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Abstract—Since the onset of the COVID-19 pandemic in 2019,
many clinical prognostic scoring tools have been proposed or devel-
oped to aid clinicians in the disposition and severity assessment of
pneumonia. However, there is limited work that focuses on explain-
ing techniques that are best suited for clinicians in their decision
making. In this article, we present a new image explainability
method named ensemble Al explainability (XAI), which is based
on the SHAP and Grad-CAM++ methods. It provides a visual
explanation for a deep learning prognostic model that predicts the
mortality risk of community-acquired pneumonia and COVID-19
respiratory infected patients. In addition, we surveyed the existing
literature and compiled prevailing quantitative and qualitative
metrics to systematically review the efficacy of ensemble XAI,
and to make comparisons with several state-of-the-art explain-
ability methods (LIME, SHAP, saliency map, Grad-CAM, Grad-
CAM-++). Our quantitative experimental results have shown that
ensemble XAI has a comparable absence impact (decision impact:
0.72, confident impact: 0.24). Our qualitative experiment, in which
a panel of three radiologists were involved to evaluate the degree of
concordance and trust in the algorithms, has showed that ensemble
XALI has localization effectiveness (mean set accordance precision:
0.52, mean set accordance recall: 0.57, mean set F'; : 0.50, mean set
I0U: 0.36) and is the most trusted method by the panel of radiolo-
gists (mean vote: 70.2%). Finally, the deep learning interpretation
dashboard used for the radiologist panel voting will be made avail-
able to the community. Our code is available at https://github.com/
THIS-HealthInsights/Interpretation-Methods- Voting-dashboard.

Impact Statement—Compared to other sectors that have
deployed artificial intelligent (AI), the use of AI in healthcare
understandably requires closer scrutiny due to the potential risks to
patient safety, especially for clinical AL. As such, AI Explainability
(XAD) is a key focus area in regard to the adoption of AI in
healthcare. However, most of the current XAI methods for medical
imaging revolve around quantitative assessment and there is a
lack of systematic qualitative studies that seek to gain trust and
concordance with clinicians. In this article, we worked with a panel
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of clinicians to devise a comprehensive XAl evaluation framework
combining quantitative and qualitative metrics to systematically
review the efficacy of XAl techniques on deep learning models for
pneumonia medical imaging. More importantly, we developed a
new image explainability algorithm named Ensemble XAI, which
gained the most trust by the panel of radiologists with a mean vote
of 70.2%. 1t is envisioned that with the proposed XAI evaluation
framework and ensemble XAl, it will help in proliferating the use
of Al in medical imaging.

Index Terms—Explainable artificial intelligent (AI), clinical
decision support, pneumonia, COVID-19, chest X-ray, neural
network.

I. INTRODUCTION

S of May 17, 2021, 163.71 million cases of COVID-19
A infection and 3 393 551 deaths have been reported world-
wide. Ethical considerations in scarcity suggest that hospital
resources should be prioritized for patients who are most ill.
Singapore, with her population of 5.6 million, has faced an
unprecedented surge in hospital care, similar to many other
countries hit by COVID-19. COVID-19 has pushed Singapore’s
healthcare systems to the edge and spurred rapid development
of Al health informatics solutions to fight against the pandemic.

A number of international studies have been performed and
presented in the literature on the importance of deep learning
algorithms to facilitate quick diagnosis of COVID-19 detection
using medical image datasets [1]-[7]. Most of the work reported
good classification performance using deep learning algorithms
on computed tomography (CT) images and chest X-ray imaging.
For example, in [1], Ozyurt ef al. proposed a fused feature gen-
erator and iterative hybrid feature selector that uses a four-phase
image preprocessing technique to extract handcrafted features
of CT images. The artificial neural networks and deep neural
network models used these features as inputs to classify healthy
CT images and Covid-19 CT images and achieved classification
accuracies of 94.10% and 95.84% respectively. In [3], Zhu et
al. highlight the effectiveness of deep learning using pre-trained
algorithms for classifying chest X-ray images. However, none
of the research papers emphasized model explainability.

In February 2020, Singapore’s Changi General Hospital, to-
gether with the national HealthTech Agency Integrated Health
Information System (IHiS), collaborated to develop an Al
predictive model known as the Community Acquired Pneu-
monia and COVID-19 AI Predictive Engine (CAPE) [8] that
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can generate a risk score for pneumonia patients. The CAPE
team consisted of senior clinicians with specialties in radiology
and respiratory medicine, data scientists, health informatics
researchers and system engineers. They set out to design a simple
and scalable application that could embed Al into the thoracic
imaging workstream.

One of the key challenges with the introduction of Al into
a clinical workflow was centered on explainability [9]. Neural
networks have been proven to be superior in terms of accuracy
in many imaging applications when compared to conventional
machine learning approaches such as support vector machines.
However, the former is much less explainable. Without clear
explainability of how AI algorithms made their predictions, it
is difficult for clinicians to be comfortable working with Al and
trust the algorithms [10], [11]. While there is extensive work in
explaining the decision of an algorithm, for example, commonly
used layer-wise relevance propagation [12] and localization,
gradients, and perturbations [13], [14]. There are few literatures
examining the efficacy of interpretation techniques for deep
learning imaging networks [15]-[18], as well as quantifying
them using methods, such as overlapping with ground truth
bounding boxes and label randomization [19], [20],

As highlighted in [21], Tjoa and Guan there is a lack of stan-
dardized and a uniform adoption of interpretability assessment
criteria across the medical field. This may create a bias in selec-
tion for one method compared to another without justification
based on medical practices. It is also found that there is little
work involving human studies that evaluate the trustworthiness
of interpretation techniques for medical imaging.

The main contributions of this article are as follows.

1) Based on ensemble techniques used in machine learning,
we proposed integrating the SHAP and Grad-CAM++
methods to produce an augmented mapping layer iden-
tifying discriminative regions. We named this ensemble
XAL

2) We compiled a visual explainability evaluation checklist
that aims to benchmark various image explainability tech-
niques quantitatively and qualitatively. For the qualitative
studies, a panel of expert radiologists was involved in
the localization effectiveness and subjective voting assess-
ment to determine which image explainability techniques
were best suited for thoracic medical images.

3) Finally, we provide an in-depth discussion on the impact
of visual explainability on clinical pathways.

II. METHOD

In this section, we introduce the data and deep learning model
used for mortality identification, review five state of the art in-
terpretation methods, proposes ensemble XAl, and elaborate on
evaluation metrics and experiments for the visual explainability
evaluation checklist.

A. Data and Modeling

Model development was based on a single acute tertiary
hospital’s data. Ethics approval was given by the SingHealth

Centralized Institutional Review Board (CIRB 2020/2100), and
a study consent waiver for the use of data was obtained.

1) Predictive Model Development: Our predictive model
was developed by using a retrospective study of a cohort that
encompasses adult patients admitted to a tertiary acute hospital
in Singapore from January 1, 2019 to 31st December 2019.
The inclusion criterion was based on patients admitted through
the emergency department with pneumonia diagnosis (using
ICD-10 coding).

The study cohort consisted of 2235 chest X-ray images from
1966 unique adult patients. The EMR data of patients were also
collected to generate labels for the inpatient mortality indicator.
The data was deidentified prior to processing.

The data were categorized into three different sets named
“training,” “validation,” and “test,” Patients admitted from Jan-
uary 1, 2019 to October 31, 2019 were split into the training
and validation sets with a ratio of 9:1. Patients admitted from
November 1, 2019 to December 31, 2019 were used to create
the “test” set to ensure temporal generalizability of the model.

Our objective was to predict the demise of patients with
pneumonia during inpatient episodes. The starting point of
prediction was on the day of admission. A binary classification
was used with the label 1 defined as inpatient mortality and O
for non-mortality.

A deep learning classifier was developed that combined
a pretrained image classification network—Xception—with a
fully-connected network. Xception is an extension of the Incep-
tion architecture that replaces the standard Inception modules
with depthwise separable convolutions [22]. A transfer learn-
ing approach, which uses a predefined model, has the benefit
of taking advantage of the knowledge gained while learning
generic features from large-scale image datasets. The models
were implemented in Keras (version 2.3.0), Scikit-learn (version
0.19.1) and Python (version 3.7).

The final model developed termed as CAPE has an AUC of
0.890 and accuracy of 0.899 when tested on this retrospective
cohort data. To date, CAPE has been implemented as a computer
application, where independent chest radiographs can be ana-
lyzed for determination of an image-based mortality risk score.

2) Interpretation Evaluation Dataset: To evaluate our ap-
proaches for XAl interpretation, a prospective cohort consisting
of 1475 adult patients who required inpatient admission for a
physician-determined diagnosis of CAPE via the emergency
department, over the period of January 1, 2020 to June 30, 2020
was employed. The model performance on the prospective data
has an AUC of 0.803 and accuracy of 0.811 when tested in
real world clinical setting. The interpretation evaluation dataset
established was 76 true positive cases identified by CAPE. Fig. 1
illustrates the prospective cohort formation of the interpretation
evaluation dataset.

B. Interpretation Approaches

There are five state of the art interpretation methods that
are targeted in this article, namely Grad-CAM, Grad-CAM-++-,
SHAP, LIME, and saliency. In addition, ensemble XAl is intro-
duced in this section.



244 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 2, APRIL 2023
CAPE® Model Development Datasets
Training and Validation Dataset (Jan 1, 2019 to Oct 31,2019) Test Dataset (Nov1, 2019 to Dec 31, 2019)
1836 subjects with 2081 inpatient | | 525 subjects with 551 inpatient
Exclude 327 inpatient 4 Transfer 175 subjects (196 »| Exclude 68 inpatient
visits without CXR on CXRs) from test dataset to visits without CXR on
day of admission «—| training and validation dataset |« day of admission
to avoid data leakage due to
subject duplication
v 4
| 1684 subjects with 1948 inpatient visits 282 subjects with 287 inpatient visits
90% of data: 1753 10% of data: 195 CXRs
CXRs used for training used for validation
Interpretation Evaluation Datasets
Prospective Cohort Study (Jan 1, 2020 to June 30, 2020)
1859 subjects with 2092 inpatient visits
» Exclude 487 inpatients visits without
CXR on day of admission
A4
1475 subiects with 1605 inpatient visits
h 4
Interpretation Evaluation CXR images
76 True Positive CXR images predicted by
CAPE model
Fig. 1. Datasets for CAPE model development and prospective cohort study.

1) Grad-CAM: Grad-CAM is one of the methods that have
gained popularity in recent years. It has made CNN-based
models more transparent by visualizing input regions with high
resolution details that are important for making predictions [23].
Visualization of the final feature map A* shows the discrimina-
tive regions of the image, as the last convolutional layer can
be considered features of a classification model. Grad-CAM
proposes to use the averaged gradient score as weights for the
feature map which is defined as

Ly y

i=1j=1

dy
)
K dAF,

ey

where A* € R"*V is the kth feature map from the last convolu-
tional layer with height v and width v.

However, this approach may have certain shortcomings, such
as the failure to localize an object in the image if there are

multiple occurrences of the same object, or the localization of
only a portion of the objects due to the unweighted average of
partial derivatives [23].

2) Grad-CAM++: Grad-CAM++ is a generalized method
of Grad-CAM thatimproves upon Grad-CAM’s limitations. This
approach provides a measure of importance to each pixel in a
feature map that contributes to the overall decision of the CNN.
As such, all the spatially relevant regions of the input image
are equally highlighted such that the entire object is localized
in instances where there are multiple occurrences of the same
object [24].

3) SHAP: SHAP is used to explain prediction of instance x
by computing the contribution of each feature to the prediction.
The SHAP gradient explainer is an extension of the integrated
gradients method—a feature attribution method designed for
differentiable models based on an extension of Shapley values
to infinite player games (Aumann—Shapley values) [25], [26].
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If we approximate the model with a linear function between each
background data sample and the current input to be explained,
and we assume that the input features are independent, then ex-
pected gradients compute approximate SHAP values. The gradi-
ent explainer works by integrating the gradients of all interpola-
tions between a foreground sample (the sample being explained)
and a background sample (the sample being compared to).
As an adaptation to make them approximate SHAP values,
expected gradients reformulate the integral as an expectation
and combine that expectation with sampling reference values
from the background dataset. This leads to a single combined
expectation of gradients that converge to attributions that sum
to the difference between the expected model output and the
current output [25], [26].

4) Local Interpretable Model-Agnostic Explanation (LIME):
LIME [27] is used to approximate a complex model locally by
an interpretable model that can explain prediction of a particular
instance of interest. The LIME procedure can be summarized as
follows.

1) Determine an interpretable representation of the instance
of interest. For an image, superpixels (contiguous patches
of similar pixels) are used, such that the interpretable
representation of an image is a binary vector where 1
indicates the original superpixel and O indicates a grayed
out superpixel [28].

2) Draw a sample by disturbing the interpretable representa-
tion. Instead of having all ones in the binary vector for the
original image, the sample image has some zeros in the
binary vector that indicate grayed out superpixels.

3) Apply the original model to the perturbed images and
generate predictions.

4) Fit the interpretable model to the proximity-weighted
sampled images and the predictions in step iii.

5) Use the interpretable model to draw conclusions about the
relevance of each interpretable component.

The complexity of the above process makes the computa-
tion of LIME very time consuming. Furthermore, this sparse
superpixel-based explanation method is sensitive to small
amounts of noise in the input [29], resulting in instability of
the explanations.

5) Saliency Map: Saliency map is a simple and straightfor-
ward interpretation method that was first introduced in 2014
[30]. Since the gradient of output with respect to the in-
put image represents how the output value changes with re-
spect to a small change in input, high magnitudes of gra-
dients are expected to highlight input regions that cause the
most change in the output. Thus, the pixels that are high-
lighted are the ones that contribute most to the output. How-
ever, this approach is unable to distinguish between positive
and negative evidence due to absolute values of the partial
derivative [31].

6) Ensemble XAI: Ensemble methods are widely applied in
deep learning due to their ability to minimize bias and variance,
which can result in improved reliability [32], [33]. For medical
imaging, the stacking-based ensemble method is often used and
has shown success in many deep learning studies [8], [34]. For
image interpretation, we propose a stacking-based ensemble

method that works on the output of the base interpretation
method.

Since the Grad-CAM++ and SHAP gradient explainer meth-
ods are both gradient-based algorithms with different mecha-
nisms but corresponding advantages, it is of interest to know
whether the combined use of both methods results in com-
plementary effects. To test this hypothesis, we proposed an
ensemble method that applies Kernel Ridge regression to the
normalized Grad-CAM++ and the normalized positive SHAP
values to generate the mapping layer identifying discriminative
regions. We have termed this method as ensemble XAlI. Fig. 2
illustrates the workflow of ensemble XAl algorithm.

For each image, a pair of Grad-CAM++ and SHAP heat maps
is generated by the base model, as well as the corresponding
ground truth annotated by radiologists. Preprocessing is applied
before the Kernel Ridge as shown in Fig. 2(a). First, as the
image is annotated by three different radiologists, to generate
the y function for Kernel Ridge, we calculate the weighted sum
of three annotations to produce the target label. The target label
shows three different intensity colors with the darkest area repre-
senting the concordance area of three radiologists, the green area
representing the concordance area of two radiologists and light
green representing the area annotated by only one radiologist.
Second, the Grad-CAM++, SHAP heat map and ground truth
two-dimensional (2-D) images are resized and converted to 1-D
pixel features array. Then Grad-CAM++- and SHAP 1-D pixel
arrays are concatenated as one combined pixel array.

Finally, the experiment data are split into three folds. For each
iteration in Fig. 2(b), two folds of data are used in kernel ridge
to fit the corresponding target ground truth, and then predict on
the other fold. After three iterations, ensemble XAl for all folds
is generated without information leakage.

C. Interpretation Evaluation Metrics

To determine the interpretation performance, the following
evaluation metrics are used.

1) Decision Impact Ratio: The percentage change in deci-
sions as a result of omitting the critical area identified by
interpretation method.

Let D(z) be the deep learning decision function which returns
classification decision when the input is image x. Let 1jogic be
the indicator function which returns one when the logic is true.
The formula decision impact ratio can be calculated as follows:

N
1 ) e
Decision impact ratio = Z —D(m’)?(“ ci)

i

@)

where x; denotes the ith original image, and ¢; denotes the
critical area identified by the deep learning model for the ith
image.

2) Confidence Impact Ratio: The percentage drop in confi-
dence as a result of omitting the critical area identified by
the interpretation method.

Let C'(z) be the deep learning confidence function that re-

turns the classification confidence probability when the input is
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Preprocess Example for Iteration i
" Train Label: target ground truth
Grad-CAM++ SHAP Ground Truth — Fit by —rg g
. 1 KernelRidge
Radiologist 1 ¢ ag Targ‘et Ground Truth
Radiologist 2 g :h e
(56,56) (56,56) 3
l l Radiologist 3 § « *;
Reshape :
(1,3136) (1,3136) Weighted sum Test Ensemble XAl
Model i
Concatenation ~———————"Reshape i
(1,6272) (1,3136) : Prediction
(a) T Preprocess Reshape and
visualize
Three-fold cross validation .
Iteration 1 | Train, I Train, I Test, I ‘ h
Iteration2 [ Test, [ Tain, [  Tain, | 1300
Iteration 3 [ Tain, | Test, [ Tain, |

(b)

Fig. 2.
generate ensemble XAL (c) Workflow for iteration i.

image z. The formula, confidence impact ratio, can be calculated
as

al max (C (z;)—C (z;
Confidence i t ratio = A
onfidence impact ratio Z N

i

_Ci)ao)

3)
where z; denotes the ith original image, and c¢; denotes the
critical area identified by deep learning model for the ith image.

When comparing the critical area recognized by deep learning
and the annotated area by experienced clinicians, there was a
pair of accordance recall and precision measurements for each
image.

1) Accordance Recall: fraction of the total annotated area that

was correctly recognized by the interpretation method.

4) Accordance Precision: fraction of correctly recognized
area among the entire critical area identified by the in-
terpretation method.

F1 Score: harmonic mean of the accordance recall and
precision.

Intersection Over Union (IOU): fraction of the correctly
recognized area among the union area encompassed by
both the radiologist’s annotation and the critical area iden-
tified by interpretation method.

Let S(z) be the suspicious pneumonia area that is annotated
by the clinician for image x and let F'(z) be the critical area that
is identified by the interpretation method. The accordance recall
and precision, set accordance recall, set accordance precision,
set I} and set IOU formulas are as defined follows:

S (wi)
S (J?Z) NnF (.TJZ)
F(zi)

5)

0)

Accordance recall (z;) =

“

Accordance precision (x;) =

&)

(©)

Advanced ensemble XAl (a) Preprocessing of Grad-CAM-++-, SHAP, and ground truth for each image. (b) Three-fold cross validation is applied to

N
1
Set Accordance recall = E N X Accordance recall ( x; )
(6)
ANy
t Accord ision = E —
Set Accordance precision ¥

x Accordance precision ( x; )

N
SetFI:ZN

" Accordance recall ( z; )+ Accordance precision ( z; )
Accordance recall ( x; ) x Accordance precision ( z; )

®)

(N

S(x;) UF (x;) ©)

|
Set IOU = — X
V=2
where x; denotes the ith original image.

D. Visual Explainability Evaluation Checklist

The comprehensive visual explainability evaluation checklist
consists of measures that assess both quantitative and qualitative
performance of each interpretation method. Three experiments
with different objectives were designed to obtain these measures.

1) To assess the critical area absence impact of each inter-

pretation method.

2) To assess localization effectiveness of each interpretation

method.
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Quantitative assessment

Experiment 1: Absence impact

v
Evaluation based
on metrics two:

Confidence
impact ratio

\d
Evaluation based
on metrics one:
Decision impact

ratio

Annotation of
the X-ray
images by

radiologists

Fig. 3. Visual explainability framework.

Raw label: positive Grad_CAM: 0.8287079

o Grad_CAM_++ 08287079

50 150 200 100 150

Grad_CAM: 0.6871455 » Grad CAM++: 0.62159157

=

100 150 200

Fig. 4.
interpretation methods with new mortality risk score in second row.

3) To assess radiologists’ trust for each interpretation

method.

Of these, experiment 1 assesses the quantitative performance,
while experiments 2 and 3 assess the qualitative performance
of each interpretation method. Fig. 3 shows the structure of the
framework. The use of this framework is not limited to radio-
graphic images and can be applied to other imaging modalities,
such as magnetic resonance imaging (MRI), CT, or ultrasound
imaging.

1) Experiment 1. Absence Impact: In this article, the deci-
sion impact and confidence impact ratios of different popular
interpretation methods (Grad-CAM, Grad-CAM ++, SHAP,
LIME, saliency, and ensemble XAI) were assessed. Each
method was applied using the same deep learning model, which
was developed by combining a pretrained image classifica-
tion network (Xception) with a fully connected network. The
same last convolutional layer was used as the target for each
method.

SHAP: 0.8287079

SHAP: 0.28728026

247

Qualitative assessment

Experiment 2: Localization
effectiveness

Generate the

interpretation

dashboard for
voting

v
Analysis of the
annotated area and

Al identified area
based on the
accordance metrics

Voting for reliable
heat maps
and summary the
stats

LIME: 0.8287079 Saliency: 0.8287079 " Ensemble XAl: 0.8287079

A

100 150 200 50 100 150 200 S0 100 150 200 50 100 150 200

LIME: 0.4843392
3

Saliency: 0.58036536 A Ensemble XAl: 0.6013114
-

v
150

100 150 200 50 100 200

Heat map identified by six interpretation methods with mortality risk score of original images in first row; images in absence of critical area of corresponding

Radiographic images from patients who died from the January
to June 2020 were obtained. From these images, a set of 76
images correctly recognized by the model was generated, to
which heat maps of critical areas were added using the five
interpretation methods and ensemble XAI. Prediction scores
were subsequently derived for these images using the deep
learning model in two different groups: one for the original
image and one in an altered image (in which the part of the
image corresponding to the abovementioned critical areas were
removed). An example of this is shown in Fig. 4, where the
interpretation methods used and the corresponding prediction
scores are shown at the top of each image. As expected, the
prediction score for each image was significantly changed when
the corresponding critical area was removed.

The purpose of this experiment was to quantify the inter-
pretation capabilities of different methods under a general sce-
nario where decisions were made by the same network on the
same data. The top three interpretation methods and ensemble
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Original image Annotation

Fig. 5.
in grid form. (b). Critical area identified by Grad-CAM++- in grid form.

XAI were then qualitatively assessed via the subsequent two
experiments.

2) Experiment 2. Localization Effectiveness: In this exper-
iment, the ability of each interpretation method to correctly
localize the potential severity areas was assessed. This was mea-
sured using the set accordance recall, set accordance precision,
set I and set IOU values, which were obtained by comparing
the critical areas identified by the interpretation method with
the ground truth of severity areas annotated by experienced
radiologists.

The set of 76 images was sent to a panel of three radiologists
who had been working for at least five years for severity area
annotation. Using the Pixel AnnotationTool_x64_v1.4.0 annota-
tion tool, areas in the images that were expected to contribute
to the patient’s mortality were identified and annotated by the
radiologists. The output of the annotated watershed mask image
is shown in the middle image in Fig. 4(a).

Since the interpretation methods evaluate the last convolu-
tional layer generating output with a shape (77,1024), (77) canbe
interpreted as the shape of the image feature. We approximated
the annotated area into 14x14 grids with wider tolerance as
shown in the rightmost image in Fig. 5(a).

To maintain consistency, the critical areas identified by the
interpretation methods were also shaped into 14x14 grids for
comparison. An example is shown in Fig. 5(b), where the left
image shows the critical area obtained by the Al interpretation
method while the right image shows the corresponding critical
area in grid form.

3) Experiment 3. Radiologists’ Trust: In this experiment, we
evaluated the radiologists’ trust in each interpretation method
through voting. The aim of this experiment was to obtain a
qualitative and subjective assessment from radiologists with
regard to the reliability of Al methods in identifying critical
areas.

The same set of 76 images was again used for this experiment,
to which the top three interpretation methods from experiment
1 and the ensemble XAI were applied.

a) Interpretation dashboard generation: To capture and an-
alyze the choices of the experienced radiologists, a web appli-
cation was developed using streamlit—an open-source Python
library for creating and sharing web applications for machine
learning and data science. The selected images and their cor-
responding heat map graphs were displayed using the web

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 2, APRIL 2023

Annotation grid

Heat map Heat map grid

(b)

Annotation and heat map in grid form. (a). From left to right are the original image, annotated area recognized by experienced clinicians and annotation

application as shown in Fig. 6. A checkbox was also provided
for each of the different heat maps. The web application was
then used by each radiologist to perform any of the following
actions.

1) Choose any one of the interpretation methods (the inter-
pretation winners from experiment 1) as the best choice
for an image.

Choose any two of the interpretation methods as the best
choice for an image.

Choose any three of the interpretation methods as the best
choice for an image.

Choose all the interpretation methods as the best choice
for an image.

Select none of the three interpretation methods if they are
not reasonable enough.

The choices made by the different radiologists for each of
the 76 different images were captured and saved automatedly
in a CSV file. The interpretation method that was chosen as a
reasonable interpretation will then be counted as one, or zero
if not chosen. The aggregated trust percentages score for the
different methods was then compared.

2)
3)
4)

5)

III. RESULTS

In this section, the experimental results are summarized.

A. Experiment 1: Absence Impact

This experiment quantifies the interpretation capability of
each visual explainability method based on their decision impact
ratio and confidence impact ratio.

The performance of the different methods is shown in the
first section of Table I. The top performing method is LIME
with a decision impact of 0.96 and a confidence impact of
0.43. This means that if the critical area identified by LIME is
removed, 96% of the positive images will be classified into the
negative category and the corresponding confidence will drop
to 43%. In addition to LIME, the other top performing methods
are Grad-CAM-++ and SHAP. The critical areas recognized
by them are also associated with high decision impact and
confidence impact. The ensemble XAl has achieved comparable
results (decision impact: 0.72, confident impact: 0.24) with
Grad-CAM. Thus, the top three base methods Grad-CAM++-,
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Dashboard for CNN Interpretation

Click to reset selection Welcome to this interactive dashboard

Select one option: Original image
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Method B Method C

Method A

None

Submit your choice

Fig. 6. Dashboard for CNN interpretation voting.

TABLE 1
VISUAL EXPLAINABILITY EVALUATION CHECKLIST FOR DIFFERENT INTERPRETATION METHODS BASED ON XCEPTION MODEL (AUC: 0.803)

Visual explainability methods
. Saliency Grad- Grad-
Evaluation Measures Ensemble XAI SHAP Map CAM CAMAt LIME
Absence impact
© Decision impact 0.72 0.84 0.65 0.78 0.89 0.96
2 Confident impact 0.24 0.30 0.18 0.23 0.33 0.43
.g Representative
g Paper(s):
8/ (Chattopadhay et
al.,2018; Lin Zhong
Qiu et al.,2019)
Localization
effectiveness
Mean set accordance
precision 0.52(0.08) 0.39(0.06) - - 0.46(0.06) 0.33(0.07)
Mean Sii‘gﬁordance 0.57(0.05) 0.72(0.05) - - 0.45(0.03) | 0.61(0.02)
Mean set F; score 0.50(0.03) 0.46(0.04) - - 0.41(0.02) 0.40(0.05)
Mean set [OU 0.36(0.03) 0.32(0.03) - - 0.28(0.02) 0.26(0.04)
° Representative
-% Paper(s):
= (Chattopadhay et
] al.,2018; Padilla et
< al..2020)
Radiologists’ trust
Mean vote for reliable
mtelprefa o methods 70.18% 67.10% 49.60% 26.30%
by radiologists (0.03) (0.12) - - (0.06) (0.06)
Representative
Paper(s):
(Selvaraju et al.,2019)
In the quantitative assessment, LIME had the highest decision impact and confidence impact,
followed by Grad-CAM++, SHAP, Grad-CAM and ensemble XAIL
In the qualitative assessment, we take the mean value (standard deviation) from three
Overall assessment radiologists. The Ensemble XAl achieved the best performance in both localization
effectiveness (mean set F;: 0.50, mean set IOU: 0.36), and reliability votes from the panel of
radiologists (mean vote: 70.2%). SHAP followed in second place in reliability votes (mean
vote: 67.1%) and localization effectiveness (mean set F;: 0.46, mean set IOU: 0.32). Grad-
CAM++ and LIME did not achieve good performance in this round.
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MODEL DEVELOPMENT & EVALUATION DATAPREAATION
Filter true positive Correspoqding
Transfer learning models Cardiomegaly images annotation
Test data
InceptionV3 | | VGG16 prediction
Traini P VISUAL EXPLAINABILITY CANDIDATE METHODS
raining & validation data Test data
Labels: Normal and Cardiomegaly Labels: Normal and Cardiomegaly
Training & Validation data: 5000 Test data: 346 images (200 Normal and | Soccm | | SHEChMEs | I St I
images 146 Cardiomegaly annotated images)
Annotation method: Bounding Box | LIME | | Saliency Map | I Ensemble XAl l
INTERPRETATION EVALUATION METRICS
QUALITATIVE
QUANTITATIVE Accordance recall
Decision Impact ratio Accordance precision
Confidence Impact ratio F, score
Intersection Over Union(I0U)
Fig. 7. Workflow for methods comparison on InceptionV3 and VGG16 using public data.

LIME and SHAP as well as ensemble XAl are evaluated further
in experiments 2 and 3.

B. Experiment 2: Localization Effectiveness

This experiment quantifies the localization effectiveness of
each method based on accordance recall, accordance precision
and I0U.

The second section of Table I evaluates the performance of
each method by comparing the critical area identified by deep
learning against the area annotated by experienced radiologists.
Among the four methods, the ensemble XAl achieved the highest
mean set F; score with mean set accordance recall of 0.57 and
mean set accordance precision of 0.52. This means that 57%
of the annotated area was correctly identified by interpretation
method and 52% of the critical area identified by interpretation
method was consistent with the annotation. For the IOU evalua-
tion, ensemble XAl has also achieved the highest mean set IOU
of 0.36, followed by SHAP and Grad-CAM++.

C. Experiment 3: Radiologists’ Trust

This experiment compares radiologists’ trust in each method.
This was done through a subjective vote by our panel of experi-
enced radiologists. For each image, they voted for the interpre-
tation methods that were deemed reliable.

The third section of Table I presents the voting results for
the interpretation methods: Grad-CAM++-; SHAP; LIME; and
ensemble XAI. Ensemble XAI was chosen as the most trusted
method by the panel of radiologists with a mean vote of 70.2%.

IV. EXPERIMENTS USING PUBLIC DATASET

First, we developed models as prerequisites for interpretation
methods. During this step, VGG and Inception binary classifica-
tion models are developed based two classes of images—no find-
ing/normal and cardiomegaly (pathology class) from National
Institutes of Health (NIH) chest X-ray dataset [35]. Second,
we conducted quantitative and qualitative experiments based
on true positive cases which identified by respective models,
and corresponding bounding box. Fig. 7 is a flowchart depicting
the step-by-step process involved in developing the models and
generating the interpretation evaluation metrics for each model
using the NIH chest X-ray dataset.

For model training and validation, 2500 images from each
class were randomly sampled from the original dataset. All the
annotated images (146 images) available for the Cardiomegaly
class along with 200 random samples for no finding/normal
class were used as the testing dataset. Two pretrained image
classification models — VGG16 and InceptionV3 were used to
develop binary classification models using this dataset. The
InceptionV3 model achieved an accuracy and AUC score of
0.817 and 0.917, respectively, on the test dataset. The VGG16
model achieved an accuracy and AUC score of 0.855 and 0.948,
respectively, on the test dataset.

In accordance with the original approach for interpretation
evaluation metrics, we filtered the true positive predictions
(correctly predicted Cardiomegaly images from a total of 146
Cardiomegaly test images) for both the models on test set. The
default model threshold of 0.5 was used to filter out the true
positives. Inception V3 had a total of 128 true positive predic-
tions and VGG16 had a total of 137 true positive predictions.
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TABLE IT
VISUAL EXPLAINABILITY EVALUATION CHECKLIST FOR DIFFERENT INTERPRETATION METHODS BASED ON INCEPTION MODEL (AUC: 0.917)
Visual explainability methods
Evaluation Measures En;z:nlble SHAP Sa;/l;r;)cy grAalc\l/I Cif/li LIME
° Absence impact
= Decision impact 0.22 0.21 0.10 0.12 0.06 0.42
= Confidence impact 0.19 0.19 0.11 0.15 0.11 0.29
§ Representative Paper(s):
& | (Chattopadhay et al.2018;
Lin Zhong Qiu et al.,2019)
Localization
effectiveness
Mean set accordance 0.66(0.13) | 0.42(0.15) - - 0.36(0.07) | 0.30(0.07)
precision
.g Mean set accordance recall 0.87(0.13) 0.81(0.24) -- -- 0.95(0.08) 0.87(0.11)
s
§ Mean set F; score 0.74(0.10) 0.54(0.17) -- -- 0.52(0.08) 0.45(0.07)
o
Mean set IOU 0.60(0.12) 0.39(0.14) - - 0.36(0.07) | 0.29(0.06)
Representative Paper(s):
(Chattopadhay et al.,2018;
Lin Zhong Qiu et al.,2019)
In the quantitative assessment, LIME had the highest decision and confidence
impact, followed by Ensemble XAl and SHAP.

Overall Assessment In the qualitative assessment, Ensemble XAl achieved the best performance »_vith
mean set F;: 0.74 and mean set IOU: 0.60. The second-best results were obtained
using SHAP (mean set F;: 0.54, mean set IOU: 0.39) followed by Grad-CAM++
(mean set Fy: 0.52, mean set [OU: 0.36).

TABLE III
VISUAL EXPLAINABILITY EVALUATION CHECKLIST FOR DIFFERENT INTERPRETATION METHODS BASED ON VGG MODEL (AUC: 0.948)

Visual explainability methods

Evaluation Measures En;f[r;llble SHAP Salblg;cy (C}T:S/I Cirl\ijl(t i LIME
° Absence impact
2 Decision impact 0.59 0.44 0.15 0.53 0.35 0.59
= Confidence impact 0.46 0.39 0.12 0.42 0.32 0.43
% Representative Paper(s):
& | (Chattopadhay et al.,2018;
Lin Zhong Qiu et al.,2019)
Localization
effectiveness
Mean set accordance
© precision 0.72(0.14) 0.86(0.20) -- - 0.72(0.18) | 0.33(0.07)
'§ Mean set accordance recall 0.88(0.14) 0.39(0.15) -- - 0.60(0.14) 0.81(0.12)
§ Mean set F; score 0.77(0.10) 0.51(0.15) -- - 0.63(0.09) | 0.47(0.08)
o Mean set IOU 0.64(0.13) 0.36(0.13) -- - 0.47(0.10) | 0.31(0.07)
Representative Paper(s):
(Chattopadhay et al.,2018;
Lin Zhong Qiu et al.,2019)
In the quantitative assessment, Ensemble XAI had the highest decision and
confidence impact score of 0.59 and 0.46, followed by LIME and Grad-CAM.
Overall Assessment In the qualitative assessment, Ensemble XAl achieved the best performance With
mean set Fi: 0.77 and mean set IOU: 0.64. The second-best results were obtained
using Grad-CAM++ (mean set Fy: 0.63, mean set IOU: 0.47) followed by SHAP
(mean set F;: 0.51, mean set IOU: 0.36).

These two sets of images were used for generating the in-
terpretation evaluation metrics for InceptionV3 and VGG16,
respectively.

Table II gives the interpretation evaluation metrics for Incep-
tionV3. The top performing method in absence impact experi-
ment is LIME with a decision impact of 0.42 and a confidence
impact of 0.29. Besides LIME, the other top performing methods
were ensemble XAI and SHAP. In localization effectiveness
experiment, ensemble XAI method achieved the highest scores

for all the four metrics. The mean set F; score, mean set accor-
dance recall, mean set accordance precision, mean set IOU for
ensemble XAI are 0.74, 0.87, 0.66, and 0.60, respectively.
Table III gives the interpretation evaluation metrics for
VGG16. The top performing method in absence impact exper-
iment is ensemble XAI with a decision impact of 0.59 and a
confidence impact of 0.46. Besides ensemble XAl, the other top
performing methods were LIME and Grad-CAM. In localization
effectiveness experiment, ensemble XAI method achieved the
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TABLE IV
COMPUTATIONAL COMPLEXITY COMPARISONS FOR DIFFERENT INTERPRETATION METHODS
Methods Grad-CAM Grad-CAM++ SHAP Saliency Map LIME Ensemble XAI
Average Time
. 1760 1880 3450 3099.5 133320 5152
per image (ms)

Hardware Processor: Intel® Core™ i7-8700K Processor CPU @ 3.70GHz, RAM: 64GB, GPU: Dual NVIDIA GeForce GTX 1080 @ 8GB memory
Image Property Average Size: 400KB ~ 500K B, Resolution: 1024 * 1024,

Format: PNG

best metrics overall. The mean set F'; score, mean set accordance
recall, mean set accordance precision, mean set IOU of ensemble
XAl was 0.77, 0.88, 0.72, and 0.64, respectively.

The interpretation evaluation metrics for both InceptionV3
and VGG16 using the public dataset is in accordance with the
results generated using the original dataset used in this article
and shows that ensemble XAl produces better results in compar-
ison to other visual explainability methods. Table IV gives the
computation time results for the visual interpretation methods.
The methods Grad-CAM, Grad-CAM++, SHAP, saliency map,
and ensemble XAl require comparatively much lesser time for
general visual explanations while LIME requires much higher
computation time to generate the visual explanations.

V. CLINICAL IMPACT

Chest X-ray is widely used to obtain initial diagnosis and
prognosticate disease severity due to their broad availability,
accessibility and low cost. The COVID-19 pandemic has brought
along a further rise in the usage of chest X-ray to assist clinical
decision making and treatment.

There is a role for these interpretation models in expediting
workflow and prioritizing more urgent X-ray for reporting. This
can be done by flagging abnormal chest X-ray for priority
review by a radiologist. By facilitating earlier and more accu-
rate diagnosis, definitive treatment of patients can be initiated
earlier. Furthermore, these models can complete their pattern
recognition and search algorithms far faster than radiologists.

The visual explainability framework aids the interpretation
of the X-ray by a radiologist through identifying areas of ab-
normality to be evaluated for concordance. It augments the
detection of abnormal areas on X-ray through easy interpretation
and intuitive visual cues, while also allowing for rapid review.
Although these models are yet to be capable of independent
clinical diagnosis, they can improve the accuracy and confi-
dence of reporting X-ray. This can be especially helpful by
flagging specific areas on images to double check or take a closer
look.

VI. DISCUSSION

Since different models and performances will impact the
heat map generated by gradient-based methods, such as Grad-
CAM++ and SHAP, generating reliable interpretation based
on fixed model is important. Ensemble XAI has the advantage
of stable interpretation compared to individual Grad-CAM++

and SHAP, as it automatically assigns weights to respective pixel
features by learning from a small set of annotation. Ensemble
XAI generates the stable interpretation by extracting and com-
bine the high contributed pixel features from Grad-CAM++
and SHAP. In addition, it is inevitable that the base heat maps
generated by Grad-CAM++ and SHAP sometimes highlight
areas outside the lungs due to presence of text, catheters or
lines in the X-ray image. Even though this special and distracted
area may indicate a sign of severe disease in the lungs, it is not
helpful for decision making. The ensemble XAl outperformed
individual Grad-CAM++ and SHAP by assigning low weight
to the special area outside the lungs.

When measuring the performance metrics, both concordance
precision and recall metrics are important since high precision
metric shows the capability of identifying the correct areas and
high recall metric shows the capability of discovering all suspi-
cious regions. Since large critical area will benefit a lot of recall,
maintaining a relatively high precision without sacrificing much
recall is the expected direction. Among three base methods:
SHAP, LIME and Grad-CAM++, Grad-CAM++ has achieved
the best precision of 0.46. Ensemble XAI achieved a better
precision of 0.52 and recall of 0.57 compared to Grad-CAM++-,
which was 0.45.

In addition, F; and IOU are used as key matrices to discuss
the results. The results of the study have demonstrated that
ensemble XAI outperformed the other interpretation methods
in both localization effectiveness (mean set F1: 0.50 and mean
set IOU: 0.36).

By conducting radiologists’ trust experiment, we can also
address the question that if high F; score pulled up by high
recall is reliable. Since the radiologists voted for the method
where the highest density of highlighted area is in accordance
with their own annotation, larger region (higher recall) does not
necessarily get more votes. As a result, among all the methods,
ensemble XAI achieved best mean vote of 70.2%.

The SHAP and Grad-CAM++ is shown to complement each
other since all mean set 1, mean set IOU score and mean vote
for ensemble XAl is higher than those from each interpretation
method.

SHAP is the second-best interpretation method in terms of
localization effectiveness (mean set F: 0.46 and mean set
I0U: 0.32) and radiologists’ trust (mean vote: 67.1%). The
Grad-CAM++ is a fast interpretation method with acceptable
votes and relatively high mean set accordance precision among
the other methods. LIME showed inconsistent performance in
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quantitative and qualitative assessment due to its superpixel-
based explanations which have large variance and are always
linked to some area outside the lung. Hence it was less competent
in the localization effectiveness assessment and did not score
well on radiologists’ trust.

During the assessment of localization in the visual explain-
ability checklist, in addition to the traditional metric of IOU,
we defined the accordance precision and recall, which can be
easily interpreted by clinicians. The mean set precision across
all four explainability methods tested ranged from between 0.33
t0 0.52. The lowestis 0.33 with the LIME method and the highest
is 0.52 with the ensemble XAI method. The mean set precision
values essentially represent the true positive areas identified via
the explainability methods. While ensemble XAL has achieved
0.52, this means 48% percentage of false positive areas are
identified, of which if used in a clinical setting, would require
further interpretation and confirmation by a trained radiologist
before they can be deemed actual areas of disease. It, therefore,
limits the usage of the explainability methods as independent
on-the-ground detection tools for the nonradiologist clinician.

The mean set recall values, on the other hand, while
acceptable, are still not optimal enough for clinical use at the
current stage. The highest mean set recall value across the four
explainability methods studied is 72% via the SHAP. While
such a value is high and promising, it also means that 28%
of disease-affected areas identified by radiologists are missed
when using the explainability method. Thus rather than used as
an independent detection tool for the nonradiologist clinician,
an adjunctive tool is more preferred for radiologists.

One key limitation faced in this article, is the interpretation
evaluation dataset is only based on the true positive cases. This
is due to two reasons. First, enormous laborious effort is needed
in annotating the medical images for all four categories (true
positive, true negative, false positive, and false negative) of
the confusion matrix. Second, for true negative cases which
mostly are mild cases, critical area is usually not appeared when
radiologists annotate lung area during the assessment of risk of
patient’s mortality. Also heat maps generated by interpretation
methods on true negative cases do not show much critical area.
Thus, there is not enough information for accordance compari-
son. For false positive and false negative cases, as both are the
incorrect prediction, it’s less meaningful to conduct accordance
comparison in this article comparing to True Positive cases.

As part of future enhancement, more work will have to be
performed using the explainability methods on normal X-ray
to further define these false positive rates—how often do the
explainability methods identify abnormal areas that a radiolo-
gist deemed normal? Answering this question will further help
characterize the efficacy of explainability methods in their use
to dichotomize normal and potentially abnormal radiographs.

VII. CONCLUSION

We developed ensemble XAI, which was based on SHAP
and Grad-CAM++. It had better performance than other in-
terpretation methods in terms of localization effectiveness and
radiologists’ trust. This article gave confidence for the potential
use of the ensemble techniques in the imaging interpretation

field. Our panel of radiologists also suggested that ensemble
XAI, which had the best performance in the explainability
evaluation, can be used as an adjunctive tool to support the
interpretation of the X-ray.

The visual explainability evaluation checklist (with input from
a panel of radiologists) proved to be an effective and compre-
hensive assessment framework in determining the best image
explainability techniques for thoracic medical images. This will
aid researchers in generating appropriate image interpretations
that align with clinical assessment. In turn, this process can be
scaled up and applied to different clinical scenarios rapidly and
easily. The dashboard used for our radiologist panel voting will
be made available to the community.

To ascertain the clinical impact, we underwent in-depth dis-
cussions with radiologists on the impact of visual explainability
on clinical pathways. This provides important feedback and
guidelines for future development and improvement of the Al
interpretation algorithm.

Finally, practical use of the proposed visual explainability
Evaluation framework and ensemble XAI will potentially be
used in Al-enabled medical imaging platform by IHiS [36]
Singapore. In the near future, ensemble XAl is also foreseen
to be easily extensible to other medical imaging interpretations,
such as CT and MRI which are rapidly gaining adoption in health
care Al
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