
152 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 2, APRIL 2022

Delayed Reward Bernoulli Bandits: Optimal Policy
and Predictive Meta-Algorithm PARDI

Sebastian Pilarski , Graduate Student Member, IEEE, Slawomir Pilarski, Member, IEEE,
and Dániel Varró , Member, IEEE

Abstract—Bernoulli multi-armed bandits are a reinforcement
learning model used to optimize the sequences of decisions with
binary outcomes. Well-known bandit algorithms, including the
optimal policy, assume that before a decision is made the outcomes
of previous decisions are known. This assumption is often not
satisfied in real-life scenarios. As demonstrated in this article, if de-
cision outcomes are affected by delays, the performance of existing
algorithms can be severely affected. We present the first practically
applicable method to compute statistically optimal decisions in the
presence of outcome delays. Our method has a predictive compo-
nent abstracted out into a meta-algorithm, predictive algorithm
reducing delay impact (PARDI), which significantly reduces the
impact of delays on commonly used algorithms. We demonstrate
empirically that PARDI-enhanced Whittle index is nearly optimal
for a wide range of Bernoulli bandit parameters and delays. In a
wide spectrum of experiments, it performed better than any other
suboptimal algorithm, e.g., UCB1-tuned and Thompson sampling.
PARDI-enhanced Whittle index can be used when computational
requirements of the optimal policy are too high.

Impact Statement— Bernoulli multi-armed bandit algorithms
are used to optimize sequential binary decisions. Oftentimes, deci-
sions must be made without knowing the results of some previous
decisions, e.g., in clinical trials where finding out treatment out-
comes takes time. Well-known bandit algorithms are ill-equipped
to deal with still unknown (delayed) decision results, which may
translate into significant losses, e.g., the number of unsuccessfully
treated patients. We present the first method of determining the
optimal strategy for these type of situations and a meta-algorithm
PARDI that drastically improves the quality of decisions by well-
known algorithms—lowers regret by up to 3×. This is achieved
by a 6× reduction in excess regret caused by delay. By addressing
delays, this work can improve the quality of decisions in various
applications. It opens new applications of Bernoulli bandits.

Index Terms—Clinical trials, delayed feedback, multi-armed
Bernoulli bandits, optimal policy, partially observable Markov
decision process, Thompson sampling (TS), upper confidence
bound, Whittle index (WI).

Manuscript received May 2, 2021; revised July 7, 2021 and August 19, 2021;
accepted September 18, 2021. Date of publication October 20, 2021; date of
current version March 24, 2022. This work was supported in part by Versyn
Inc. and in part by NSERC Discovery under Grant RGPIN-2016-04573. This
paper was recommended for publication by Associate Editor Christian Wagner
upon evaluation of the reviewers’ comments. (Corresponding author: Sebastian
Pilarski.)

Sebastian Pilarski and Dániel Varró are with the Department of Electrical and
Computer Engineering, McGill University, Montreal, QC H3A 0G4, Canada
(e-mail: sebastian.pilarski@mail.mcgill.ca; daniel.varro@mcgill.ca).

Slawomir Pilarski is with Versyn Inc., Vancouver, WA 98660 USA (e-mail:
slawomir@versyn.com).

Digital Object Identifier 10.1109/TAI.2021.3117743

I. INTRODUCTION

MAKING choices is an integral part of everyday life. In
most situations, the outcome of a decision is uncertain.

If a series of decisions has to be made, it may be possible to
optimize their outcomes using some probabilistic model and an
algorithm that learns from past decisions.

Multi-Armed Bandits: A probabilistic model used in rein-
forcement learning is referred to as a multi-armed bandit [1].
It assumes that decisions are sequential, and at each time, one
of a finite number of options is selected. Its name reflects the
quandary of a casino gambler, or a player, who attempts to
maximize his total winnings, or a cumulative reward, when
facing a row of slot machines called 1-arm bandits. The model
assumes that each arm, when pulled, produces a random reward
according to its own probability distribution, which is unknown
to the player.

Bernoulli Multi-Armed Bandits: A Bernoulli bandit [2] is
a multi-armed bandit used to model processes where the out-
come of a decision is strictly binary: success/failure, yes/no,
or 1/0; each arm is characterized by its own probability of
success. Bernoulli bandits can be used, for example, in clinical
trials [2]–[8], portfolio management [9], and A/B testing (e.g.,
news headline selection and click feedback) [10]–[12]. A sur-
vey of practical applications of multi-armed bandits, including
dynamic pricing and telecommunications, can be found in [13].

Algorithm Assumptions: A number of bandit algorithms have
been proposed. They differ in assumptions and performances [8],
[14], [15]. While some algorithms are general, others were
designed specifically for Bernoulli bandits [2], [4], [16]. Some
algorithms assume that the game goes forever. Some assume a
finite time horizon, i.e., a situation where the total number of
arm pulls is finite and predetermined.
Fundamental bandit algorithms were developed under the as-
sumption that the rewards are immediate, i.e., known to the al-
gorithm at the time of subsequent decision. This may be a serious
limitation in practical applications [4], [14] and consequently it
gets an increasing attention in research [17].

Delayed Rewards: If a reward associated with an arm pull
is unknown until d subsequent decisions have been taken, we
say that the reward has a delay of d decisions. Delayed rewards
are also referred to as delayed feedback [14]. In this article, we
often use the term delay as a synonym for delayed rewards.
We also use the term no-delay meaning immediate rewards.
All applications discussed earlier can operate in environments
where rewards are subject to delay.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4942-0757
https://orcid.org/0000-0002-8790-252X
mailto:sebastian.pilarski@mail.mcgill.ca
mailto:daniel.varro@mcgill.ca
mailto:slawomir@versyn.com

PILARSKI et al.: DELAYED REWARD BERNOULLI BANDITS: OPTIMAL POLICY AND PREDICTIVE META-ALGORITHM PARDI 153

A. Related Work and Motivation

There exists a wealth of published work on multi-armed ban-
dits under a variety of assumptions [8], [14], [15], [18]–[20] with
some work focusing exclusively on Bernoulli bandits [2]–[4],
[6], [16], [21]–[23]. However, as stressed in [14], few articles
have been published on any variation of bandits with delayed
rewards. It is well known that an assumption of no delay is often
not applicable in practice [3], [4], [14].

A clear example where delay is most-often inevitable is in
medical trials. Kuleshov and Precup [8] examined medical logs
where the response of a patient to a treatment was unavailable
when, on average, 24 subsequent patients were given their
treatments. As shown in Section III, this delay can deteriorate
algorithm performance significantly—up to 4×.

Effect of delayed feedback: Liu et al. [17] provided a survey
and empirical evaluation of several basic algorithms and a novel
adaptive greedy algorithm in the context of both stationary and
nonstationary bandits with delay. A meta-algorithm for delays is
presented and upper bounds on the impact of feedback delay is
provided in [24]. However, Joulani et al. [24] did not performed
any empirical evaluation. Pike-Burke et al. [25] developed an
algorithm for bandits with delayed, aggregated, anonymous
feedback, meaning that a reward received at a given time step
can be the sum of multiple rewards from multiple arm pulls.
Interestingly, their algorithm empirically matched the worst case
regret bound in [24] in a much more complex setting than
the nonaggregated, nonanonymous assumption in [24]. Tyo et
al. [26] presented a new algorithm in the aggregated, anonymous
feedback setting, which appears to determine the best arm faster
than the algorithm in [25].

The aforementioned works [17], [8], and [24] assumed that
bandit algorithms make decisions solely on revealed rewards,
while [25] and[26] used additional knowledge of expected de-
lays and delay bounds.

Algorithms for delayed feedback: There is a growing interest
in designing algorithms that take into account delayed feedback.
Grover et al. [27] analyzed multi-armed bandits that provide
partial (contextual) feedback in the context of several real-world
examples. A version of UCB for delays in contextual bandits
is studied in [28]. A delayed exponential-based algorithm is
proposed in [29] for adversary multi-armed bandits applied
to fog computing offloading, which yielded performance near
the nondelayed feedback setting. Ito et al. [30] presented an
algorithm for online linear optimization with delayed bandit
feedback for fixed constant delays and provided proofs on
bounds.

Problem statement: Practically feasible methods to compute
the optimal policy in the context of Bernoulli bandits for imme-
diate rewards were recently proposed in [16], where the level of
suboptimality of well-known algorithms was gauged. However,
to the best of our knowledge, no computation of the optimal
policy under delays has ever been published or proposed. The
suboptimality of performance of well-known algorithms dealing
with delays has never been assessed.1 Also, no algorithmic
solutions have been proposed to reduce the delay impact on

1Known bounds on performance [14], [24] are too loose in practice [8].

common bandit algorithms under the general Bernoulli bandit
model, i.e., without any additional assumptions.

B. Objectives, Contributions, and Significance

Objectives: The main goal of this article is to present practical
methodologies for computing the optimal policy under any delay
and reducing the negative impact of delay on well-known bandit
algorithms. The article aims to showcase the significant negative
impact of delay as well as the extent to which this impact can
be reduced.
Contributions:

1) A novel and first practical method to compute the optimal
policy under any delay based on the no-delay optimal
policy [16] and classic probability theory (see Section IV).

2) Computation and empirical evaluation of the optimal
policy under delay to provide performance limits for
Bernoulli bandits under various delays and arm priors (see
Section IV).

3) Predictive algorithm reducing delay impact (PARDI) is a
predictive meta-algorithm for reducing negative effects of
delay on suboptimal algorithms (see Section V).

4) Evaluation of PARDI-enhanced common algorithms for a
range of parameters, including delays (see Section VI).

5) Demonstrating that PARDI-enhanced Whittle index (WI)
provides nearly optimal regret results (see Section VI).

Significance: By extending efficient computation methods of the
optimal policy to delayed-reward Bernoulli bandits, this article
opens it to new applications where delays were an obstacle. For
example, the optimal policy under delay can now be deployed in
clinical trials where treatment results were available only after
24 subsequent decisions on average.

This article provides an empirical study of the best achievable
regret for Bernoulli bandits under delay, allowing an assessment
of suboptimality of various algorithms. Such an empirical as-
sessment gives more information about algorithms’ performance
than a loose theoretical bound [8].

The predictive meta-algorithm, PARDI, can easily improve
any existing Bernoulli bandit application where suboptimal al-
gorithm suffers performance loss due to delays.

Finally, this article demonstrates that in situations where the
optimal policy under delay is too expensive to deploy, e.g.,
because of a large number of arms, the Whittle index (WI) may
be an excellent choice.

II. PRELIMINARIES

A. Definitions and Notation

In this article, we use common notions in probability theory,
such as expected value, (arithmetic) mean, standard deviation,
and variance [31]. Much of this article deals with cumulative
rewards, which is the arithmetic sum of rewards over a set period
of time. Cumulative is applied to several random variables. We
use the following standard notation (see [16]).

P [A] is the probability of an event A.
E[X] denotes the expected value of a random variable X .
σ denotes standard deviation of a random variable.
σ2 denotes variance of a random variable.
σ̂ denotes deviation of observed values.

154 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 2, APRIL 2022

Z is the set of integers.
argmaxi=1,...,k(g(i)) selects i with max value of g(i).
argmini=1,...,k(g(i)) selects i with min value of g(i).
The Bernoulli multi-armed bandit, BMAB(k,H), has k arms

and time horizon H . In this single player game, the player (or
algorithm) chooses one ofk arms at each time (step),0 ≤ t < H ,
and receives binary reward 1 (success) or 0 (failure) after some
delay d. Each arm has its success probability drawn from some
prior distribution at the start of each game.

When presenting or discussing bandit algorithms, we use the
following symbols.
k is the number of arms.
H is the time horizon; number of pulls in a single game.
t is time, 0 ≤ t ≤ H .
ni is the number of times arm i was pulled.
si is the number of times arm i produced a success.
fi is the number of times arm i produced a failure.
μi is the expected value of reward for arm i.
μ̂i is the observed mean reward for arm i.
Note that μi, μ̂i, and ni apply to a single experiment, i.e.,

drawing arm probabilities and playing one game that consists of
a sequence of single arm pulls.

Also, note that for a single game, at any time t,Σk
i=1ni = t. In

a single game, ni = si + fi is a function of t, and ni(t) denotes
the number of times arm i has been pulled by time t.

Best arm: When analyzing the performance of an algorithm,
it is convenient to have a symbol for the arm with the highest
probability of success. It is called the best arm.

best_arm = argmaxi=1,...,k(μi).
Symbols associated with the best arm are labeled with ∗.
μ∗ = maxi=1,...,k(μi) is best expected reward.
μ̂∗ = maxi=1,...,k(μ̂i) is best observed mean reward.
Note that in a single game, μ∗ is a constant, while μ̂∗

i is a
random variable.

Computed over multiple games, E[μ∗] is an obvious upper
bound on the mean reward of any player’s algorithm at any
time t. E[μ∗] is a function of the distribution of arm success
probabilities and the number of arms k.

Regret: Whenever the player pulls an arm with μ < μ∗, he
or she experiences a loss of opportunity [5]. Such a potential
loss is called regret and is measured by the difference between
best arm’s success rate and the selected arm success rate [14].
Formally, regret(t) = E[μ∗ − μ(t)], where μ(t) represents the
expected reward of the arm selected by the player at time t in a
single game, and μ∗ represents a constant in a single game, but
a random variable when multiple games are run.

Minimization of cumulative regret is equivalent to maximiz-
ing cumulative reward.

In our simulation experiments, each simulation run starts with
assigning each arm with its success probability. This probability
is a random variable drawn from a probability distribution, a
prior. In all our simulations, we use the Beta distribution [32].
The probability density function of the Beta distribution is

expressed by the following equation: xα−1(1−x)β−1

∫ 1
0 yα−1(1−y)β−1dy

. Fig. 1

shows the plots of the Beta distribution for selected values of
parameters α and β.

Fig. 1. Examples of the Beta distribution [16].

Property 1 (Conjugate Prior): Pulling an arm changes its
distribution from Beta(α, β) to Beta(α+ 1, β) if the outcome is
a success, or to Beta(α, β + 1) if the outcome is a failure [32].

Property 1 and Equation (1) play a vital role in some algo-
rithms discussed in this article

E (Beta(α, β)) =
α

α+ β
. (1)

B. Suboptimal Algorithms

To study the impact of delays, we selected three different
algorithms from those analyzed in [16]. Thompson sampling
(TS) and UCB1-tuned (UCBT) have been widely studied and
recognized for their effectiveness. Under the assumption of no-
delay, WI was shown to be nearly optimal.
� Thompson Sampling (TS) [33]–[35]

This is a randomized algorithm presented here in the con-
text of Bernoulli bandits. In essence, it generates random
numbers according to each arms’ Beta distribution, and
picks the arm with the largest random number.

choose(t) = argmax
i=1,...,k

(
random (Beta (αi(t), βi(t)))

)
.

� UCB1-Tuned (UCBT) [14], [36]
The UCBT algorithm is an improved version of the also
well-known UCB1.

choose(t) = argmax
i=1,...,k

(
μ̂i(t)+c

√
ln t

ni(t)
min

(
1

4
, Vi(t)

))

Vi(t) = σ̂2
i (t) +

√
2 ln t

ni(t)

where σ̂2
i is the variance of the success rate, and c

is a constant. The constant c controls the degree of
exploration [16]. In this article, we use c = 1 for all
experiments—the common default value used in literature.

� Whittle Index (WI) [3], [4], [20], [37] (See Appendix A)
WI is a modification of Gittins index [16], [38], which was
a milestone in developing Bernoulli bandit algorithms [3],
[4], [38], [39]. It is modified for finite time horizons

choose(t) = argmax
i=1,...,k

(
WI(si(t) + αi, fi(t) + βi, H − t)

)
where WI is the WI, H is the time horizon, si and fi are
the numbers of successes and failures observed for arm

PILARSKI et al.: DELAYED REWARD BERNOULLI BANDITS: OPTIMAL POLICY AND PREDICTIVE META-ALGORITHM PARDI 155

i, and Beta(αi, βi) is the distribution from which success
probability of arm i was drawn.

It was shown empirically in [16] that WI offers nearly op-
timal regret for a variety of numbers of arms and their priors
regardless of the time horizon.

C. Optimal Policy

In the context of Bernoulli bandits, there exists a statistically
optimal deterministic policy. It can be computed for a given
number of arms and their respective Beta priors.
� Optimal Policy (OPT) [4], [5], [15], [16]

choose(t) = OPH

(
(s1(t), f1(t)) , . . . , (sk(t), fk(t))

)
where OPH

is the optimal policy for time horizon H and a
set of Beta priors—one for each arm.

Optimal Policy Principle: For any configuration of successes
and failures on all arms, the optimal policy chooses the arm with
best expected reward until the end of the game.

This principle together with Property 1 and Equation (1) leads
to the following equations [16]. They compute best expected
value OVH

and the optimal policy OPH
for time horizon H by

dynamic programming iterating backward from t = H down to
t = 0.

1) The game finishes at t = H , and there are no more re-
wards:

OVH
((s1, f1), . . ., (sk, fk)) = 0, if

k∑
i=1

(si + fi) = H.

2) For a discount factor γ (assumed later to be γ = 1), using
(1), the expected value VHi

of pulling an arm i is given by

VHi
((s1, f1), . . ., (sk, fk))

=
αi+si

αi+si+βi+fi
(1+γ ·OVH

(. . ., (si+1, fi), . . .))

+
βi+fi

αi+si+βi+fi
(0+γ ·OVH

(. . ., (si, fi + 1), . . .)).

3) For 0 ≤ t < H (where t = Σk
i=1(si + fi)), the optimal

strategy selects the best expected value according to the
following rule:

OVH
((s1, f1), . . ., (sk, fk))

= max
i=1,...,k

(VHi
((s1, f1), . . ., (sk, fk)))

if 0 ≤
k∑

i=1

(si + fi) < H.

4) Optimal policy selects the arm with maximal VH

OPH
((s1, f1), . . ., (sk, fk))

= argmax
i=1,...,k

(VHi
((s1, f1), . . ., (sk, fk)))

if 0 ≤
k∑

i=1

(si + fi) < H.

Fig. 2. Clinical trial simulation results. 2-arm Bernoulli bandit with arm
probabilities of success 0.77 and 0.22. UCBT: no delay versus delay of 24.

The optimal policy can be easily computed using the memory-
indexing scheme proposed in [16]. We use this scheme as a
fundamental tool in a large number of simulation experiments
presented in this article.

The optimal policy is organized as a 1-D array. In the case of
2-arm bandits, it can be indexed by the following expression:

Index ((s1, f1), (s2, f2)) =
1

24
t (t+ 1)(t+ 2)(t+ 3)

+
1

6
(s1 + f1)(s1 + f1 + 1)(2s1 + 2f1 − 3t− 5)

+ s1(t− s1 − f1 + 1) + s2.

Details of index expressions for three and more arms can be
found in [16]. Efficient implementations of these expressions
and procedures to compute the no-delay optimal policy can be
downloaded from [40] and [41].

III. DELAY IMPACT

Motivating Clinical Trial Example: To illustrate the impact
of delays on algorithm effectiveness, we resimulated the 2-arm
Bernoulli clinical trial model examined by Kuleshov et al.
[8]. The number of arms and their reward probabilities were
extracted from logs of a real medical trial with two treatments
that had empirically determined 77% and 22% probabilities
of success. During the trial, 360 patients received treatments
sequentially. On average, before the treatment result for a given
patient was available, decisions for 24 other patients also had to
be made. Due to a lack of exact delay data, in our experiments,
we modeled the process as a bandit with a constant reward
delay of 24 decisions. The algorithm used in our resimulation
is UCBT [36], which in [8] produced the best average number
of successfully treated patients. The principles of this algorithm
are explained in Section II-B. Our resimulation results represent
averages of one million runs.

156 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 2, APRIL 2022

Fig. 3. Regret of common algorithms. No delay versus delay of 24.

Fig. 2 compares how a delay of 24 compares to no-delay using
four different measures of algorithm effectiveness. Introducing
delay results in a significantly smaller fraction of successfully
treated patients during the trials and especially impacts the
probability of successful treatment for early patients in the trial.
If always providing the best treatment (77% success) to all
patients is the baseline, the delay of 24 results in an additional
(excess) seven unsuccessfully treated patients (83 versus 90)
over the course of the entire trial (360 patients). With no delay,
the excess is just over two. We consider such an impact of delay
to be significant.2

Rigorous Evaluation: In the clinical trial example, we saw
that the delay had a significant impact on the effectiveness of
UCBT. It was only a simple example for two arms, fixed arm
success probabilities, one delay value, and one algorithm.

We now present a more rigorous study examining various
numbers of arms; we consider arm priors rather than fixed
success probabilities, and we examine three algorithms: WI, TS,
and UCBT. This selection is inspired by the results presented
in [16] where a wider variety of algorithms were studied.

In a single experiment, the algorithm, time horizon, number of
arms, and delay are preselected; then, arm success probabilities
are drawn from their Beta priors, and the algorithm plays one
game-making decisions solely on already known rewards. Fig. 3
presents simulation results for time horizons up to 400. Each data
point is the average of one million simulation runs.

Observation 1: Reward delays significantly deteriorate per-
formance of all algorithms, and the impact of delays increases
with the number of arms.

Observation 2: TS is least sensitive to reward delays while
the WI, which is nearly optimal in the absence of delays [16],
performs poorly.

The last two observations lead us to the following research
questions that guide this article.

2Our data appear to disagree with an observation in [8], which states that the
impact of delays on algorithm effectiveness was minimal. No quantification in
support of this statement was given.

Question 1: Can regret due to delay be significantly reduced
without making additional assumptions on the general Bernoulli
bandit model? If so, how?

Question 2: Is it possible to compute the optimal policy for
Bernoulli bandits with delayed rewards?

We will address these questions in the reverse order.

IV. OPTIMAL POLICY UNDER DELAY

The UCBT algorithm used in [8] and other algorithms pre-
sented in Section III make decisions solely from fully observed
rewards. This means that these algorithms do not take into
account arm pulls which still have not returned a reward value
due to delay. Unfortunately, it is not possible to use the optimal
policy in such a way. The optimal policy works under the
strict assumption that all rewards are always known before any
subsequent decision.

This relates to Question 2.
In this section, we show that starting from the principles of

the optimal policy computations presented in Section II-C and
using classic probability theory, it is possible to compute the
optimal policy under delay, which makes optimal decisions at
any stage of the game for any set of still unknown rewards.
We also show that the optimal policy indexing scheme presented
in [16] makes such computations practically feasible for 2-arm
and 3-arm bandits.

A. Unknown-Rewards—Outcome Analysis

Actual (yet unknown) arm states: Consider a single arm and
let (s, f) be its currently observed and known successes and
failures. Assume that the arm has been pulled additional u times,
and the corresponding rewards are still unknown due to delay
(there is s+ f + u total arm pulls). Given that each unknown
reward is either a success or a failure, the arm must be in one of
the following actual success/failure states:

(s, f+u), (s+1, f+u−1), (s+2, f+u−2), . . . , (s+u, f)

or using set-builder notation

{(s+ δ, f + u− δ) | δ ∈ Z and 0 ≤ δ ≤ u} .
The probability of each state can be calculated via classic

probability theory using priors derived from the known rewards.
Probabilities of unknown states: Fig. 4 presents an example

of all possible reward changes for u = 3. This is a typical finite
Markov chain model [1], [31]. The current observed and known
reward state, by definition, has probability P [(s, f)] = 1. The
probabilities of possible current reward states P [(s+ δ, f +
u− δ)], 0 ≤ δ ≤ u, can be easily computed using well-known
methods [1], [31]. Since the expected value of a binary random
variable is equal to the probability of success, state transi-
tion probabilities can be determined using Equation (1) and
Property 1.

Using the notation in Fig. 4, after taking into account the
arm’s prior, Beta(α, β), the probability of state (s+ 1, f) is

P [(s+ 1, f)] =
s′

s′ + f ′ P [(s, f)] =
s′

s′ + f ′

PILARSKI et al.: DELAYED REWARD BERNOULLI BANDITS: OPTIMAL POLICY AND PREDICTIVE META-ALGORITHM PARDI 157

Fig. 4. Probabilistic analysis of reward outcomes. 1-arm and three unknown
rewards.

TABLE I
NUMBER OF FLOATS IN THE PRECOMPUTED PART OF (2)

and the probability of state (s+ 1, f + 1) is

P [(s+ 1, f + 1)] =
f ′

(s′ + 1) + f ′ P [(s+ 1, f)]

+
s′

s′ + (f ′ + 1)
P [(s, f + 1)].

Note that the outcome analysis does not assume any particular
sequence in which rewards are revealed to the player. It only
looks at how many rewards are still unknown. This means it is
valid when two different pulls of the same arm produce rewards
with arbitrarily different delays.

B. Expression

Once currently possible rewards and their probabilities have
been computed for each arm, one can examine all possible
configurations of successes and failures on all arms.

A single configuration is

((s1 + δ1, f1 + u1 − δ1), . . ., (sk + δk, fk + uk − δk))

where for any arm i, 0 ≤ i ≤ k, 0 ≤ δi ≤ ui. Its probability is∏k
j=1 P [(sj + δj , fj + uj − δj)].

For each configuration, the expected remaining reward value
of pulling arm i equals VHi

((s1 + δ1, f1 + u1 − δ1), . . . , (sk +
δk, fk + uk − δk)), computed using equations given in
Section II-C.

Consequently, taking into account all possible configurations
and their probabilities, the expected remaining reward value of
pulling arm i can be expressed as

u1
...
uk∑

δ1=0
...

δk=0

(
VHi

((s1+δ1, f1+u1 − δ1), . . .)

k∏
j=1

P [(sj+δj , fj+uj − δj)]

)

where

u1
...
uk∑

δ1=0
...

δk=0

(arg) =

u1∑
δ1=0

(u2∑
δ2=0

(
. . .

(
uk∑

δk=0

(arg)

)))
.

Now the optimal policy under delay can be expressed as

OPUDH
((s1, f1, u1), . . . , (sk, fk, uk))

= argmax
i=1,...,k

u1
...
uk∑

δ1=0
...

δk=0

(
VHi

((s1 + δ1, f1 + u1 − δ1), . . .)

×
k∏

j=1

P [(sj + δj , fj + uj − δj)]

)
. (2)

The optimal policy under delay is a generalization of the
optimal policy for the classic Bernoulli bandit problem, where
all rewards are known before the next decision is made.

Note that we select the arm with best expected value. This
is, by definition, the best achievable regret performance by any
algorithm.

C. Computation

Our expression for OPUDH
((s1, f1, u1), . . . , (sk, fk, uk))

combines elements of the classic no-delay optimal policy com-
putations (VHi

) with results of Markov chain analysis (P [(si +
δi, fi + ui − δi)]). Taking into account, delays add a significant
computational cost.

We assume that VH (see Section II-C) is precomputed as
in [16], and P [(si + δi, fi + ui − δi)] are evaluated on the fly.
VH storage requirements for small numbers of arms and various
time horizons are presented in Table I. They were determined us-
ing expressions derived in [16], where practical efficiency of VH

computation for 2-arm and 3-arm bandits is also demonstrated.
As can be seen in Fig. 4, memory requirements for Markov

chain computations are linear with respect to the number of
unknown rewards, u; the number of floating point multiplica-
tions and divisions for one arm is 2

∑u
i=1 2i = 2(u2 + u), and

Markov chain computations can be easily parallelized for bigger
values of u.

Observation 3: By using the memory-indexing method pre-
sented in [16], the optimal policy under delay can be used in
practice for up to three arms.

158 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 2, APRIL 2022

Fig. 5. Optimal policy regret for various delays. This is the ultimate lower
bound on regret for any algorithm.

D. Empirical Evaluation

We calculated the VH tables for 2-arms and 3-arms with vari-
ous priors and all time horizons up to 400 and 200, respectively.
Then we evaluated OPUDH

under these conditions by averaging
the results of one million simulation runs. Results are shown in
Fig. 5.

Observation 4: Delays cause significant excess regret even
under optimal decisions, but the optimal-policy-under-delay
regret is substantially lower than the regret for suboptimal
algorithms (compare Fig. 5 with Fig. 3).

Excess regret caused by delay can be visualized by plotting
the difference with the corresponding no-delay values. Fig. 6
presents such plots.

Observation 5: The optimal policy’s excess regret caused
by delay is largest for the uniform prior, i.e., Beta(1, 1), and
increases with delay.

V. META-ALGORITHM PARDI

The optimal policy under delay becomes difficult to use effi-
ciently in practice when the number of arms is greater than three.
Computational and storage requirements become prohibitive on
standard computing machines. This brings us back to Question 1
in the context of suboptimal algorithms.

Abstraction: Every suboptimal algorithm presented in
Section II-B, as well as other published algorithms, calculates
some value measure of selecting a given arm (eval_arm) and
applies argmax, just like the optimal policy. This similarity
suggests that the principles of the expression in Equation (2),

Fig. 6. Optimal policy: excess regret caused by delay.

given in Section IV-B, which calculates the optimal policy un-
der delay, OPUDH

((s1, f1, u1), . . . , (sk, fk, uk)), can be applied
to algorithms other than the optimal policy. The key element
of the optimal policy under delay is the consideration (pre-
diction) of all possible—yet unknown—current rewards and
their probabilities at a given time. Such probabilities are a
result of existing priors and remain independent of the valu-
ation function. Thus, the valuation part of the optimal policy
under delay, VHi

, can be replaced by the valuation function
from any other algorithm, e.g., from UCBT. Consequently, the
principles of the optimal policy under delay can be abstracted
out into a meta-algorithm, which takes a valuation function
(eval_arm) as an input. We call this meta-algorithm the PARDI.
Fig. 7 shows how the PARDI meta-algorithm is applied to the
optimal policy’s valuation function using mathematical nota-
tion. As previously discussed, this is the optimal policy under
delay.

Although our reasoning followed a different path, this meta-
algorithm could be classified as a partially observable partially
observable Markov decision process (POMDP)—a well-known
technique in reinforcement learning [1].

Observation 6: The predictive approach derived for comput-
ing the optimal policy under delay can be extended to many
common suboptimal algorithms, e.g., UCBT.

Simplification: For most algorithms, including UCBT, TS,
and WI, the meta-algorithm can be simplified as they evaluate
each arm independently of others. This means that other arms do
not affect the valuation of a given arm i, and variables associated

PILARSKI et al.: DELAYED REWARD BERNOULLI BANDITS: OPTIMAL POLICY AND PREDICTIVE META-ALGORITHM PARDI 159

Fig. 7. Optimal policy under delay implemented using meta-algorithm predictive algorithm reducing delay impact (PARDI).

Fig. 8. PARDI simplified (PARDI-S) for algorithms which evaluate arms individually. It reduces computational complexity.

with them can be eliminated. Thus, in the simplified meta-
algorithm (PARDI-S, Fig. 8), eval_armi((s1, f1), . . . , (sk, fk))
from PARDI is replaced with simpler eval_arm(si + δ, fi +
ui − δ, t,H), which has probability P [(si + δ, fi + ui − δ)].
Consequently, as we no longer need to examine all possible
configurations

u1
...
uk∑

δ1=0
...

δk=0

is replaced with
ui∑
δ=0

.

Observation 7: When arms are evaluated independently
(practically by all algorithms), PARDI-S is equivalent to PARDI
as it merely eliminates redundant calculations.

Note that PARDI is still required for algorithms that do not
evaluate arms independently (e.g., the optimal policy).

Algorithm 1 presents PARDI-S in an algorithmic manner.
PARDI-S has to keep track of all statistics required for valuation
by the applied bandit algorithm. It must internally maintain and
update priors as a result of successes and failures to calculate
probabilities. The algorithm iterates over each arm. For each
possible arm state, it calculates the state’s probability (see
Section IV-A) and calculates the expected valuation. Finally,
it selects the arm with the largest valuation.

For each arm, with a number of unknown rewards u, the num-
ber of floating point multiplications and divisions is2

∑u
i=1 2i =

2(u2 + u). For algorithms, which cannot use the PARDI-S opti-
mization, computational cost grows (worst case) exponentially
with the number of arms. When PARDI-S is used, the total
number of multiplications grows (worst case) linearly with the

number of arms. As PARDI-S is merely a computational com-
plexity optimization of PARDI available for some algorithms,
we will not distinguish between PARDI and PARDI-S throughout
the remainder of the article.

VI. PARDI: EMPIRICAL EVALUATION

In this section, we apply PARDI to UCBT, WI, and TS
algorithms and evaluate their performance. Each algorithm is
evaluated and results are averaged over a simulation study of one

160 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 2, APRIL 2022

Fig. 9. PARDI: Reduction of regret for common algorithms, delay of 24.

TABLE II
PARDI: REDUCTION OF EXCESS-REGRET-DUE-TO-DELAY AND

REGRET-DECREASE-FACTOR FOR TIME HORIZON 400; BETA(1,1)

million runs.3 All data presented in this article were produced
by a single extensively tested simulator4 (e.g., recreated results
published by others).

A summary of regret performance for delay of 24 can be
found in Fig. 9 and Table II. Each algorithm with and without
PARDI is presented for 2-arms, 3-arms, 10-arms, and 15-arms
with probabilities drawn from the Beta(1,1) distribution.

Observation 8: PARDI significantly improved the perfor-
mance of all tested algorithms—it eliminated up to 93% of excess
regret and decreased cumulative regret by up to 3×.

Observation 8 is further supported by plots in Appendix B,
where results for more delay values and various priors are also
presented.

Note that 2-arm and 3-arm plots in Fig. 9 also show optimal-
policy-under-delay results. They are labeled OPT_d24 and over-
lap plot WI_PARDI_d24. An examination of data in Fig. 5

3We repeated simulation studies of one million runs 100 times. The standard
deviation of regret between such studies is below 0.005 for any setting and would
not move plots/results in any significant or visible way.

4Simulation tools and experimental data related to this article can be found at
https://github.com/SebastianPilarski/Bernoulli_bandits.

TABLE III
WI_PARDI IS NEARLY OPTIMAL

Regret for time horizon 200.

Fig. 10. WI_PARDI: Reduction of regret as a function of delay. H = 200.

Fig. 11. WI_PARDI: Reduction of regret versus the number of arms. H =
200.

and the corresponding data in Fig. 12(a) leads to the following
observation.

Observation 9: For 2-arm and 3-arm delayed reward bandits,
WI_PARDI offers nearly optimal regret performance.

Data in Table III support this claim by comparing the op-
timal regret to WI_PARDI regret for various delays and arm

https://github.com/SebastianPilarski/Bernoulli_bandits

PILARSKI et al.: DELAYED REWARD BERNOULLI BANDITS: OPTIMAL POLICY AND PREDICTIVE META-ALGORITHM PARDI 161

Fig. 12. PARDI: Regret reduction for various algorithms, delays, and numbers of arms. (a) WI: Regret reduction by PARDI. (b) UCBT: Regret reduction by
PARDI. (c) TS: Regret reduction by PARDI.

priors. Observation 9 is a generalization of a similar obser-
vation made in [16], where no delays were considered, but
a larger scope of number of arms and time horizons were
examined.

Fig. 10 shows WI regret and WI_PARDI regret as a function
of delay for three different priors. WI_PARDI regret growth vs
delay appears to be slightly faster than linear.

Fig. 11 shows WI regret and WI_PARDI regret as a function
of the number of arms.

Observation 10: WI_PARDI regret increases with greater
delays and number of arms. Varying the prior Beta distribution
has a significant and complex effect.

VII. SUMMARY AND CONCLUSION

This article shows that delayed rewards may cause a dra-
matic decrease of regret-related performance of well-known
algorithms, and render the no-delay optimal policy useless.
It presents not only a novel, but first, computational method
that determines the general optimal policy under delays. The
main idea is to use a classic probability theory, namely fi-
nite Markov chains, to predict yet unknown rewards and
their probabilities, and fall back on no-delay optimal policy

procedures. The memory-indexing scheme, proposed in [16],
makes the generalized optimal policy practically applicable if
the number of arms does not exceed three. In the case of
2-arm bandits, it can be easily computed for time horizons
of 1000.

This article also demonstrated that the predictive part of the
generalized optimal policy can be abstracted out as a meta-
algorithm, PARDI, applicable to well-known suboptimal bandit
algorithms. PARDI brings very significant improvements to their
performance measured by regret, e.g., up to more than 3× in the
case of 15-arm bandits with delay of 24.

Finally, this article shows that PARDI applied to the WI
offers nearly optimal regret when 2-arm and 3-arm bandits are
examined. This observation holds regardless of delays, arms’
priors, and examined time horizons. In experiments with 10-arm
and 15-arm bandits, PARDI-enhanced WI was performing better
than any other suboptimal algorithm.

PARDI does not make any additional assumptions on the
general Bernoulli bandit model. It does not make any as-
sumptions on reward delays associated with individual arm
pulls. PARDI is an effective practical solution to reward delay-
related performance loss observed in well-known suboptimal
algorithms.

162 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 2, APRIL 2022

APPENDIX A
WHITTLE INDEX

The WI is closely related to the Gittins index [16], [38]. It
considers a finite time horizon rather than an infinite one.

“The main idea is as follows. Consider playing just one arm
with an unknown probability of success. For any state of the
game, it is possible to replace the arm with an arm of known
probability if it improves expected reward. The goal is to find
the smallest known probability p for any state of the game, which
is the value of the index” [16].

Equations that precisely define the WI are as follows:

V ∗
γ,H(s, f, p, 0) = 0

V ∗
γ,H(s, f, p, j) = max

{
p

j−1∑
i=0

γi,

s

s+ f

(
1 + γ · V ∗

γ,H(s+ 1, f, p, j − 1)
)

+
f

s+ f

(
0 + γ · V ∗

γ,H(s, f + 1, p, j − 1)
)}

j = 1, . . . , H

WI(s, f, j) = min p : p

j−1∑
i=0

γi ≥

s

s+f
(1+γ · V ∗

γ,H(s+1, f, p, j−1))

+
f

s+f
(0+γ · V ∗

γ,H(s, f+1, p, j−1))

where j represents the remaining playing time, and we assume
the discount factor γ = 1 in this article.

The first equation says that there are no more rewards after
the last pull. The second and third equations, which use Property
1 and Equation (1), say that WI is computed “sequentially
backward,” i.e., starting from the last pull.

Both equations are an application of Property 1 and Equation
(1).

APPENDIX B
PARDI: ADDITIONAL EMPIRICAL EVALUATION

Fig. 12 presents regret reduction by WI_PARDI,
UCBT_PARDI, and TS_PARDI for various delay values
and number of arms. The plots in this figure support our
observations and can serve as a guide to select the most
effective algorithm for a particular application.

Additional plots for various priors can be found online5.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

5[Online]. Available: https://github.com/SebastianPilarski/Bernoulli_bandits

[2] D. A. Berry, “Modified two-armed bandit strategies for certain clinical
trials,” J. Amer. Stat. Assoc., vol. 73, no. 362, pp. 339–345, 1978.

[3] S. S. Villar, J. Bowden, and J. Wason, “Multi-armed bandit models for
the optimal design of clinical trials: Benefits and challenges,” Statist. Sci.,
vol. 30, no. 2, pp. 199–215, 2015.

[4] S. S. Villar, “Bandit strategies evaluated in the context of clinical trials
in rare life-threatening diseases,” Probability Eng. Inf. Sci., vol. 32, no. 2,
pp. 229–245, 2018.

[5] D. A. Berry and B. Fristedt, Bandit Problems: Sequential Allocation of
Experiments (Monographs on Statistics and Applied Probability), vol. 5.
London, U.K.: Chapman and Hall, no. 71/87, 1985, pp. 7–7 .

[6] Y. Cheng, F. Su, and D. A. Berry, “Choosing sample size for a clinical trial
using decision analysis,” Biometrika, vol. 90, no. 4, pp. 923–936, 2003.

[7] T. Friede et al., “Recent advances in methodology for clinical trials in
small populations: The inspire project,” Orphanet J. Rare Dis., vol. 13,
no. 1, pp. 186–186, Oct. 2018.

[8] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” J. Mach. Learn. Res., vol. 1, pp. 1–48, 2014.

[9] M. Zhu, X. Zheng, Y. Wang, Y. Li, and Q. Liang, “Adaptive port-
folio by solving multi-armed bandit via thompson sampling,” 2019,
arXiv:1911.05309.

[10] E. Kaufmann, O. Cappé, and A. Garivier, “On the complexity of A/B
testing,” in Proc. Conf. Learn. Theory, 2014, pp. 461–481.

[11] Y. Mao, M. Chen, A. Wagle, J. Pan, M. Natkovich, and D. Matheson, “A
batched multi-armed bandit approach to news headline testing,” in Proc.
IEEE Int. Conf. Big Data, 2018, pp. 1966–1973.

[12] S. Katariya, B. Kveton, C. Szepesvári, C. Vernade, and Z. Wen, “Bernoulli
rank-1 bandits for click feedback,” in Proc. 26th Int. Joint Conf. Artif.
Intell., 2017, pp. 2001–2007.

[13] D. Bouneffouf and I. Rish, “A survey on practical applications of multi-
armed and contextual bandits,” 2019, arXiv:1904.10040.

[14] G. Burtini, J. Loeppky, and R. Lawrence, “A survey of online experiment
design with the stochastic multi-armed bandit,” 2015, arXiv:1510.00757.

[15] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge, U.K.:
Cambridge Univ. Press, 2020.

[16] S. Pilarski, S. Pilarski, and D. Varro, “Optimal policy for Bernoulli bandits:
Computation and algorithm gauge,” IEEE Trans. Artif. Intell., vol. 2, no. 1,
pp. 2–17, Feb. 2021.

[17] L. Liu, R. Downe, and J. Reid, “Multi-armed bandit strategies for non-
stationary reward distributions and delayed feedback processes,” 2019,
arXiv:1902.08593.

[18] L. Zhou, “A survey on contextual multi-armed bandits,” 2015,
arXiv:1508.03326.

[19] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2011, pp. 2249–2257.

[20] N. Akbarzadeh and A. Mahajan, “Conditions for indexability of rest-
less bandits and an algorithm to compute Whittle index,” 2020,
arXiv:2008.06111.

[21] K. Ronoh, R. Oyamo, E. Milgo, M. Drugan, and B. Manderick, “Bernoulli
bandits an empirical comparison,” in Proc. 23rd Eur. Symp. Artif. Neural
Netw., Comput. Intell. Mach. Learn., 2015, pp. 59–64.

[22] P. Jacko, “BinaryBandit: An efficient Julia package for optimization and
evaluation of the finite-horizon bandit problem with binary responses,”
Lancaster Univ. Manage. School, Lancaster, U.K., Working Paper, 2019.
[Online]. Available: https://eprints.lancs.ac.uk/id/eprint/136340

[23] P. Jacko, “The finite-horizon two-armed bandit problem with binary re-
sponses: A multidisciplinary survey of the history, state of the art, and
myths,” 2019, arXiv:1906.10173.

[24] P. Joulani, A. Gyorgy, and C. Szepesvári, “Online learning under delayed
feedback,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 1453–1461.

[25] C. Pike-Burke, S. Agrawal, C. Szepesvari, and S. Grunewalder, “Bandits
with delayed, aggregated anonymous feedback,” in Proc. 35th Int. Conf.
Mach. Learn., 2018, vol. 80, pp. 4105–4113.

[26] J. Tyo, O. Neopane, J. Byrd, C. Gupta, and C. Igoe, “Multi-armed bandits
with delayed and aggregated rewards,” DEVCOM Army Res. Lab., White
Oak, MD, USA, Tech. Rep. ARL-TR-8754, 2019.

[27] A. Grover et al., “Best arm identification in multi-armed bandits with
delayed feedback,” in Proc. Mach. Learn. Res., 2018, vol. 84, pp. 833–842.

[28] Z. Zhou, R. Xu, and J. Blanchet, “Learning in generalized linear contextual
bandits with stochastic delays,” in Proc. Adv. Neural Inf. Process. Syst.,
2019, vol. 32, pp. 5197–5208.

[29] M. Yang, H. Zhu, H. Wang, Y. Koucheryavy, K. Samouylov, and
H. Qian, “Peer to peer offloading with delayed feedback: An adversary
bandit approach,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2020, pp. 5035–5039.

https://github.com/SebastianPilarski/Bernoulli_bandits
https://eprints.lancs.ac.uk/id/eprint/136340

PILARSKI et al.: DELAYED REWARD BERNOULLI BANDITS: OPTIMAL POLICY AND PREDICTIVE META-ALGORITHM PARDI 163

[30] S. Ito et al., “Delay and cooperation in nonstochastic linear bandits,” Adv.
Neural Inf. Process. Syst., vol. 33, pp. 4872–4883, 2020.

[31] J. Doob, Stochastic Processes (Ser. Probability and Statistics Series).
Hoboken, NJ, USA: Wiley, 1953.

[32] J. M. Bernardo and A. F. Smith, Bayesian Theory. Hoboken, NJ, USA:
Wiley, 2009.

[33] W. R. Thompson, “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples,” Biometrika, vol. 25,
no. 3/4, pp. 285–294, 1933.

[34] W. R. Thompson, “On the theory of apportionment,” Amer. J. Math.,
vol. 57, no. 2, pp. 450–456, 1935.

[35] E. Kaufmann, N. Korda, and R. Munos, “Thompson sampling: An asymp-
totically optimal finite-time analysis,” in Proc. Int. Conf. Algorithmic
Learn. Theory, 2012, pp. 199–213.

[36] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multi-
armed bandit problem,” Mach. Learn., vol. 47, no. 2/3, pp. 235–256, 2002.

[37] P. Whittle, “Restless bandits: Activity allocation in a changing world,” J.
Appl. Probability, vol. 25, pp. 287–298, 1988.

[38] J. C. Gittins, “Bandit processes and dynamic allocation indices,” J. Roy.
Stat. Soc.: Ser. B. (Methodological), vol. 41, no. 2, pp. 148–164, 1979.

[39] J. Chakravorty and A. Mahajan, “Multi-armed bandits, Gittins index, and
its calculation,” in Methods and Applications of Statistics in Clinical Trials:
Planning, Analysis, and Inferential Methods. Hoboken, NJ, USA: Wiley,
2014, ch. 24, pp. 416–435.

[40] S. Pilarski et al., “Bernoulli bandit data and tools repository.” 2021. [On-
line]. Available: https://github.com/SebastianPilarski/Bernoulli_bandits

[41] S. Pilarski et al., “Bernoulli bandit code capsule,” 2021,
doi: 10.24433/CO.1300732.v1.

Sebastian Pilarski (Graduate Student Member,
IEEE) is currently working toward the Ph.D. degree
with the Department of Electrical and Computer En-
gineering, McGill University, Montreal, QC, Canada.

He has been investigating applications of artificial
intelligence in gas turbine design and control with
Siemens Energy. His research interests include soft-
ware engineering, machine learning, reinforcement
learning, and their applications to systems engineer-
ing.

Slawomir Pilarski (Member, IEEE) received the M.Sc. degree from the Warsaw
University of Technology, Poland, and the Ph.D. degree from the Institute
of Electron Technology, Warsaw, Poland. He was a tenured Professor with
Simon Fraser University, Burnaby, BC, Canada. He held Director-level positions
with Synopsys, Mountain View, CA, USA, and Magma DA, San Jose, CA,
USA, where he led advanced formal verification R&D teams. He founded two
startups—one acquired by Magma. His work on built-in self-test of VLSI circuits
was recognized by the IEEE Design and Test of Computers as a milestone
in test technology and was deployed by several major chip manufacturing
companies. He developed core algorithms and architected two industry-leading
formal verification tools including second-generation formality—an equivalence
checker. He has authored or coauthored more than 40 research papers and
an IEEE monograph, and has also coauthored three patents in three different
research domains. His research interests include computer architecture, various
aspects of VLSI design, distributed databases, formal verification, and logic
synthesis to theoretical computer science and reinforcement learning.

Dániel Varró (Member, IEEE) received the Ph.D.
degree from the Budapest University of Technology
and Economics. He is currently a Full Professor with
McGill University, Montreal, QC, Canada. He is a
coauthor of more than 170 scientific papers.

Mr. Varró was the recipient of seven Distin-
guished Paper Awards and three Most Influential
Paper Awards. He is on the Editorial Board of Soft-
ware and Systems Modeling and Journal of Object
Technology periodicals, and was a Program Co-Chair
of MODELS 2021, SLE 2016, ICMT 2014, and FASE

2013 conferences. He delivered keynote talks at numerous conferences, includ-
ing CSMR, SOFSEM, and SAM, and International Summer Schools. He is
a Co-Founder of the VIATRA open source model query and transformation
framework, and IncQuery Labs, Budapest, Hungary, a technology-intensive
Hungarian company.

https://github.com/SebastianPilarski/Bernoulli_bandits
https://dx.doi.org/10.24433/CO.1300732.v1.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

