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Abstract—Recent research has shown that a small perturbation
to an input may forcibly change the prediction of a machine
learning (ML) model. Such variants are commonly referred to as
adversarial examples. Early studies have focused mostly on ML
models for image processing and expanded to other applications,
including those for malware classification. In this article, we focus
on the problem of finding adversarial examples against ML-based
portable document format (PDF) malware classifiers. We deem that
our problem is more challenging than those against ML models for
image processing because of the highly complex data structure of
PDF and of an additional constraint that the generated PDF should
exhibit malicious behavior. To resolve our problem, we propose
a variant of generative adversarial networks that generate evasive
variant PDF malware (without any crash), which can be classified
as benign by various existing classifiers yet maintaining the original
malicious behavior. Our model exploits the target classifier as the
second discriminator to rapidly generate an evasive variant PDF
with our new feature selection process that includes unique features
extracted from malicious PDF files. We evaluate our technique
against three representative PDF malware classifiers (Hidost’13,
Hidost’16, and PDFrate-v2) and further examine its effectiveness
with AntiVirus engines from VirusTotal. To the best of our knowl-
edge, our work is the first to analyze the performance against the
commercial AntiVirus engines. Our model finds, with great speed,
evasive variants for all selected seeds against state-of-the-art PDF
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malware classifiers and raises a serious security concern in the
presence of adversaries.

Impact statement—PDF has been one of the most popular me-
dia to conceal adversarial contents for many years. The reason
being that adversaries can exploit the complex structure of PDF
in their favor by hiding malicious content. In 2019, more than 73k
PDF-based attacks were reported in one month, which accounts for
17% of newly detected threats. With increasing popularity, many
ML-based techniques have been proposed for PDF malware clas-
sifiers. Such defense mechanisms include support vector machine
and random forest classification models trained with a structural
map of PDF (Hidost’13 and Hidost’16). Furthermore, ensemble
training has been applied with metadata collected from PDF as the
training data (PDFrate-v2). In recent studies, many researchers
have attempted and succeeded in generating evasive PDF mal-
ware (adversarial examples) that bypass such defense techniques.
However, the current method heavily relies on a random mutation
algorithm resulting in repeated computation for a significant period
of time. To resolve this, we propose a novel solution by employing
a variant of generative adversarial networks, which is trained to
identify intrinsic properties of PDF and to generate evasive PDF
malware with the minimum perturbation to the original PDF. Our
solution successfully generated evasive PDF malware with a max-
imum number of 12 manipulation operations and found effective
against ML-based classifiers and AntiVirus engines provided by
VirusTotal.

Index Terms—Adversarial examples (AEs), evading portable
document format (PDF) classifiers, generative adversarial
networks, PDF malware.

I. INTRODUCTION

MACHINE learning (ML) has extensively adapted in a
large number of application areas, including speech

recognition and image processing. One important such area
is security, to which a variety of ML-based techniques have
been applied in recent years. Several studies have empirically
evinced a great potential and effectiveness of ML in solving
certain security problems such as malware detection [1], [2]. In
particular, the ML techniques for malware detection have been
developed for years diverging to many different security problem
domains, such as clustering of malware families [3], [4], detec-
tion of malicious downloads [5], [6], detection of account misuse
networks [7], [8], detection of commonly exploited file formats
(e.g., Java archives [9] and documents [10], [11]), and detection
of portable document format (PDF) malware [12]–[15].

Not surprisingly, as ML becomes a dominant means for mal-
ware analysis, there is a growing temptation to find adversarial
examples (AEs) that can diminish its effectiveness. Many latest

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5238-3547
https://orcid.org/0000-0001-8414-966X
https://orcid.org/0000-0002-2367-197X
https://orcid.org/0000-0002-6412-2926
mailto:hobae@ewha.ac.kr
mailto:201younghanlee@snu.ac.kr
mailto:vkvkakal@snu.ac.kr
mailto:uiwon.hwang@snu.ac.kr
mailto:ypaek@snu.ac.kr
mailto:sryoon@snu.ac.kr


300 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 4, AUGUST 2021

studies of AE attacks on ML [16]–[19] have demonstrated that a
small perturbation to an input may forcibly change the prediction
result of both ML and, newly surfacing, deep learning (DL)
models. The studies suggest that the victim of AE attacks can be
anyone from an entire spectrum of application areas where ML
is applicable. As a result, this fact poses a daunting challenge to
developers of ML models for malware detection [20]. Thus, it
is crucial to build a robust malware detectors or classifiers that
are resistant to AE attacks. One solution adopted by many in
practice is to harden their model by training it with all possible
AEs against it taken into account. For this, significant effort
has been made to identify AEs against existing ML models
for various malware detectors. In this article, we are interested
in finding AEs that can be used to evade all the current (aca-
demic and commercial) ML-based PDF malware classifiers.
Our interest originates from the fact [21] that as malicious
PDF files have been known to be the most dangerous type of
attack exploited by adversaries to date, ML-based techniques are
being actively studied and developed to mitigate them even most
recently.

Since its introduction, PDF has risen in great popularity and
become the de facto standard for many different purposes of
information sharing, such as text documents, data files, and
presentation materials. PDF includes not only static content
(e.g., texts and styles) but also dynamic content (e.g., JavaScript
code and action triggers). The versatility of PDF files comes in
their capability of displaying such rich content on virtually all
kinds of today’s computer systems and platforms. The popularity
and versatility have been capitalized on by adversaries in a way
that the PDF format files are used to craft diverse attacks on
viewer applications, inflicting extensive damage on countless
victims. One key attribute of PDF exploited by adversaries is its
high connectivity to other objects, which facilitates modification
of a PDF file, ultimately leading to an injection of a malicious
load to the file. Another is the innate complexity of its file format,
which facilitates malicious contents being concealed from the
detectors. For example, JavaScript-based attacks deceive the
detectors by injecting Javascript code in multiple objects at
different locations inside the file. Such PDF malware is not only
posing in the present but also likely to pose in the future, an im-
mense threat to cybersecurity. It was reported by SonicWall [22],
a private network security company, that more than 47 000 new
attacks related to PDF files were discovered last year, and 73 000
PDF-based attacks were discovered in March, 2019 alone.

To prepare for the flooding of future zero-day PDF malware,
much research has been done to improve the performance of
PDF classifiers by employing ML techniques. As the first work
in this direction, PDFrate-v1 [13] tackled the challenge with ML
techniques by using metadata and contents of PDF documents.
The approach characterized the documents’ attributes by hand-
crafting 202 features to train a random forest (RF) model for
detection. PDFrate-v2 [14] further improved the performance by
taking advantage of an ensemble training technique. Hidost [12],
[15] attempted to extract the files into a structural map and used
it as a feature set for their train model. Support vector machines
(SVMs) and RF are used as classification models, and both of
them attain an impressive performance of detection.

As ML techniques for PDF classification become advanced
and sophisticated, so do AE attack techniques for evading
them. In principle, the purpose of these attack techniques is
generating evasive PDF samples (i.e., AEs) against ML-based
classifiers by picking and manipulating structural features that
the classifiers utilize for detection. The early forms of AE
attacks, which we collectively call mimicry attacks [23]–[25],
aim to induce misclassifications of the classifiers by camou-
flaging malicious PDF files as benign ones. Unfortunately,
mimicry attacks rely heavily on human expertise to understand
a given malicious PDF file before finding fake structural fea-
tures that will be added to the original file for aligning it with
a known benign file. This implies that the success of their
techniques would be strictly limited by human effort as well
as their knowledge of a complex structure of the PDF file
format.

Researchers endeavored to overcome the limitation by min-
imizing human involvement. They proposed the evasion tech-
niques that can automate the process of generating evasive
samples for AE attacks. EvadeML [26] introduced a stochas-
tic approach based on genetic programming, which repeatedly
performs feature manipulations based on a random mutation
algorithm until an evasive yet malicious PDF sample is success-
fully obtained as output. While the output sample maintains the
input’s original maliciousness, it, unlike the input, is guaranteed
to be evasive as it will induce a misclassification of PDF malware
classifiers. EvadeML exhibited its effectiveness by producing
evasive samples of all 500 PDF malware files selected from
Contagio malware archive [27]. A later work, EvadeHC [28],
claimed to achieve the same performance as EvadeML, that
is, succeeding in generating evasive samples for all 500 PDF
malware files from Contagio. Moreover, they assumed a more
restricted realistic attack scenario, where the attacker will only
be given a binary prediction score from the PDF malware
classifiers.

Despite the impressive success in their automated evasive
sample generation, our analysis has revealed that the existing
evasion techniques consume an excessively large amount of
time to obtain each sample. Although EvadeHC has made some
effort to speed up its generation time by applying a hill-climbing
method to the random mutation algorithm, their numbers still
have much room for improvement. According to our observa-
tion, the main factor that increases the total time taken to generate
an evasive sample is the inherent difficulty of maintaining the
original maliciousness even after several trials of operations
being carried out to manipulate structural features, which often
result a crash. To explain this, consider the PDF malware that is
not originally evasive when being given as input to the evasion
techniques like EvadeML or EvadeHC. In order to generate an
evasive sample as output from the malicious file, they must trans-
form the original file structure by manipulating (i.e., inserting,
deleting, and replacing) its structural features. Conceivably, it
often occurs during the transformation that the original file loses
its maliciousness if a certain feature manipulation happens to
corrupt a file structure essential to maintain its maliciousness.
Fundamental ingredients in all of these are feature-space models
of attacks.
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To elaborate limitations of current attacks, let herebyS denote
a set of all structural features of our target PDF file, which can
be manipulated to generate our evasive sample. We also define
S ′, a subset of S, whose elements are robust features crucial to
maintaining the target’s maliciousness, by which we mean that
the maliciousness might be corrupted by changing any of them.
As briefly mentioned earlier, the existing evasion algorithms
“randomly” select one feature after another fromS and “mutate”
the features until they obtain an evasive sample. Suppose that
they select and mutate features from S ′ by chance. Then, as has
been defined, it is likely that the maliciousness of our target file
is lost by error. Upon recognizing the loss of maliciousness, the
existing algorithms undo the mutation on the feature to restore
the lost maliciousness and try to select another feature from S.
We have observed in the existing techniques that they suffer from
quite frequent trials and errors, each of which causes a waste of
time, consequently all in all inducing a significant increase in
the total time for sample generation.

A remedy for this problem would be to pinpoint the robust
features and transform the input PDF malware by manipulating
features only from the nonrobust features in search for an evasive
malware sample (i.e., S − S ′). Sadly, none of the existing tech-
niques listed above attempt to have knowledge of S ′ when they
generate evasive samples. Our observation on previous work
motivated us to develop a new solution, where we drastically
reduce the sample generation time by avoiding wasteful cycles of
trials and errors during our PDF transformation. In our solution,
we first strive to identify a set S ′ of structural features that are
relevant to malicious behaviors of most PDF malware available
today. Next, during the transformation phase, we continuously
refer to the set in order to ensure that our algorithm should select
candidates for mutation from the complementary set of S ′.

Clearly, in order for our solution to work successfully, we
must be able to determine the set S ′ for the PDF format files.
To achieve this, we employ the generative adversarial networks
(GANs), which, if appropriately trained, can learn to identify
intrinsic properties (including structural features) of benign
and malicious PDFs. The power of GANs that identifies the
structural features belonging to S ′ comes from their innate
characteristic, namely, the adversarial interaction between their
two components, the generator and discriminator, by which S ′

is formed. To avoid the time-consuming repetition of trials and
errors, the generator constructs evasive samples by modifying
features only in S − S ′. Many existing GANs usually employ
a single discriminator, through which a modified sample very
similar to the original can be generated. To generate a modified
sample structurally very similar to the original, GANs select
features in S − S ′, thereby conserving the original’s malicious
behavior as a result. However, the generated sample must not
only maintain the desired maliciousness but also evade the
targeted malware classifiers. To satisfy both the requirements,
we have introduced a GAN variant that employs a target PDF
malware classifier as the second discriminator to manipulate
features only fromS − S ′ during our evasive sample generation.
To adjust the dependence level of these two cooperative discrim-
inators, we use an additional parameter that controls the balance
between them. Let alone its speed in finding evasive malware

samples, our solution has another advantage that it can operate
even under a realistic black-box attack scenario, in which the
classification score revealed from the malware classifiers is in
binary form (i.e., benign or malicious) rather than a continuous
classification score.

We have evaluated our solution, PDF-GAN, against three
PDF malware classifiers. First of all, we have found that it
can generate evasive samples (without any crash) for all 500
unique PDF malware files selected from the Contagio archive.
Our proposed model successfully evades the target PDF mal-
ware classifiers with the maximum number of 12 manipulating
operations by 13 times faster than the previous approaches. In
contrast, EvadeML required the maximum of 354 and 85 feature
manipulating operations to complete the generation of evasive
samples for PDFrate-v1 and Hidost ’13, respectively. To further
demonstrate the effectiveness of our approach, we include in
our evasion seed all three types (e.g., JavaScript, ActionScript,
and File Embedding) of PDF malware as known by CVE-2018-
9958 [29], CVE-2013-2729 [30], and CVE-2010-3654 [31].
The analysis reveals that our evasive samples are all generated
without any crash exhibiting the same malicious behaviors as the
original malware with minimum modification. Last of all, unlike
previous work, we evaluate the evasiveness of our generated
malware samples against AntiVirus engines from VirusTotal.

II. BACKGROUND

In this section, we describe the threat model and current
state-of-the-art PDF malware classifiers. Also, we elaborate on
recent evasion attacks for such classifiers and categorization of
the attack method.

A. Threat Model

Depending on the different levels of knowledge held by an
attacker, attack scenarios can be categorized into three differ-
ent classes: white-box (i.e., perfect knowledge), gray-box (i.e.,
limited knowledge), and black-box (i.e., zero knowledge) [21],
[32]. The less information available to an attacker, the closer
the attack scenario is to black-box. The types of information
that can be provided to an attacker are threefold: 1) the train-
ing dataset and its labels; 2) the feature set and the feature
extraction algorithm of the classifier with its extracted feature
types; and 3) the knowledge of the classification function and its
hyperparameters.

In the black-box scenario, an attacker is provided with no in-
formation about the classifiers and in the gray-box scenario, only
minimal knowledge (e.g., the feature representation) is provided.
EvadeML constructs evasive samples against Hidost’13 and
PDFrate-v1 under a black-box attack scenario. They assumed
that the classification score was revealed in a real number with
many query attempts. EvadeHC also operates under a similar
scenario, but the main difference is that the classification score
was given in the binary form.

Our approach, PDF-GAN, operates in the black-box and
gray-box for ML-based classifiers and commercial AntiVirus
Engines, respectively, with the same assumption that many
submissions of files are allowed. Moreover, the classifiers only
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Fig. 1. (a) PDF structure. (b) Tree representation of PDF file, which is used as features in training PDF-GAN.

reveal the classification score in a binary form (i.e., benign or
malicious). However, recently, many researchers managed to
mitigate the evasion attack by limiting the number of queries as
the current black-box attack requires many submissions. To this
end, PDF-GAN was designed to also operate as a transfer-based
attack [33]. For this, we trained a surrogate model that is a
smaller network and evaluated the success rate of evasion with
much fewer query attempts to the target classifiers. The details of
the design and the experiments will be explained in the following
sections.

B. Portable Document Format

1) PDF Structure: A PDF file can be broken down into four
parts: header, body, cross-reference table, and trailer. Fig. 1(a)
shows the structure of a PDF. A header contains rather simple
information, which includes the version number of the PDF
specification (i.e., “%PDF-1.3”). The body section contains
objects and holds all data of the document. There are eight
different types of objects supported by a PDF (i.e., Boolean,
integer and real numbers, arrays, strings, dictionaries, names,
streams, and null). A name object only contains unique values,
whereas a dictionary object consists of a key and value pair.

Objects are identified by their given numbers, and they are
either indirect objects or the direct objects constituting dictio-
naries. Indirect objects appear within the notation << >> and
direct ones are denoted as follows:

6 0 obj << /Type/Action/S/JavaScript/JS 7 0

R >> endobj

7 0 obj << /Length 231/Filter/FlateDecode >>

stream · · · endstream endobj.

For example, object 6 with a keyword introduced by “/” will
make an indirect jump to object 7, which contains a sequence
of direct objects with keywords and their values. The length
of the stream is 231, which requires a FlateDecode filter. A
cross-reference table stores the mapping information of random
and direct access, allowing a specific object to be found without
having to search throughout the entire file. Note that PDF readers
start rendering the PDF from the bottom of the file, which is the

trailer. The trailer specifies the offset value for the PDF reader to
find the cross-reference table and helps the reader find a specific
object more quickly (i.e., trailer << /Size 9 /Root 1 0 R >>
startxref 9178 %EOF). In this case, the offset is 9178 bytes,
“/Size” indicates the number of entries in the cross-reference
table, and “/Root” is the catalog dictionary for this file.

2) Types of PDF Malware: The three different types of PDF
malware are briefly explained.

1) JavaScript-based attacks exploit a vulnerability using
JavaScript code that can be embedded in one or several
objects. Typical examples of such vulnerabilities are an
API-based overflow and a Use-After-Free flaw.

2) ActionScript-based attacks capitalize on the fact that PDF
files can visualize Flash content. This is usually achieved
by embedding ShockWave Flash along with the Action-
Script code such as memory corruption or corrupted file
code.

3) File-embedding attacks take advantage of the fact that
Adobe Reader can parse and read PDF files that are em-
bedded with contents of different file types, such as images
(e.g., bmp or tiff) and fonts (e.g., ttf). When reading a PDF
file, embedded contents can lead to memory spraying to
execute payloads with malicious activities.

C. PDF Malware Classifiers

1) Hidost: Hidost is implemented using two different types
of classification models: SVM [12] and RF [15]. SVM is a
supervised learning model that outputs an optimal hyperplane
for separating two different labels. RF is a meta-estimator, com-
prising several decision trees that are merged for more accurate
classification. As the first step, Hidost utilizes Poppler [34], a
PDF parser, to dissect files into a structural multimap in its struc-
ture extraction stage. These structural paths of objects in a PDF
are used as features during classification. Since there are many
semantically equivalent yet syntactically different structures, a
structural path consolidation, which is based on rules that are
manually created, is carried out. For feature selection, Hidost
naively includes only paths that are occurring in more than a
certain number of files to form a feature set. Hidost is provided
as open source, and the model was trained using 10 000 random
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files with a malicious-to-benign ratio of 1:1. The entire PDF
dataset was composed of 407 037 benign and 32 567 malicious
files. The results indicated that the Hidost model was the top
detection tool compared to AntiVirus engines (VirusTotal).

2) PDFrate-v2: The PDFrate classifier is implemented us-
ing an RF algorithm that applies an ensemble learning model
designed to improve the prediction accuracy [14]. It employs
metadata and the content of the PDF files as classification
features, which include the names of the authors of the files,
the size of the file, the position, and the number of specific
keywords. The feature set is defined manually by the authors,
and the total number of features is 202. However, only 135 are
publicly available in the Mimicus implementation of PDFrate,
which claims to achieve a close approximation. The main dif-
ference between PDFrate-v1 and PDFrate-v2 lies in the ML
model applied. PDFrate-v2 adopts an ensemble method by
applying mutual agreement among the classifiers. It introduces
the idea of “uncertain” in the classifier votes, where rates of
25–50% are considered to be benign uncertainty, whereas rates
of 50–75% imply malicious uncertainty. The effectiveness was
tested against some known evasive attacks such as mimicry [25]
and reverse mimicry [35], and impressive performance was
demonstrated.

D. Evasion Attacks

1) Automatically Evading Classifiers: EvadeML presents a
generic approach for evading the Hidost’13 and PDFrate-v1
classifiers through stochastic manipulations. It repeatedly mu-
tates the original malicious PDFs to create evasive variants. It is
an automated procedure, in which evasive samples manufactured
by random mutations are tested by the oracle to check the pres-
ence of maliciousness. If no maliciousness is present, the variant
will be returned to the mutation stage. As for the reliable malware
signature, only the network behavior of the malware samples is
considered. A total of 500 sample seeds were selected from
the Contagio PDF malware dataset, and the proposed method
successfully reached 100% evasion, which took approximately
six days.

However, PDF-GAN is based on learning the difference in
the feature sets between benign and malicious samples and
modifying a malicious PDF with minimum effect on its original
purpose, and hence achieving a 100% evasion success rate in
noticeably less time and with fewer modifications.

2) Evading Classifiers by Morphing in the Dark: In this
study, the authors focused on more restricted and realistic at-
tack scenarios, where the target classifiers will only reveal the
final prediction regarding whether they are benign or malicious.
Hence, a scoring mechanism, EvadeHC, was proposed to over-
come the limited information. The intuition behind this is to
measure the number of steps to overturn the result of the detector
and derive the real-value score from it. The authors introduced
the notion of malice-flipping distance, which is the number of
mutations required for a malicious PDF to lose its maliciousness
as determined by a tester. The reject-flipping distance is a
comparable concept, which is the number of morphing steps
required for a malicious sample to be classified as benign. A
simple morphing technique is employed that performs the basic

operations: insert, delete, or replace. Their design consists of
three components: a binary output detector, a tester to check the
maliciousness of evasive samples, and a morpher that randomly
mutates the PDF files. The target classifiers were Hidost’13 and
PDFrate-v1, and its effects were evaluated with the 500 selected
malware samples from Contagio archive.

Our approach operates under the strong assumption that the
classifiers and testers only reveal their binary output results.
Unlike this work, our PDF-GAN did not need a scoring function
to convert the results into a real-value score and successfully
evaded even more recent classifiers with the same seed samples.

E. Attack Method Categorization

1) Toward Adversarial Malware Detection: Lessons Learned
From PDF-Based Attacks: This work provided a comprehensive
taxonomy of various approaches of generating PDF malware
and evaluated them from both methodological and experimental
aspects [21]. The attacker’s knowledge is explained in Sec-
tion II-A. For the different types of evasion attacks on PDF
malware classifiers, two main families have been introduced:
optimization-based and heuristic-based. Optimization-based at-
tacks attempt to formulate the attack as an optimization problem
and heuristic-based attack, as the name suggests, attempts to
heuristically make modifications in generating evasive PDF
malware.

PDF-GAN can be categorized as an optimization-based eva-
sion attack with both the black-box and gray-box scenario. Also,
our solution successfully generates real samples by means of the
repacking and verification process explained in Section III-F.

2) Intriguing Properties of Adversarial ML Attacks in the
Problem Space: The authors proposed a formalization for eva-
sion attacks in the problem space. The problem-space constraints
consist of available transformation (T ), preserved semantics
(Υ), robustness to preprocessing (Λ), and plausibility (Π). Our
approach, PDF-GAN, can be summarized in these four formu-
lations as follows.
T : Addition/removal/change of elements in tree represen-

tation of PDF. Υ: Original malicious behavior (described in
Section IV-D) is retained. Λ: Not robust to removal of features.
Π: Generate AEs (i.e., evasive PDF malware) can be opened by
a PDF reader.

III. DESIGN

In this section, the design of our approach will be explained
in detail. First, how features are extracted from PDF files and
selected to be used as a feature set for training PDF-GAN. The
explanation of how we selected a seed file for our mutation and
evading model architecture will be followed by PDF repacking
process. Fig. 2 shows an overview of our proposed method,
which consists of three phases: 1) preprocessing of PDF; 2)
PDF-GAN training; and 3) detection. The details are presented
in the following sections.

A. Feature Extraction

PDFs are parsed into the tree representation, as shown
in Fig. 1(b). We have utilized the PDFrw (i.e., PDF parser)
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Fig. 2. Flowchart of the PDF-GAN framework.

Fig. 3. Feature abstraction [Dictionary (Key:Value)].

provided by EvadeML [36] with few modification to correctly
parse all objects. It is important that the parser do not omit any
major objects (e.g., /Javascript and /OpenAction) as PDF-GAN
would be unable to fully interpret the structural difference be-
tween benign and malicious PDFs, which, in turn, will lead to
poor results in PDF-GAN’s performance. Thus, to avoid leaving
out any potentially pivotal information, PDFrw has been modi-
fied to include all key values of /Root while parsing PDFs into
a tree representation (i.e., /Metadata, /OpenAction, /Javascript,
/AcroForm, /PageLayout, etc.). Additionally, for higher speed
computation, we ignore any paths containing an object with
/Parent or /Prev as they are recursive.

From the tree representation, a feature set can be formed. Each
path from the root to a leaf node and its value is considered
as a feature, as listed in Fig. 3(left). The feature abstraction is
performed by converting features into a form of dictionaries (i.e.,
keys and values). Finally, similar to the previous work [12], [15],
any values in a string type were converted to an integer value
of 1 and a value given in the form of an array of values was
transformed into the median of values in an array, as shown
in Fig. 3(right).

B. Feature Selection Process

The feature selection process plays a crucial role in determin-
ing the effectiveness of the ML. Since it is impractical to use
all features extracted from the entire dataset, we must select
a decent number of features that represent all features in a
sufficient manner, to be included in the feature set. In previous
studies, Hidost simply narrowed down the size of the feature
set by only including features that occur in more than a certain
number of files. Such a number is typically set to 1% of the
training set size and the selection is performed “in hindsight”

Fig. 4. Feature selection by pooling.

TABLE I
MUTATION SEED SELECTION

once for the entire dataset. However, this method failed to
evenly include features from both benign and malicious files
as malicious files tend to contain unique features. Hence, a huge
portion of the feature set was occupied by features extracted
from benign PDFs. Therefore, with the intention of including
features extracted from malicious files, a novel feature selection
process was applied. In short, the entire feature set was created
by deliberately maneuvering the ratio between different pools
of features to be used for training the target classifiers and
PDF-GAN.

We segregated the entire features into four pools: 1) features
found only in benign PDFs; 2) features found more in benign
PDFs than malicious ones; 3) features found more in malicious
PDFs than benign ones; and 4) features found only in malicious
PDFs. Fig. 4 shows the number of features from each pool. Any
features that were found in less than that of either benign or
malicious files were excluded. The main reason for applying the
new feature selection process was to overcome the imbalance of
dataset problem commonly found in DL that the existing mecha-
nism failed to overcome, as explained above. We gathered a set of
297 features with a balanced number of features from each pool.
This method resulted in an improved detection performance, as
it will be illustrated in Section IV-B.

C. Seed Selection for Mutation

We have selected a total of 500 files after filtering out from
Contagio malicious files. Table I shows how those files were
chosen. Selecting seed PDF files to be fed into PDF-GAN
was done with the dynamic analysis system (i.e., Cuckoo: the
leading open-source automated malware analysis system). First,
a primitive set of seeds was selected from the Contagio dataset,
excluding files from the training set. After analyzing 6105
files, it appeared that only 1503 files indicated some malicious
network activities. This result may have been caused by the
inborn limitation of dynamic analysis. All of these files were
parsed through PDFrw and the feature extraction process to
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Fig. 5. Model architecture. In the data preprocessing stage, PDF is parsed into tree representation and used as a feature for training the proposed model. The
proposed model is described in detail in Section III-D.

validate their tree structure. A total of 1485 files remained after
this process. Upon close examination, we realized that many
of the files shared the exact same value for the set of 297
features. Therefore, after filtering out homogeneous files, 712
remained. Finally, it was important that these files be classified as
malicious by our target classifiers. The remaining files were put
through all three classifiers sequentially and 99.6% of them were
corrected classified as malicious, which demonstrates the high
performance of our classifiers. Among 709 files, we randomly
selected 500 for the evasion process to evaluate against previous
studies.

D. Evading Model

Our training involved two types of adversarial game: an ad-
versarial game for mimicry and an adversarial game for evasion.
The model consists of four parts: a generator, a discriminator,
a (pretrained) surrogate classifier, and an adversarial classifier.
The generator constructs a PDF close to the form of the input
data, and the discriminator then predicts a confidence score on
whether the generated data are close to the form of original input
data. The surrogate classifier produces a prediction score of the
generated data, and the outputs are used to train the classifier. The
classifier adopts to collateral learning by adversarial training,
making the classifier robust against unknown features. The
generator is trained with the original PDF to learn and create
a variant version of the original PDF such that the prediction
result of the generated data is a reverse of the original PDF.

The architecture of this model is illustrated in Fig. 5. The gen-
erator takes an input x and gives an output x̂, both of which are
given to the discriminator and the classifiers. The discriminator
outputs the probability that x = x̂, and the classifier outputs a
prediction score given input x̂. The learning objective of the
generator is to minimize the prediction score of the classifier,
and the learning objective of the discriminator is to discriminate
whether a generated PDF is the original x. The generator, G,
aims to generate malicious PDF by learning data distribution
close to the distribution of benign PDF. For each malicious
input x ∈ X , G seeks a possible stochastic mapping to other
representation, x̂ = G(x; θG) ∈ X̂ by conditional probability
density function p(x̂|x), where θG denotes the parameter for
the generator. In original GANs, the generator receives noise

z ∼ pz(z|Y ), where Y is the class labels space. However, in our
model, G receives noise z, which is computed by x× r ∈ Rd,
where r and d are the random string and the feature dimension,
respectively. The discriminator,D, aims to distinguish malicious
features by learning distribution of S ′, and the generator’s input
is required to retain the original form of maliciousness by
computing reconstruction loss between generator’s input and the
output. The surrogate classifier, Cs, aims to train the classifier
by predicting prediction score given generator’s output. The
classifier, C, aims to evade the target classifier by adversar-
ial training given generator’s output and its prediction score.
Computed loss from both two discriminators (discriminator and
classifier) are then backpropagated to the next step training step
of the generator. For the white-box attack, Cs can be replaced
by the actual target classifier.

To define the learning objective, letLG, LD,LCs , andLC de-
note the loss of the generator, discriminator, surrogate classifier,
and classifier, respectively. The generator then has the following
objective functions:

LG = d

(
x,

1

n

n∑
i=0

(G(x, θG)i)

)
+ ((1− λd) · LD + λd · LC)

= d(x, x̂) + ((1− λd) · LD + λd · LC)
(1)

where d(x, x̂) is the Euclidean distance between the original and
arithmetic mean of generated data. In addition, λd is the weight
parameter for the surrogate classifier that can be used to control
the dependence level of the generation to maximize the diversity
of the feature changes.

A discriminator has the sigmoid cross entropy loss of

LD = − y · log(D(ψ(x̂) · ψ(x))

− (1− y) · log
(
1−D

(
1

n

n∑
i=0

(G(x, θG)i)

))
(2)

where ψ is the binary Hamming distance between x̂ and x.
A classifier has an objective function of

LC = −||C(x)− Cs(x̂)||2. (3)

In the case where input x is classified as malicious by the
surrogate classifier, x̂ needs to be classified as benign. For this,
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we need to maximize the distance of the prediction score. Given
the above equations, the generator optimizes a convex of (1)
finding Nash equilibrium of a minmax game between the G
against both D and C.

A surrogate classifier has an objective function of

LCs = (y − f(x))2 (4)

where f is a simple 1-D convolution neural networks with one
hidden layer.

E. Model Architecture

For GAN architecture, we optimized the architecture to ac-
commodate the PDF malware domain by following a similar
concept of visual representation learning. The generator of the
first layer consists of 64 filters with a length of 4, the second
layer consists of 32 filters with a length of 2, and the third layer
consists of 16 filters with a length of 2. The fourth layer consists
of eight filters with a length of 2. Additional layers are then
added in reverse order as the number of input length n. Batch
normalization [37] is used at each layer and tanh [38] is used as
the activation function at each layer, except for the final layer
where rectified linear unit [39] is used for the activation function.
A sigmoid activation function is used to output the probabilities
from the logits. The discrimination and the classifier of the first
layer comprise n input feature size of filters; second n× 2;
third n× 4; fourth n× 8; and fifth n input feature size of
filters. Tanh is used at each layer as the activation, except for
the final layer, where a sigmoid activation function is used to
output probabilities from the logits. For the pretrained surrogate
classifier, we constructed one layer network. The kernel size of
each layer is 3 with stride 1 for all networks, and only 10% of
the training dataset is used with 100 epochs.

F. PDF Repacking and Verification

Once PDF-GAN successfully evaded the classifiers with the
mutated feature set, we must verify that the originally intended
maliciousness was retained. For this verification, the mutated
features must be applied to the original malicious PDF by the
repacker. The repacker has three operations: insert, replace, and
delete. insert operation updates the dictionary according to the
mutated feature set. A new key and value is inserted into PDF,
and the new value was in the form of real numeric value. For
example, /Root/Pages/Rotate: None −→ 0 means that the new
path of /Root/Pages/Rotate with a value of 0 is inserted into the
tree representation. replace and delete operations are essentially
operate in a similar manner. The former replaces the existing
value with the new value, and the latter deletes the key and the
value pair (i.e., feature) from the dictionary, hence deleting a path
from the tree representation. All three operations are carried out
while retaining the tree representation structure of PDF.

The most time-consuming aspect of finding evasive samples
is repacking the mutated features back into proper PDF files. In
addition to GAN reconstruction power, addition trick was con-
sidered to reduce the number of tries in repacking to reconstruct
the PDF files. As explained in Section III-A, if the dictionary was
in an array from, the median value of elements was used instead.

Therefore, in the repacking process, the modified feature value,
which is a form of real numeric value, was reshaped into an
original form (e.g., an array form). Consequently, it contributed
in improving the evasion speed compared to the state-of-the-art
evasion techniques, which is described in Section V-D.

The reconstructed PDF file (i.e., repacked evasive sample)
is tested in Cuckoo sandbox to verify that the maliciousness is
maintained. The detail of this verification stage is explained in
Section IV-D.

IV. EXPERIMENT

For the experimental evaluation, a Cuckoo Sandbox 2.0.7 was
arranged using 16 virtual machines (VMs) running Windows
XP 32 bit SP3 and Windows 10. Adobe Reader 8.1.1, PDF-
XChange 2.5, and Foxit Reader 9.0.1 were installed in VMs. For
the training, we used a Linux machine [Ubuntu 12.04, 2.6 GHz
Intel Xeon E5-2690 (14 Cores) and 1 NVIDIA GTX TITAN V
12GB] without parallelization.

A. Datasets and Model Training

We managed to gather PDF malware samples from VirusTotal.
The dataset was collected on December 20, 2017 and on March
14, June 19, and July 17, 2018, and it consisted of 10 673
files in total. The Contagio dataset comprises a total of 9109
benign files and 11 105 malicious files. In addition, common
vulnerabilities and exposure (CVE) samples were collected from
Exploit-db [45], where proof-of-concept codes and files are
uploaded. Six specific samples were used in the experiment.

For training PDF-GAN, we used an optimizer of the multi-
class logarithmic loss function Adam [46] with a learning rate
of 0.001, a beta rate of 0.5, and a minibatch size of 16. The
discriminator achieved optimal loss after 1000 steps, whereas
the generator required 1500 steps to generate original data
similar to the sample. Most of these parameters and network
structures were experimentally determined to achieve optimal
performance. Randomly selected 5000 benign and 5000 ma-
licious files from the Contagio dataset were used for training
classifiers and PDF-GAN.

B. Target Classifiers

Our target classifiers were Hidost’13 with an SVM model and
Hidost’16 with an RF model, both of which used Poppler as a
parser and PDFrate-v2 with an ensemble method that used a
customized parser. The feature extraction and selection process
were reproduced according to an open-source code, and each
ML model was applied using scikit-learn. Well-known detection
performance parameters such as accuracy, F1-score, and the
area under the curve (AUC) were measured.

For Hidost, the test set comprised the Contagio dataset ex-
cluding the samples used for the training (i.e., 6105 files) and
PDF malware samples from VirustTotal (i.e., 10 673 files) that
were not included in the training set also. For PDFrate-v2, we
applied the same methodology as explained by the authors,
and the classifier was applied to the training set using tenfold
cross validation. The results are presented in Table II under Old.
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TABLE II
DETECTION ACCURACY OF PDF-GAN COMPARED TO TARGET CLASSIFIERS

TABLE III
DETAILS OF CVES USED IN THE EXPERIMENT

However, with the help of our unique feature selection process,
we were able to achieve an even better detection performance as
shown under the heading New in Table II. The performance was
measured with all varying factors including the training and test
datasets fixed except for the feature selection process and the
performance showed noticeable improvement across all fields.
Hence, we can claim that, because our own classifiers performed
better in terms of accuracy, AUC, and F1-score, it is reasonable
to target the new classifiers instead of Hidost’13, Hidost’16, and
PDFrate-v2.

C. CVEs for Various Types of PDF Malware

CVEs provide publicly known security vulnerabilities in a
reference style. To widen the scope of capability in terms of
evasion effectiveness, the CVEs described in Table III were
included in the experiment in generating evasive samples. The
set comprises three types of PDF malware, namely, JavaScript,
ActionScript, and File embedding. The types of vulnerability
also varied widely from a buffer overflow to memory corruption
and Use-After-Free. In addition, several different target applica-
tions were tested including Adobe Acrobat & Reader and Foxit
Reader. Adobe versions required for the successful attack range
from 8.1.2 to 10.1.4. We implemented the attack using a few
different codes to be executed when the PDF is parsed and
viewed with the reader. It is important to note that these samples
were not included in the training phase of the framework, but
only after PDF-GAN was fully trained, these samples were fed
into a trained PDF-GAN model for the purposes of generating
evasive samples.

D. Malicious Signature

Maintaining the maliciousness of PDF files was an absolute
necessity in confirming the evasive sample and completing the
evasion of the classifiers. Had they lost maliciousness at any
stage of the evasion process, the purpose of this article would
have been negated. To check if mutated malicious PDF files

still acted with malevolence, we leveraged Cuckoo sandbox.
Cuckoo can analyze many different malicious files and trace
API calls and the general behavior of files transformed into
comprehensible signatures. Owing to the innate limitations of
a dynamic analysis, the behavioral signatures varied even for
the same file. Therefore, reliable malicious signatures were
needed to confirm that the modified PDFs still maintained their
maliciousness. There were three main types of analysis we paid
special attention to: network, behavior, and static. Table IV
shows the types of signatures and their examples. We com-
pared the analysis results between the original and modified
versions. However, focusing only on the network behavior of
the files would limit our work to malware related to network
activities. Hence, unlike previous work, CVEs of all three types
of PDF malware described in Section II-B2 were included in
the experiment. After the modifications were made using trained
PDF-GAN, the modified file was put through a tester stage. If
it performed as originally designed, as listed in Table III, it was
considered to be an evasive sample.

E. AntiVirus Engines (VirusTotal)

VirusTotal investigates submitted URLs or files with An-
tiVirus engines and reveals the detection result from each en-
gine. Although PDF-GAN already proved its imposing capa-
bility in generating AEs by evading open-source PDF malware
classifiers, we further demonstrate its effectiveness by evading
commercial AntiVirus engines. Tested AntiVirus engine version
was the most recent update (i.e., 2020. April). The procedure for
this attack consists of two stages: 1) use generated AEs from the
Contagio dataset to check if any of them can evade AntiVirus
engines (i.e., a transfer-based attack); and 2) generate variants
of successful AEs to further improve the evasion rate for more
AntiVirus engines. The result of stage 1 is illustrated in Sec-
tion V-E, and it shows that many AEs appeared to be also
effective on numerous AntiVirus engines through a transfer-
based attack (i.e., PDF-GAN is not trained to evade any of
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TABLE IV
MALICIOUS SIGNATURES

TABLE V
FEATURE MUTATION RESULT FOR THE CONTAGIO DATASET AND CVES (N = NUMBER OF FILE AFFECTED BY THE OPERATION)

AntiVirus engines). The variants of AEs were created by swap-
ping malicious contents from other malware samples among
detected as malicious by engines. This approach is rooted from
the understanding that PDF-GAN successfully discovered PDF
structure that can evade some engines, and by only changing the
contents, more AEs can be generated. The AntiVirus analysis
result for 45 engines is shown in Section V-E.

V. RESULTS

In this section, the experimental result for evading PDF
malware classifiers and maintaining maliciousness using both
Contagio dataset and CVEs is described. Also, there was an
drastic improvement in the time required to evade PDF malware
classifiers for 500 samples. Finally, the result of an experiment
to evade AntiVirus engines (Virustotal) is explained.

A. Feature Mutation Result for Contagio

The feature mutation results are shown in Table V. All of 18
features that were manipulated in at least one file were from the

set S − S ′ as the desired maliciousness was maintained. There
were four features listed at the top that needed to be altered in
all of 500 files to evade the classifiers. In addition, none of the
features were removed from the original files. We believe that
this fact may have been crucial in retaining the maliciousness
and passing the Cuckoo test phase on the first attempt. If any
of the features from a set of features relevant to the malicious
behavior (i.e., S ′) were modified, many malware files would
have lost their original maliciousness.

As mentioned in Section III-A, a value assigned as an integer
value of 1 indicates that it was initially in a string type. Hence, if
such a value is changed to any other value, the original meaning
will be diminished. There were five cases in which the value was
changed from 1 to 2

{/Root/Type, /Root/Pages/Type,
/Root/Pages/Kids/Type,

/Root/Pages/Kids/Contents/Filter ,

/Root/Pages/Kids/Resources/ProcSet}.
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Fig. 6. Number of features mutated to generate AEs for all 500 files selected
from Contagio (top) and 14 CVE files (bottom).

Another interesting observation is that to evade all classifiers,
insert operation on /Root/Pages/Rotate was required.

Our approach, PDF-GAN, unlike EvadeML and EvadeHC,
grasps the differences in the patterns of the features between
benign and malicious files and opts only to modify the minimum
number of features from the files. The number of mutations
required for the files differed between learning algorithms, as
shown in Fig. 6(top). Fewer than eight features were needed to
be modified in more than 95% of the files.

To confirm that PDF-GAN truly deduced the distinction in
the patterns of the features to incur the minimum number of
feature manipulations, we partially modified the file according
to PDF-GAN. For example, for a file that required five features
to be modified, 31 partially modified variants were created. (i.e.,
5 combination (C) 1 + 5C2 + 5C3 + 5C4+ 5C5 = 31). The
result clearly showed that PDF-GAN provided the least number
of modifications to complete finding evasive examples. For the
case of PDFrate-v2 (Ensemble), generating evasive examples
for all 500 original PDF malware at the point in which all
features suggested by PDF-GAN were altered. Therefore, we
can conclude that the our approach suggested all the features
that were needed to be perturbed in order to evade the classifiers.

B. Feature Mutation Result for CVEs

Not surprisingly, the result of feature mutation for the CVE
samples showed a significant similarity compared to that of
the Contagio samples. Table V illustrates that all the modified
features were among those in the results of the Contagio samples.

Fig. 7. Cuckoo signature result (left), arbitrary code execution result of CVE-
2011-2462 (right).

Fig. 8. Time required to evade PDF malware classifiers for 500 selected
malware files from Contagio.

The top four features that affected the entire Contagio samples
were also affected by all 14 CVE samples. Also, no feature was
deleted from the original malware. On top of this, the number
of mutations requires to find evasive samples shows the same
trend as illustrated in Fig. 6(bottom). This result confirms that
PDF-GAN was trained to alter only those features that deceive
the classifiers while preserving the intended maliciousness.

C. Malicious Signature Verification

The result of preserving a malicious signature was con-
firmed by Cuckoo and by manually running the CVE samples.
An example of the results is shown in Fig. 7. By analyzing
the Cuckoo results, we confirmed that all signatures listed in
Table IV remained intact for all 500 seed samples, which verified
the successful attempt of generating evasive samples. Moreover,
all of the CVEs that contained all three types of PDF malware
also operated according to the initial intention of the malware.
The right side of Fig. 7 shows that a calculator opened when
the malicious PDF was read by Adobe Reader. The attacker can
customize the exploit to have any code executed at will.

D. Evasion Speed

As our approach tackles the problem by training PDF-GAN
with the feature set, it was expected that the cost of execution in
terms of evasion speed would be better than that of the previous
work by EvadeML. Fig. 8 illustrates the total time taken to
identify an evasive variant for all 500 selected malware seeds.
EvadeML employs a stochastic search based on a fitness function
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meaning that many possible variants are created to be tested on
the oracle for their malicious signature. As the unit cost of the
Cuckoo sandbox testing was much higher than any other stages
of the evasion, a huge portion of time spent by EvadeML was
designated for oracle testing. However, our approach managed to
avoid such overhead by utilizing PDF-GAN only to modify the
nonrelevant features of PDFs in maintaining malicious behavior.
Thus, we needed to perform only the verification stage once to
confirm that all variants maintained their malicious signature.

All stages of our evasion process are shown in Fig. 8, including
parsing of files, feature extraction, feature selection, training
PDF-GAN, inference, and finally testing the possible evasive
sample with the Cuckoo sandbox. As expected, the stages that
occupied the largest portion were the training and inference
stages with PDF-GAN. A total of 102 min was spent on the
classifier with the SVM model (e.g., Hidost’13), 127 min on the
classifier with the RF model (e.g., Hidost’16), and 180 min on
the classifier with the ensemble model (e.g., PDFrate-v2). They
correspond to 55%, 61%, and 69%, respectively, of the total time
taken, respectively. The more robust the detector, the longer it
took for PDF-GAN to be trained and to infer the modified version
of PDFs.

In comparison to the total time taken for EvadeML to evade
Hidost’13, our approach achieved the 100% evasion rate within
about 3 h, which is more than 13 times faster in evading an SVM
model. Moreover, even when PDF-GAN aimed to evade a more
advanced classifier with the ensemble model, it achieved the
full evasion 30 times faster than EvadML targeting PDFrate-v1,
which is merely an RF model. In addition, we compared the time
required for full evasion against the EvadeHC algorithm. The
total evasion time against Hidost’13 was measured according
to the author explaining that the average time taken to generate
a single evasive sample was 5 min. In relation to PDFrate-v1,
the relative time taken was measured for evading all 500 seed
samples. Surprisingly, a contrast to EvadeML, the time taken
to generate all evasive samples for Hidost was greater than that
of PDFrate-v1 with the EvadeHC algorithm. In comparison to
our PDF-GAN model, it managed to achieve the full evasion
more than 13 times faster for an SVM model. It is important
to note that while in our experiment setup, only 16 VMs were
implemented, EvadeHC utilized 216 VMs. This implies that
PDF-GAN could achieve the full evasion in a much shorter time
if the same number of VMs were used for the testing phase.

E. AntiVirus Engines (VirusTotal) Result

All 500 malware samples selected for previous experiments
and AEs that PDF-GAN generated to evade three classifiers were
uploaded to VirusTotal for analysis from AntiVirus engines. The
result is summarized in Table VI, and it shows the number of
malware files detected and AEs for each engine. It is important to
notice that AEs discovered for each engine are from the AEs that
PDF-GAN generated while evading Hidost’13, Hidost’16, and
PDFrate-v2. We observed that generated AEs were still effective
for the AntiVirus engines (i.e., a transfer-based attack), and a
total of 19 engines appeared to be vulnerable to this transfer-
based attack.

TABLE VI
NUMBER OF MALWARE FILES DETECTED (OUT OF 500) BY ANTIVIRUS

ENGINES AND AES BY A TRANSFER-BASED ATTACK

Furthermore, we created the variants of those AEs by swap-
ping malicious contents from malware files, and Fig. 9 illustrates
the successful evasion rate in 45 AntiVirus engines. Few engines
were excluded as they did not support analysis for PDF format
malware. As all 500 selected malware samples contain unique
maliciousness, we defined that finding 500 AEs which collec-
tively contains those maliciousness represents 100% evasion
rate. 100% evasion rate was achieved in seven AntiVirus engines
and 60% for 45 engines on average. These results showed that
if the experiment did not rely on a transfer-based attack (i.e., if
PDF-GAN is trained to evade AntiVirus engines), even higher
evasion rates can be achieved.

VI. DISCUSSION

While PDF-GAN is effective under the black-box assump-
tion that reflects its effectiveness, one can design a defensive
mechanism for a more robust detection system. Similar to any
other evasive techniques, multiple submissions to the detector
are required to acquire a classification score. Therefore, if the
defender decided to limit the number of submissions for a single
peer, it would hinder the performance of the evasive technique.
Moreover, the defender can opt to retrain the detector model
with newly submitted files. Using newly submitted files, the
detector model can be retrained and can employ recent ML
approaches for continual learning [47]–[50], in which ML is
used to continuously learn without loss of acquired knowledge
on previous tasks.

In a strong black-box scenario where the number of queries is
limited, it is imperative that PDF-GAN still shows a promising
performance with an extremely small number of queries to the
classifier. With a single-layer surrogate model, we managed to
achieve 9.6% transfer rates. This is an improvement from other
query limited black-box attacks, which showed 3.4% transfer
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Fig. 9. Evasion rate of AntiVirus engines by generating variants of AEs in Table VI.

TABLE VII
DIFFERENT TYPES OF ADVERSARIAL ATTACKS ON ML MODELS

rates [51]. If more queries are allowed to the target classifier,
PDF-GAN can immensely improve the transfer rate.

In a white-box scenario, other types of AEs may become
applicable for generating evasive samples, such as Fast gradient
method or Carlini&Wagner, for computing an AE in the features
space and mapping it back to obtain an evasive document.
However, most of the existing ML attacks were incapable of
maintaining malicious signatures while easily evading classi-
fiers, as shown in Table VII. Patterns that can easily be flipped by
adversarial perturbations are known as nonrobust features [52].
The aforementioned AEs can easily compute adversarial per-
turbations to evade classifiers by flipping nonrobust features.
However, none of these approaches use reconstruction loss to
preserve to maintain original PDF behavior, which often resulted
in a crash. Consequently, GAN reconstruction loss was neces-
sary to conserve the original’s PDF behavior.

The notion of robust and nonrobust features are defined by
Ilyas et al. [52]. Robust features correspond to patterns that
are predictive of the true label even when input is adversarially
perturbed. Conversely, nonrobust features correspond to patterns
that are also predictive but can easily be flipped by adversarial
perturbations. ML models use both features to minimize the
training loss; thus, flipping nonrobust features will have a huge
impact on their prediction accuracy.

To mitigate AEs, Goodfellow et al. [16] introduced an al-
gorithm, called adversarial training, that is robust to AEs by
retraining them. In the same sense, antivirus vendors can prevent
such adversarial attacks by collecting mutated examples and
updating their detectors. However, once the detectors have been

updated, attackers can also retrain PDF-GAN that exploit target
detectors. It was observed that new AEs remained undetected by
the updated detectors. In our experiments, among 500 mutation
seed files, some evasive PDFs were successfully uploaded to
the Gmail server. We believe that it is also possible to consider
Gmail as the target detector under the strong black-box scenario.

In the process of denoting PDFs in a tree structure form and
in the process of extracting and selecting a feature set from the
tree structure, we observed that there is considerable loss of
information concerning the PDFs. For example, the most recent
detectors select few features from a large group of features to
be used in the training phase. We believe that the performance
of feature extraction on the PDFs is directly associated with the
generation of performance. Therefore, eliminating the handcraft
of such a process can increase the performance of the PDF detec-
tors. A similar story is also true for the evasion scenario. Once
all information can be represented and abstracted without the
application of any handcraft for training GANs, a considerable
increase in the performance of evading malware classifiers can
be observed.

DL has been applied to several forms of high-dimensional
data to denote a low-dimensional Euclidean space, and recently,
DL has been expanded even to non-Euclidean spaces such
as graphs [53]. Word2Vec is a representative algorithm that
generates a low-dimensional embedded vector that corresponds
to a high-dimensional word based on the mutual occurrence
frequencies of words. Similarly, there are algorithms for embed-
ding a graph [54] that maps a graph region to a low-dimensional
region while preserving the adjacency and structure of the nodes.
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Graph2Vec is one of the representative algorithms used for graph
data-driven learning approaches. Embedding algorithms such
as Word2Vec and Graph2Vec may be suitable candidates for
denoting all features of the PDF without any handcraft.

In recent years, a few research has used a generative network
to find AEs [55], [56]. However, none of these works verified that
the generated evasive PDFs successfully retained the original
malicious behavior. In our studies, we verified against traditional
benchmark ML classifiers and the preservation of original ma-
licious behavior testing against commercial AntiVirus engines.

VII. CONCLUSION

We introduced a novel approach for generating evasive PDF
samples. In addition, we introduced a new technique for select-
ing a feature set that even includes unique features lurked in
malicious files through pooling. As a consequence, we achieved
a better detection performance than the state-of-the-art open-
source PDF malware classifiers. Finally, our approach was based
on the gray-box threat model, in which the attacker is extremely
restricted with information concerning the target classifier. We
evaluated our approach using over 10 000 PDF documents from
VirusTotal and over 20 000 PDF documents from Contagio
and successfully discovered evasive samples for all unique 500
selected samples. We analyzed our model on commercial virus
engines in addition to the traditional benchmark. By generating
evasive sample through PDF-GAN, we identified significant
flaws in some AntiVirus engines in the black-box scenario
attack. We determined that one antivirus engine may outperform
the rest, but this does not guarantee that it would be the best
detector. While evasion attacks are still possible on commercial
AntiVirus engines, we suggest that the use of multiple detectors
will prevent such attacks. Finally, we have focused only on PDF
as a problem space in generating AEs. Therefore, we can expand
this work, for a future study, to a different domains such as binary
software as it is unclear if the same methodology can be applied.
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