient No. 5 is indeed severe, the decision tree gives an overall
prediction of normal (false negative). Thus, we would like to
investigate features that have a negative impact on the probability
of turning severe.

In the Fig. 6(c), the explanation by SHAP reveals that the
patient is diagnosed as normal by the decision tree because the
patient has no symptom. Even though the patient has a high
NTproBNP and CRP, having no symptom makes it less likely
to classify him as severe. The record was taken when the patient
came to the hospital for the first time. It is likely that the patient
developed symptoms later and turned severe.

However, both gradient boosted trees and neural networks
are not deceived by the fact the patient has no symptom. Their
predictions indicate that the patient is likely to turn severe in the
future.
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Fig. 2. Partial dependence plot: There is a positive correlation between the level of NTproBNP/CRP and the probability of turning severe because as
NTproBNP/CRP increases, the average possibility (y-axis) of turning severe increases. (a) Decision Tree. (b) Random Forest. (c) Gradient Boosted Trees. (d)
Neural Networks.

2) Correct Diagnoses: In the Fig. 6(c) and (d), gradient
boosted trees and neural networks do not prioritize the feature
symptom. They put more weight on test results (NTproBNP and
CRP). Thus they make correct predictions based on the fact that
the patient’s test results are serious.

Besides, neural networks notice that the patient is elderly
(Age = 63). If we calculate the average age in different severity
levels, it is noticeable that elderly people are more likely to
deteriorate.

Gradient boosted trees and neural networks make correct
predictions because they trust more in test results, while the
decision tree relies more on whether or not a patient has symp-
toms. As a result, gradient boosted trees and neural networks
are capable of recognizing patients that are likely to turn severe
in the future while the decision tree makes predictions relying
more on patients’ current situation.

Medical research is a case-by-case study. Every patient is
unique. It is strenuous to find a single criterion that suits every
patient, thus it’s important to focus on each patient and make
a diagnosis accordingly. This is one of the benefits of using
interpretable machine learning. It unveils the most significant
features for most patients and provides the interpretation for
each patient as well.

TABLE VI
MISCLASSIFIED PATIENTS

TABLE VII
AVERAGE AGE IN DIFFERENT SEVERITY LEVELS

G. Interpretation (False Positive)

With limited medical resources at the initial outbreak of the
pandemic, it is equally important to investigate false positive, so
that valuable resources can be distributed to patients in need.

In Table VI, patient 2 is normal, but all of our models diagnose
the patient as severe. To further explain the false positive pre-
diction, Table VIII lists anonymized medical records for patient
2 (normal) and patient 5 (severe) for comparison.
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Fig. 3. Individual conditional expectation: Each line in different colors represents a patient. As we increase NTproBNP/CRP while keeping other features the
same, the probability of turning severe increases for each individual, but each patient has a different starting level because their other physical conditions differ. (a)
Decision Tree. (b) Random Forest. (c) Gradient Boosted Trees. (d) Neural Networks.

Fig. 4. Accumulated local effects: As the level of NTproBNP/CRP increases, the possibility of turning severe (yellow) goes above the average. (a) Decision Tree.
(b) Random Forest. (c) Gradient Boosted Trees. (d) Neural Networks.
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Fig. 5. LIME explanation (false-negative patient No. 5): Features in green have a positive contribution to the prediction (increasing the probability of turning
severe), and features in red have a negative effect on the prediction (decreasing the probability of turning severe). (a) Decision Tree. (b) Random Forest. (c) Gradient
Boosted Trees. (d) Neural Networks.

Fig. 6. SHAP explanation (false-negative patient No.5): Features pushing the prediction to be higher (severe) are shown in red, and those pushing the prediction
to be lower (normal) are in blue. (a) Decision Tree. (b) Random Forest. (c) Gradient Boosted Trees. (d) Neural Networks.

1) Doctors’ Diagnoses: We present the test results of both
patients to doctors without indicating which patient is severe.
All doctors mark patient No. 2 as more severe which is the same
as our models. Doctors’ decisions are based on the COVID-19
diagnosis and treatment guide in China. The increased level in

CRP, LDH, decreased level in LYM are associated with severe
COVID-19 infection in the guideline, and patient 2 has a higher
level of CRP and LDH, a lower level of LYM than patient
5. As a result, doctors’ diagnoses are consistent with models’
predictions
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TABLE VIII
RECORD OF THE FALSE POSITIVE PATIENT 2

TABLE IX
MOST IMPORTANT FEATURES FROM LIME AND SHAP

TABLE X
FAILTHFULNESS EVALUATION

TABLE XI
MONOTONICITY EVALUATION

2) Models’ Diagnoses: Even though all of the four models
make the same predictions as human doctors, it is important
to confirm models’ predictions are in accordance with medical
knowledge. Table IX lists the three most important features in the
interpretation of LIME and SHAP. More detailed interpretations
are illustrated in the Figs. 7 and 8.

In Table IX, NTproBNP, CRP, LYM, LDH are the most com-
mon features that are deemed crucial by all different models. The
three features, CRP, LYM, LDH, are listed as the most indicative
biomarkers in the COVID-19 guideline. While the correlation

TABLE XII
PATIENT NO. 0 IN THE KAGGLE DATASET

TABLE XIII
CLASSIFICATION RESULTS (KAGGLE)

between NTproBNP and COVID-19 are investigated in a article
from world health organization (WHO) global literature on coro-
navirus disease, that reveals elevated NTproBNP is associated
with increased mortality in patients with COVID-19 [30].

As a result, the prediction of false-positive is consistent with
doctors’ diagnoses. Patient 2 who is normal is diagnosed as
severe by both doctors and models. One possibility is that even
though the patients’ test results are not optimistic, he did not
require a respirator to survive when he came to the hospital
for the first time, so he was classified as normal. In this way,
models’ predictions can act as a warning. If a patient is diagnosed
as severe by models, and the prediction is in accordance with
medical knowledge, but the patient feels normal, we can suggest
to the patient to put more attention on his health condition.

In conclusion, as illustrated previously in the explanation
for patient 5 (false negative), every patient is unique. Some
patients are more resistant to viral infection, while some are more
vulnerable. Pursuing a perfect model is tough in healthcare, but
we can try to understand how different models make predictions
using interpretable machine learning to be more responsible with
our diagnoses.

H. Evaluating Interpretation

Though we do find some indicative symptoms of COVID-19
through model interpretation, they are confirmed credible be-
cause these interpretations are corroborated by medical research.
If we use the interpretation to understand a new virus at the
early stage of an outbreak, there will be less evidence to support
our interpretation. Thus we use monoitinicity and faithfulness
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Fig. 7. LIME explanation (false-positive patient No.2): Features in green have a positive contribution to the prediction (increasing the probability of turning
severe), and features in red have a negative effect on the prediction (decreasing the probability of turning severe). (a) Decision Tree. (b) Random Forest. (c) Gradient
Boosted Trees. (d) Neural Networks.

Fig. 8. SHAP explanation (false-positive patient No.2): Features pushing the prediction to be higher (severe) are shown in red, and those pushing the prediction
to be lower (normal) are in blue. (a) Decision Tree. (b) Random Forest. (c) Gradient Boosted Trees. (d) Neural Networks.

to evaluate different interpretations using IBM AIX 360 tool-
box [31]. The decision tree only provides a binary prediction (0
or 1) rather than a probability between 0 and 1, so it cannot be
evaluated using monotonicity and faithfulness.

Faithfulness (ranging from −1 to 1) reveals the correlation
between the importance assigned by the interpretability algo-
rithm and the effect of each attribute on the performance of
the model. All of our interpretations receive good faithfulness
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Fig. 9. Decision rule using three key features and their thresholds in absolute
value. Num, the number of patients in a class; T, the number of correctly
classified; F, the number of misclassified patients. [8].

scores, and SHAP receives a higher faithfulness score than
LIME on average. The interpretation by SHAP receives better
results because the Shapley value is calculated by removing the
effect of specific features which is similar to how faithfulness is
computed, so SHAP is more akin to faithfulness.

As for monotonicity, most interpretation methods receive a
false though we do find valuable conclusions from interpreta-
tions. The difference between faithfulness and monotonicity is
that faithfulness incrementally removes each of the attributes,
while monotonicity incrementally adds each of the attributes.
By incrementally adding each attribute, initially, the model may
not be able to make correct predictions with only one or two
features, but this does not mean these features are not important.
Evaluation metrics for different interpretation methods is still an
active research direction, and our results may hopefully stimu-
late further research on the development of better evaluation
metrics for interpreters.

I. Summary

In this section, the interpretation of four different machine
learning models reveals that NTproBNP, CRP, and LDH, and
LYM are the four most important biomarkers that indicate the
severity level of COVID-19 patients. In the next section, we
further validate our methods on two datasets to corroborate our
proposal.

IV. VALIDATION ON OTHER DATASETS

At the initial outbreak of the pandemic, our research leverages
a database consisting of patients with confirmed SARS-CoV-2
laboratory tests between 18th January 2020, and 5th March
2020, in Zhuhai, China, and reveals that an increase in NT-
proBNP, CRP, and LDH, and a decrease in lymphocyte count
indicates a higher risk of death. However, the dataset has a
limited record of 92 patients which may not be enough to support
our proposal. Luckily, and thanks to global cooperation, we do

have access to larger datasets. In this section, we further validate
our methods on two datasets, one with 485 infected patients in
Wuhan, China [8], and the other with 5644 confirmed cases from
the Hospital Israelita Albert Einstein, at São Paulo, Brazil from
Kaggle.

A. Validation on 485 Infected Patients in China

The medical record of all patients in this dataset was collected
between 10th January and 18th February 2020, within a similar
date range as our dataset. Yan et al. construct a dedicated
simplified and clinically operable decision model to rank 75
features in this dataset, and the model demonstrates that three key
features, LDH, LYM, and high-sensitivity CRP (hs-CRP) can
help to quickly prioritize patients during the pandemic, which
is consistent with our interpretation in Table V.

Findings from the dedicated model are consistent with current
medical knowledge. The increase of hs-CRP reflects a persis-
tent state of inflammation [32]. The increase of LDH reflects
tissue/cell destruction and is regarded as a common sign of
tissue/cell damage, and the decrease of lymphocyte is supported
by the results of clinical studies [33].

Our methods reveal the same results without taking efforts to
design a dedicated interpretable model but can be more prompt
to react to the pandemic. During pandemic outbreak, a prompt
reaction that provides insights on the new virus could save lives
and time.

B. Validation on 5644 Infected Patients in Brazil

Our approach obtains the same result on the dataset with 92
patients from Zhuhai, China, and a medium-size dataset with
485 patients from Wuhan, China. Besides, we further validate
our approach on a larger dataset with 5644 patients in Brazil,
from Kaggle.

This dataset consists of 111 features including anonymized
personal information, laboratory virus tests, urine tests, venous
blood gas analysis, arterial blood gases, blood routine test,
among other features. All data were anonymized following the
best international practices and recommendations. The differ-
ence between this dataset and ours is that all data are standard-
ized to have a mean of zero and a unit standard deviation, thus the
original data range that contains clinical meaning is lost. Still,
the most important medical indicators can be extracted using
interpretation methods.

Following the same approach, a preprocessing is applied on
the dataset that removes irrelevant features such as patients’
intention to the ward level, and features that have less than 100
patient’s records, for instance, urine tests and aerial blood gas
tests. On the other hand, patients that have less than 10 records
are dropped, because these records do not provide enough in-
formation. After preprocessing, we have a full record of 420
patients with 10 features.

After training and interpreting four different models, deci-
sion tree, random forests, gradient boosted trees, and neural
networks, the most important features are identified and listed
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Fig. 10. LIME explanation ( Kaggle patient 0): Features in green have a positive contribution to the prediction (increasing the probability of turning severe), and
features in red have a negative effect on the prediction (decreasing the probability of turning severe). (a) Decision Tree. (b) Random Forest. (c) Gradient Boosted
Trees. (d) Neural Networks.

TABLE XIV
FIVE MOST IMPORTANT FEATURES (KAGGLE)

in Table XIV. The three most common indicative features are
leukocytes, eosinophils, and platelets.

According to medical research, patients with increased leuko-
cyte count are more likely to develop critical illness, more likely
to admit to an ICU, and have a higher rate of death [34]. Du
et al. noted that at the time of admission, 81% of the patients
had absolute eosinophil counts below the normal range in the
medical records of 85 fatal cases of COVID-19 [35]. Wool
and Miller [36] discovered that COVID-19 is associated with
increased numbers of immature platelets which could be another
mechanism for increased clotting events in COVID-19.

In addition, the two datasets collectively reveal that elderly
people are more susceptible to the virus. The significant feature
NTproBNP in the Chinese dataset is often used to diagnose or
rule out heart failure which is more likely to occur in elderly
people. And patients that have abnormally low levels of platelets
are more likely to be older, male as well [36].

To further validate our interpretation, faithfulness and mono-
tonicity are calculated and listed in Tables XV and XVI. Simi-
larly, our interpretations are consistent with medical knowledge
and receive a good faithfulness score, but receive a worse score
on monotonicity because the calculation procedure of mono-
tonicity is contrary to faithfulness.

TABLE XV
FAILTHFULNESS EVALUATION (KAGGLE)

TABLE XVI
MONOTONICITY EVALUATION (KAGGLE)

V. CONCLUSION

In this article, through the interpretation of four different
machine learning models, we reveal that NTproBNP, CRP, LDH,
and LYM are the four most important biomarkers that indicate
the severity level of COVID-19 patients. Our findings are con-
sistent with medical knowledge and recent research that exploits
dedicated models. We further validate our methods on a large
open dataset from Kaggle and unveil leukocytes, eosinophils,
and platelets as three indicative biomarkers for COVID-19.

The pandemic is a race against time. Using interpretable
machine learning, medical practitioners can incorporate insights
from models with their prior medical knowledge to promptly
reveal the most significant indicators in early diagnosis and
hopefully win the race in the fight against the pandemic.
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APPENDIX

TABLE XVII
DIAGNOSES

TABLE XVIII
PERSONAL INFO

TABLE XIX
COMPLETE BLOOD COUNT

TABLE XX
INFLAMMATORY MARKERS

TABLE XXI
BIOCHEMICAL EXAMINATION
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