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On computing evidential centroid through
conjunctive combination: an impossibility theorem

Yiru Zhang, Sébastien Destercke, Zuowei Zhang, Tassadit Bouadi and Arnaud Martin

Abstract—The theory of belief functions (TBF) is now a
widespread framework to deal and reason with uncertain and
imprecise information, in particular to solve information fusion
and clustering problems. Combination functions (rules) and
distances are essential tools common to both the clustering and
information fusion problems in the context of TBF, which have
generated considerable literature. Distances and combination
between evidence corpus of TBF are indeed often used within
various clustering and classification algorithms, however their
interplay and connections have seldom been investigated, which
is the topic of this paper. More precisely, we focus on the problem
of aggregating evidence corpus to obtain a representative one, and
we show through an impossibility theorem that in this case, there
is a fundamental contradiction between the use of conjunctive
combination rules on the one hand, and the use of distances on
the other hand. Rather than adding new methodologies, such
results are instrumental in guiding the user among the many
methodologies that already exist. To illustrate the interest of our
results, we discuss different cases where they are at play.

Impact Statement—Within the theory of belief functions, both
distances and conjunctive combination rules can be used to
achieve very similar purposes: evaluating the conflict between
sources, performing supervised or unsupervised learning in
presence of evidential information, or more simply obtaining
a synthetic representation of multiple items of information.
However, the results obtained by both approaches may show some
inconsistency between them. This paper provides some insight
as to why this may happen, showing that the two approaches
are definitely at odds, and that using distances is, for instance,
incompatible with some fundamental notions of the theory of
belief functions, such as the least commitment principle. We
illustrate the importance of the studied differences on problems
such as k-centroid clustering, and discuss the importance of
interpretations in such problems, which is rarely done in the
literature.

Index Terms—Theory of belief functions, combination rules,
metric, uncertainty reasoning, k-centroid clustering.

I. INTRODUCTION

The theory of belief functions (TBF), also known as
Dempster-Shafer theory (DST) or evidence theory, is a math-
ematical tool to reason under uncertainty. TBF enriches tradi-
tional representations of uncertainties by combining probabil-
ities and sets in a unified framework. In the TBF, probability
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masses are assigned to sets of events rather than to a single
event, making it possible to characterise a piece of information
with both uncertainty and imprecision simultaneously. There-
fore, when dealing with imprecise or missing knowledge, the
TBF can encode them without imposing too constraining as-
sumptions. In this paper, we will refer to information encoded
by TBF tools as evidence corpus.

Combination operation and distance/conflict measures be-
tween evidence corpus are essential tools used within TBF
to manipulate information. Combination operations, on one
hand, are defined by rules that are commonly used to fuse
information by combining multiple evidence corpus, resulting
in a summary of the different pieces of evidence. There is
considerable literature on combination rules (see [1], [2],
[3] for some seminal works and [4], [5], [6], [7], [8], [9]
for more recent ones), witnessing the importance of this
operation within the theory from various aspects. Among
those, Dempster’s combination rule [1], a product rule acting
conjunctively on the sources of information, is the most
emblematic of all. It assumes that all information sources are
reliable and cognitively independent, and most other rules in
the literature try to depart from these two assumptions, such as
the disjunctive Dubois-Prade’s rule [10] that relaxes the need
for reliability, or idempotent conjunctive rules [4], [5], [11]
that relax the independence assumption. The combination rules
are widely applied in data fusion applications, such as [12],
[13], etc.

On the other hand, distances between evidence corpus are
commonly used to measure their dissimilarities, which may in
turn be used to evaluate source reliability to perform a fusion
or combination [14], for example. Jousselme and Maupin’s
critical survey [15] shows a great variety of distances based
on the notion of inner products, and other authors such as
Perry and Stephanou [16], [17] proposed yet other dissimi-
larity measures based on extensions of classical probabilistic
measures such as entropy or Kullback-Leibler divergence.

Combination and distance measures often play similar roles
in different AI fields. For instance, distance-based merging is
common in logic [18], [19] and argumentation [20]. Studies on
proper representation of distances or manifolds of knowledge
are also helpful in the selection combination process [21], [22].

Given all this, it is natural to wonder to which extent,
within the TBF, the notions of distance and combination
are compatible, particularly when it comes to computing a
representative evidence corpus in a group. This is the question
we want to address in this paper, or more precisely:

Can we use combination rules to compute the cen-
troid of a group of evidence corpus?
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The answer to this question can have a significant practical
impact. Indeed, both combination and distances are commonly
used in clustering issues, sometimes conjointly [23], in the
construction of classification models [24], [25] or in the
construction of fusion rules [26], hence the importance of
better understanding their interplay.

Moreover, the distances for evidential corpus are also used
in some learning applications. Hariz et al. [27] applies Jous-
selme distance [28] to define the membership to each cluster
of an evidential corpus. Li et al. [29] used the same distance
to cluster uncertain information represented by evidential
corpus. These methods remained on a methodological level
with empirical comparisons. In [30], the authors pointed out
that learning over evidential corpus representing imprecision
may return counter-intuitive results, when they tried to cluster
uncertain preferences modeled by TBF. Given the common use
of distances and combination rules within evidence theory to
perform some tasks (information combination, unsupervised
or supervised learning, etc.), gaining theoretical insight about
the proper use of distances and of combination rules, and their
interplay is therefore of essential importance.

Our contribution shows that aggregation operators based on
commonly used combination rules and distances necessarily
provide different results, indicating that choosing one or the
other in specific applications may have a significant impact.
The conclusion drawn from a thorough discussion is math-
ematically proved with very few assumptions. Consequently,
the impossibility theorem explains why some tools may fail
or differ in performing a particular task, as distance and
combination rules cannot be used interchangeably.

The rest of this paper is organized as follows. Section II
recalls the basics about the TBF and the combination rules
within it, as well as the definition of centroid within this frame-
work. Section III then states our principal result, that shows
that the notion of conjunctive combination (as well as other
set-based fusion rules) and of centroid cannot be reconciled.
Section IV then provides some illustrations showing that the
discrepancy between the two approaches can indeed be quite
high in practice. Finally, Section V discusses various views
about clustering evidential corpus, beyond the centroid notion
considered here.

II. PRELIMINARY

In this section, we introduce preliminary concepts used in
the paper. Firstly, basic definitions in the theory of belief
functions (TBF) are introduced. We then recall the basics of
combination rules and centroid computation.

A. Basics on the TBF
In this paper, the transferable belief model (TBM) [31] and

belief functions are used to quantify uncertainty. In this model,
the set of values that an uncertain quantity can take is defined
as a frame of discernment (FoD).

Definition 1. Frame of discernment: The frame of discern-
ment (FoD) Ω is a finite set of disjoint elements, defining the
domain of reference, formally:

Ω = {ω1, . . . , ωp}, (1)

where ωi are exclusive and exhaustive1.

The belief functions or their equivalent representations are
defined on the power set 2Ω = {X : X ⊆ Ω}. They offer
flexible and rich tools to model uncertainty, generalising well-
known models such as classical probabilities or possibility
distributions. An evidence corpus or evidence object is rep-
resented by a single mass function.

Definition 2. Mass function: A function m : 2Ω → [0, 1] is
called mass function on 2Ω if it satisfies:∑

A⊆Ω

m(A) = 1. (2)

Every set A of elements such that m(A) > 0 is called a
focal set of m with A named focal element. A mass function
is called normalized if m(∅) = 0. A mass function on FoD Ω
is usually denoted as mΩ. We will denote by E(Ω) the set of
masses, or equivalently of evidence corpus defined on Ω.

Within the TBF, the uncertainty and imprecision of a piece
of information are therefore represented by a mass function.
We use terms evidence corpus and mass function interchange-
ably in this paper. Evidence corpus is usually used in the
information fusion, aggregation and clustering applications as
it bears a semantic, while the mathematical notion of mass
function is semantically neutral. An evidence corpus only
expressing imprecision and being equivalent to a set is called
categorical mass function. A categorical mass function m on
element A,A ⊆ Ω, i.e., m(A) = 1 is denoted as A1, with
the value 1 in bold, using the standard notation for simple
mass functions2. A categorical mass function m on Ω , i.e.,
m(Ω) = 1, is called vacuous, representing total ignorance.

A mass function m is called a Bayesian mass function if
the focal elements are only singletons:

m(A) = 0,∀A s.t. |A| ≠ 1. (3)

where |A| denotes the carnality of set A. Bayesian mass func-
tions are formally equivalent to probability mass distributions.
Within TBF, one also uses various set-functions measuring
different aspects of our uncertainty about an event A.

Definition 3. Belief/plausibility/commonality function: The
belief function Bel(·), plausibility function Pl(·), and com-
monality function Q(·) of a set A are respectively defined as:

Bel(A) =
∑

B⊆A,B ̸=∅

m(B); (4)

Pl(A) =
∑

B∩A̸=∅

m(B); (5)

Q(A) =
∑
B⊇A

m(B). (6)

Bel represents how much event A is implied by the current
evidence, and Pl how much it is consistent with the current
evidence. They can also be considered as lower and upper
bounds of the probability for event A. However, in this paper,

1To facilitate both reading and notations, we do not make an open world
assumption, as in Smets TBM [2].

2A simple mass function Aα is such that m(A) = α, m(Ω) = 1− α.
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we will rather consider Shafer’s initial interpretation of masses
as pieces of evidence [32], unless specified otherwise.

Commonality function Q is another equivalent representa-
tion of a mass function with trickier interpretation but com-
putational interest (notably in the combination calculation).

B. Combination of evidence corpus

Given a set S(Ω) = {m1,m2, . . . ,mℓ} of evidence corpus
on FoD Ω, a combination rule f is a mapping function aggre-
gating multiple evidence corpus into one, that aims at building
a mass synthesising the information in S(Ω). Formally:

f : S(Ω) → m,m ∈ E(Ω), (7)

where m denotes a mass function defined on the same FoD.
While we will discuss some specific combination rules in
further sections, such a specification is not needed to prove the
main results of the paper. Therefore we will limit our current
presentation to the main rule of the TBF, Dempster’s rule,
and delay the description of other rules after proving that most
combination rules based on set-operations such as conjunction
and disjunction are incompatible with centroid computation.
Dempster’s rule is known to play a pivotal role in the theory of
belief functions [11]. Let mx and my be two mass functions,
with the inconsistency3 κ between mx and my defined as:

κ =
∑

B,C⊆Ω,B∩C=∅

mx(B)my(C). (8)

If κ < 1, then the result of Dempster’s rule
⊕

applied to mx

and my is:

(mx

⊕
my)(A) =

1

1− κ

∑
B∩C=A

mx(B)my(C),

∀A ⊆ Ω, A ̸= ∅.
(9)

C. Least commitment principle in TBF

Least commitment principle (LCP) is a thumb rule in
decision making with multiple evidence sources, defined as:

Definition 4. Least commitment principle (LCP) [33] When
several belief functions are compatible with a set of con-
straints, the least informative according to some informational
ordering (if it exists) should be selected.

In TBF, the LCP is usually defined based on the plausibility.
Given two plausibility functions Pl1 and Pl2 on the same FoD
Ω, if Pl1(A) ⩽ Pl2(A),∀A ⊆ Ω, we say that Pl2 is no more
committed than Pl1 (and less committed if there is at least
one strict inequality).

D. Centroid of evidence corpus

When aiming at aggregating/clustering evidence corpus by
computing a centroid, we must first specify a dissimilarity
measure d over such structures such that:

d : E(Ω)× E(Ω) → R≥0 (10)

3This inconsistency is considered as a conflict measure only when the FoD
is defined in a closed world i.e., all possible results are covered by the FoD.
In an open world, the inconsistency is often considered as ignorance.

is a metric with the following properties: ∀mx, my , mz ∈
E(Ω), d satisfies

• Non-negativity: d(mx,my) ≥ 0
• Identity of indiscernible: d(mx,my) = 0 ⇔ mx = my

• Symmetry: d(mx,my) = d(my,mx)
• Triangle inequality: d(mx,mz) ≤ d(mx,my) +

d(my,mz)

Computing the centroid is then the problem of finding the
mass m, defined from an arbitrary set {m1, . . . ,mℓ} of mass
functions as:

m = arg min
m∈E(Ω)

ℓ∑
i=1

d(mi,m). (11)

In the rest of the paper, we assume that Equation (11) has a
unique solution to facilitate developments. This is verified, for
instance, as soon as d is also continuous and convex. Note
that computing such centroid is essential in most quantization
procedures, such as the celebrated k-means algorithm and its
generalisations [34].

Remark 1 (Centroid and LCP). Let us note that, just like
applying the LCP requires to define an ordering between belief
functions (in Definition 4, we took plausibility ordering, while
others are possible [35]), with the result of its application
depending on this ordering, applying the centroid “principle”
and Equation (11) requires defining a distance, to which can
then be associated desirable properties such as the need to
account for focal element interactions. A discussion about the
interpretation of distances can be found in [36].

III. THE IMPOSSIBILITY THEOREM

We now deal with the main contribution of this paper, which
concerns the clustering and aggregation of evidence corpus,
and the fact that computing a centroid is incompatible with
a set of properties required by most combination rules in the
TBF, and Dempster’s rule in particular. More precisely, we will
show that obtaining the result of Equation (11), i.e., computing
the centroid, cannot be achieved by applying a combination
rule

⊙
on the masses as soon as we require a set of commonly

requested properties for
⊙

.

A. Metric consistency between centroid computation and com-
bination rule

The first property simply formalizes a necessary condition
for the centroid to result from a combination.

Property 1. Metric consistency: The combination rule
⊙

and the dissimilarity measure d must be consistent. Formally,
this means that the combined mass function m calculated by:

m =

ℓ⊙
i=1

mi, (12)

should be the centroid, i.e.,
ℓ∑

i=1

d(mi,m
′) >

ℓ∑
i=1

d(mi,m), ∀m′ ∈ E(Ω),m′ ̸= m. (13)
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This property of metric consistency is for example necessary
if we want k-centroid clustering algorithm to converge. A k-
centroid clustering problem can be regarded as an optimisation
problem. In [34], the authors proved that this optimisation is
solvable if the inertia of clusters4 is a decreasing converging
function of the number of steps. In the proof, the property
given by Equation (13) is applied to guarantee the convergence
of the clusters inertia. We should note that Equation (13)
would turn into a non-strict inequality if the uniqueness of
the centroid is not assumed. However, assuming uniqueness
is a classical requirement in combination and in k-centroid
problems, and the uniqueness is guaranteed if the metric is
a Riemannian distance, as proved in [37]. Given a distance
(metric) function, centroid calculation can be considered as a
search for geometric median or Fermat-Weber point [38].

Note that unconstrained combination rules based on the
minimisation of distance can always be made consistent with
a corresponding distance applied in Equation (11). However,
as we shall see next, adding some common constraints to the
combination quickly makes the property of metric consistency
impossible to satisfy.

B. Ignorance neutrality in combination process

When looking for a synthesis of information provided by
sources or evidence corpus, it is common to start with con-
junctive rules. Such rules typically assume that the provided
information is reliable enough, as in the case of Dempster’s
rule where sources are assumed to use independent, distinct
and reliable information. For example, such combinations are
at work in the well-known evidential KNN algorithm proposed
by Denœux [25], which has been extended into many versions.

A property satisfied by all conjunctive rules, but also in gen-
eral by rules trying to combine conjunctive and disjunctive be-
haviours when dealing with conflict (such as the Dubois/Prade
rule [10]), is that vacuous information should not modify the
combined, or synthetic mass function. We name this property
ignorance neutrality, formally defined as follows:

Property 2. Ignorance neutrality: Vacuous mass functions
representing ignorance are neutral elements of the combina-
tion rule

⊙
, i.e.,

m
⊙

Ω1 = m, ∀m ∈ E(Ω), (14)

where Ω1 denotes a vacuous mass function (Ω1 : m(Ω) = 1).

We can illustrate the usefulness (if not necessity) of this
property by an example of clustering over imperfect preference
information, borrowed from [30].

Example III.1. In evidential preference models [39], [40],
the preference relation between two items is modelled by
FoD Ωpref = {ω≻, ω≺, ω≈}, respectively representing strict
preference, inverse strict preference, and indifference. If un-
observed sources are represented by vacuous mass function
Ω1

pref , it is then natural to require the unobserved data to

4In clustering, inertia is also known as within-cluster sum-of-squares
criterion, describing how internally coherent clusters are. The calculation is
given in Algorithm 1.

plays a neutral role in the preference aggregation process
(which is also a combination process).

Ignorance neutrality can be extended to the case of par-
tial ignorance. That is to say, given a mass function m
with focal sets A1, . . . , An, and a more imprecise informa-
tion represented by categorical mass function B1 such that
A1, . . . , An ⊆ B, neutrality to partial ignorance can be
formalized as follows:

m
⊙

B1 = m, (15)

We can extend this property to general cases by considering
inclusion notions proper to TBF [36].

Indeed, (partial) ignorance neutrality is also required by the
LCP. The proof is straightforward: consider a categorical mass
function m1 = B1 representing partial ignorance, and a mass
functions m2 in FoD Ω, with focal sets A1, . . . , An ⊆ B.
According to Equation (5):

Pl1(A) = 1,∀A ⊆ B. (16)

Hence:
Pl2(A) ⩽ Pl1(A),∀A ⊆ B, (17)

i.e., m2 should be selected when combining m1 and m2.
Finally, we can also note that ignorance neutrality offers

protection from artificially adding new vacuous sources of
information to the corpus of knowledge, provided for instance
by malicious sources.

C. Idempotence in combination process

Idempotence is a desirable property when cautiousness is
wanted in an information fusion process. It says that com-
bining two identical evidence corpus should result in the
same evidence corpus, therefore not reinforcing the available
information. It is formally defined as follows:

Property 3. Idempotence: The combination rule
⊙

is idem-
potent if and only if:

m
⊙

m = m, ∀m ∈ E(Ω). (18)

Idempotence is required by some combination rules, espe-
cially when the dependencies between sources are ill-known,
as this property ensures that the same information supplied by
two possibly dependent sources will remain unchanged after
merging (combination) [41]. This property also guarantees that
identical information items are not counted multiple times in
the fusion process, a feature often required in cases where the
fusion process is decentralized [42], which may well happen
in clustering processes with a high number of evidence corpus.

Obviously, if m1 = m2 = . . . = mℓ = m, then the
solution to Equation (11) should be m. As shown in the
next proposition, this means that the idempotence property (is
necessary) must be satisfied by any combination rule satisfying
metric consistency, as formalized in the next proposition.

Theorem 1. The property of “idempotence” is a necessary
condition of “metric consistency”.

Proof: Let us consider a combination rule
⊙

with the
property of consistent metric for a dissimilarity function d(·).
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Given a mass function m,m ∈ E(Ω) and ∀ m′ ̸= m,m′ ∈
E(Ω) according to the property of identity of indiscernible and
the non-negativity of the distance d, we have:

d(m,m′) > 0. (19)

Knowing that d(m,m) = 0, we have:

d(m,m) + d(m,m) < d(m,m′) + d(m,m′).

According to Equation (13), we obtain the following equation.

m
⊙

m = m.

The combination rule
⊙

is idempotent.
Note that the property of idempotence can also be related

to k-centroid clustering. The centroid of a set of objects with
identical value should be assigned with the same value.

D. The impossibility theorem

Theorem 1 concludes that the property of “idempotence” is
weaker than the property of “metric consistency”, and itself
is necessary to obtain a centroid through combination. What
we show next is that metric consistency is incompatible with
ignorance neutrality.

Theorem 2 (The impossibility theorem). Given a dissimilarity
measure d : E(Ω) × E(Ω) → R≥0 on the set of evidence
corpus, there is no combination rule

⊙
that satisfies the

properties of metric consistency and ignorance neutrality
simultaneously.

Proof: We already know that for any m′ ̸= m,
ℓ∑

i=1

d(mi,m
′) >

ℓ∑
i=1

d(mi,m). (20)

Let us now assume, ex absurdo, that a combination rule
⊙

satisfying the two properties exists. Let us now consider a mass
function m, together with a categorical (possibly vacuous)
mass A1 such that A is a super-set of all focal elements of
m, and is distinct from m. From our assumptions, it follows
that m

⊙
A1 = m is the centroid of {m,A1}. This means in

particular that ∀m′ ̸= m,

d(m,m) + d(m,A1) < d(m,m′) + d(m′, A1), (21)

and since d(m,m) = 0 by definition, we have

d(m,A1) < d(m,m′) + d(m′, A1).

Take m′ = A1, and the above inequality becomes

d(m,A1) < d(m,A1) + d(A1, A1),

equivalent to:
d(A1, A1) > 0.

This is contradictory with the property of identity discernible.
Thus our initial assumption is false.

Since all conjunctive rules satisfy the property of ignorance
neutrality [43], the following corollary can be easily deduced:

Corollary 1. No metric is consistent with conjunctive combi-
nation rules.

This corollary includes in particular the Dempster’s rule of
combination, but also others which we will discuss in the
following section. Our impossibility theorem indicates that
no conjunctive rules or non-idempotent rules can be made
consistent with a centroid computation based on distances.
This clearly means that when developing a method within the
TBF that requires to build a consensus or to aggregate mass
functions, one should carefully think about the view to adopt.
Similarly, our discussion at the end of Section III-B indicates
that centroid computation cannot be made consistent with a
classical LCP approach.

The next section explores some popular rules existing within
TBF, summarising their properties and showing on simple
examples that the practical differences between a centroid and
the combined mass function obtained through such rules can
vary from null to quite important.

IV. CASE STUDY OF COMBINATION RULES

This section illustrates our results on some well-known
combination rules, demonstrating with examples that idem-
potence is not sufficient to be metric consistent, and that
ignorance neutrality is conflicting with a metric consistency
requirement. Indeed, all the rules we consider in this section
satisfy ignorance neutrality, while some of them satisfy idem-
potence. The chosen examples also illustrate that the discrep-
ancy between the results of the two approaches (combining
vs. computing a centroid) may be quite significant. At the end
of the section, an illustrative example of k-centroid clustering
process using different combination rules is given, showing
the importance of the property of metric consistency.

A. Properties of different combination rules

As mentioned before, combination rules are a cornerstone of
the TBF, and many have been proposed in the literature. As our
proof is quite general and have few assumptions, we will not
be exhaustive, and will only focus on the best-known rules that
satisfy ignorance neutrality or idempotence. The definitions of
these rules are all based on two mass functions mx and my .

Dubois and Prade’s (D-P) rule [10]: This rule is a
prototypical example of a compromise and non-conjunctive
rule satisfying ignorance neutrality. It proposes to solve the
conflict by adopting a disjunctive behaviour whenever two
pieces of information (two sets) conflict, and a conjunctive
one in other situations. This rule is defined as follows:

mx

⊙
DP

my(A) =
∑

B∩C=A

mx(B)my(C)

+
∑

B∪C=A
B∩C=∅

mx(B)my(C). (22)

Denœux’s cautious conjunctive rule [11]: This rule is
based on Smets canonical decomposition [44], and on the use
of t-norms on these weights. When using the minimum t-norm,
we obtain a so-called cautious rule that satisfies idempotence,
and can be used, for instance, to tolerate redundancy in the
combined information, useful for example, when the informa-
tion sources are non-independent. The conjunctive version ∧⃝
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is defined as:

mx ∧⃝my =
⊕

∅̸=A⊂Ω

Amin(wx(A),wy(A)), (23)

where
⊕

refers to Dempster’s rule, and w(A) the weight
function on element A, is formally defined as:

w(A) =
∏
B⊇A

Q(B)(−1)|B|−|A|+1

,∀A ⊆ Ω, (24)

where Q refers to the commonality function (Equation (6)).
Klein-Destercke-Colot’s (K-D-C) idempotent rule [5]:

This rule is based on minimisation of distance, and the
conjunctive version is defined as:

mx

⊙
f,p

my = argmin
m∈Sf (mx)∩..∩Sf (my)

df,p(m,mΩ), (25)

where Sf (mx) denotes the set of mass functions more infor-
mative than mx in the sense of f . f is a set function (such as
Bel, Pl, or Q), and p the order of the norm of the Minkowski
distance, usually taken as p = 2 to ensure convexity of the
resulting optimisation problem and uniqueness of the solution.
This rule is idempotent by definition.

Minimisation of distance sum (Mean): This rule is a
simple average of the different mass functions, and provides
the combined mass:

m(A) =
1

ℓ

ℓ∑
i=1

mi(A), A ⊆ Ω, (26)

where ℓ denotes the number of evidence corpus. It is obviously
idempotent and is not neutral to ignorance. In fact, as an
average, it is the centroid when the chosen distance is the
L2 norm taken between mass vectors.

Let us now provide an example showing that these rules,
except for the averaging one, do not allow to obtain cen-
troids. Consider three mass functions in a simple binary FoD
Ω = {ω1, ω2}. m1 = m2 = {0, 0.5, 0, 0.5} are Bayesian mass
functions with identical values, m3 = {0, 0, 0, 1} is a vacuous
mass function. The combination results of the different rules
are shown in Table I.

TABLE I
COMBINATION RESULTS OBTAINED BY DIFFERENT RULES:

{∅} {ω1} {ω2} {ω1, ω2}

m1 0 0.5 0 0.5
m2 0 0.5 0 0.5
m3 0 0 0 1
Dempster rule [1]
m1 ⊕m2 0 0.75 0 0.25
m1 ⊕m3 0 0.5 0 0.5
D-P rule [10]
m1 ⊙DP m2 0 0.75 0 0.25
m1 ⊙DP m2 0 0.5 0 0.5
Denœux’s cautious rule [11]
m1 ∧⃝m2 0 0.5 0 0.5
m1 ∧⃝m3 0 0.5 0 0.5
K-D-C conjunctive rule [5]
m1 ⊙Pl,2 m2 0 0.5 0 0.5
m1 ⊙Pl,2 m3 0 0.5 0 0.5
Minimisation of distance
m1,2 0 0.5 0 0.5
m1,3 0 0.25 0 0.75

The combination results with blue and red background
colours respectively violate the property of idempotence and
ignorance neutrality. It is clear that none of the rules can
retrieve simultaneously the two bottom masses of the table,
which are the centroid obtained using Jousselme distance [28].
Moreover, they cannot be centroid for another distance, as
they are either non-idempotent (D-P and Dempster), or satisfy
both idempotence and ignorance neutrality (Denœux and K-
D-C), meaning that Theorem 2 applies. The difference is
sometimes quite noticeable, for instance if one compares the
result of Dempster’s or Dubois-Prade’s rule applied to m1

and m3, with the corresponding centroid: the concentration
of weights is completely reversed. Table II summarises the
various properties of the rules we consider here. We added
some remarks for results associated to the asterisk symbol *.

TABLE II
PROPERTIES OWNED BY COMBINATION RULES:

Combination rules I.N. idem M.C.

Dempster’s rule [1] T F F
D-P rule [10] T F F
Denœux’s cautious rule [11] F* T F
K-D-C conjunctive rule [5] T T F*
Minimisation of distance F T T

Remark 2. On Denœux’s conjunctive cautious rule: the
property of ignorance neutrality holds if and only if the mass
to be combined m is separable in the sense of the canonical
decomposition. A detailed demonstration is provided in [4].

Remark 3. On K-D-C’s idempotent rule: Despite the fact
that K-D-C’s idempotent rule is also distance (metric)-based
according to its original definition, it does not respect the
property of metric consistency defined in this paper. In this
combination rule, distances are not measured between evi-
dence corpus to be combined, but to the vacuous mass function
Ω1, which is the least informative mass function. This strategy
guarantees the property of conjunctivity.

B. An empirical demonstration of metric consistency

As mentioned in Section I, important applications of the
notion of centroid are clustering problems. In particular, the
property of centroids given by Equation (13) is important to
guarantee the convergence of the clustering algorithm to a
local minimum, and it is proved in [34] that it is a sufficient
condition for converging to a local optimum. Whether this
condition is necessary is still an open question. In this part,
we empirically demonstrate that departing from this property
by using a combination rule may lead to severe degradation
of the results.

In order to prove our point, we simply apply an adapted k-
centroid algorithm to randomly generated evidential corpus,
where the computation of the centroid is replaced by a
combination rule. In this experiment, 2000 evidential corpus
are randomly generated on a 3-element discernment frame
Ω = {ω1, ω2, ω3}. The adapted k-centroid algorithm is de-
tailed in Algorithm 1, with the size of cluster set to |C| = 8. To
reduce variability, the averages of 20 experiments are reported.
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Algorithm 1: Clustering algorithm over evidence cor-
pus

Result: Clustering results of all evidence corpus
Input: Number of evidence corpus N , Cluster set C,
combination rule

⊙
, iteration times Max it

Randomly initialize cluster centers;
iter=0;
while iter < Max it do

Calculate |C| cluster center using
⊙

, denoting mc

the center of cluster c;
Assign each evidence corpus mi to cluster
ci = argmin

c∈C
d(mc,mi) ;

Calculate the inertia J of clustering result by
J =

∑
i∈N

d(mi,mci);

iter=iter+1;
end

Figure 1 displays the results of Algorithm 1 applied to
all the combination rules mentioned in Table I and Table II.
When the minimisation of distance is applied, the k-centroid
algorithm becomes a classical k-means computation. It is clear
that while those combination rules seem to converge to some
results, those are sub-optimal and not necessarily decreasing.
The cases of Dempster’s rule, D-P rule and Denœux’s cautious
are particularly striking, as it brings no change and provide
very bad solutions. This shows that the difference proved in
Theorem 2 is not merely cosmetic, but may actually lead to
very different results.
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Fig. 1. Inertia of clustering with different combination rules

The experiment results also siren the risk of arbitrarily ap-
plying clustering/classification algorithms over evidence cor-
pus, which is routinely done in previous works, such as [7],
[30], [27]. The interpretation of evidence corpus should be
clarified before executing any application over them. In the
following section, we discuss different ways of clustering
evidence corpus according to the intended goal and considered
interpretation, showing again that those can lead to signifi-
cantly different results.

V. VARIOUS VIEWS ON CLUSTERING EVIDENCE CORPUS

In this section, we want to emphasize that there may be
various ways and views to aggregate and cluster evidential

objects. In particular, we want to draw attention, by using well-
chosen examples, that aggregating knowledge about an object,
and that aggregating the objects that are uncertain is not the
same thing at all. We will illustrate the different viewpoints
considered in this section with brief examples.

Consider a simple binary FoD Ω = {ω1, ω2}, along with
three clusters of mass functions respectively close to ω1, ω2

and Ω. Since mass functions live on a unit simplex, the values
of those masses on ω1, ω2 and Ω can be represented in a
3-dimension Cartesian coordinate system as in Figure 2. Ac-
cording to Equation (2), a point representing a mass function
will be within the boundaries of the shadowed triangle. This
triangle corresponds to the belief space B defined by [45],
whereas the edge between (ω0

1 , ω0
2) represents a probabilistic

space P (still after Cuzzolin [45]). The zone with darker
shadow represents less imprecision and vice versa. Nine mass
functions are considered with values summarized in Table III.

TABLE III
VALUE SETTING OF EVIDENCE CORPUS:

Group 1 Group 2 Group 3
m1 m2 m3 m4 m5 m6 m7 m8 m9

m(ω1) 0 0.1 0 0 0.1 0 0.9 0.9 1
m(ω2) 0.1 0 0 0.9 0.9 1 0 0.1 0
m(Ω) 0.9 0.9 1 0.1 0 0 0.1 0 0

Fig. 2. evidence corpus in binary FoD and k-means clustering result with
Minkowski metric

A. A metric view

In the metric view, every corpus expressed by a mass func-
tion is directly projected in a space S, in which a dissimilarity
function given in Equation (10) with metric properties can
be defined. In this projection, each element in the space of
2Ω is regarded as a dimension orthogonal to others. Table III
already clusters or groups the different evidence corpus as
they would be if we adopt metric view. In Figure 2, the
clusters’ centroids calculated with metric (let us say Jousselme
distance [28]) are marked by diamond mark ♦. It is clear
from Figure 2 that this clustering makes sense as soon as we
see mass functions as points in a high-dimensional space, and
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we want to cluster those points. This also means that in this
case, masses are treated as ontic objects [46], and what we are
really interested in is summarising their characteristics (e.g., in
terms of informative content). Still, as shown in the following
possibilities we explore, this is not necessarily coherent with a
more epistemic consideration of these mass functions, where,
however, exist the interests of reasoning uncertainty by TBF.
Indeed, looking at the mass functions and trying to decide
whether they could be of type ω1 or ω2, one would not
necessarily put the objects represented by m1 and m2 together,
as the first slightly lean towards ω2, and the second towards
ω3.

B. A conflict-based view

TABLE IV
CONFLICT DEGREE κ BETWEEN EVIDENCE CORPUS:

κ m4 m5 m6 m7 m8 m9

m1 0 0.01 0 0.09 0.09 0.1
m2 0.09 0.09 0.1 0 0.01 0
m3 0 0 0 0 0 0

Conflict measures have also been used quite widely to
decide whether two mass functions are similar/dissimilar [47],
usually for combination processes. Given two mass functions
m1 and m2, a conflict measure κ(m1,m2) on combination
rule is classically defined as:

κ(m1,m2) = (m1

⊙
m2)(∅). (27)

In the jungle of combination rules and conflicting measures,
the most seminal one is Dempster’s rule

⊕
, which we also

use as a basis for our discussion. From Equation (8), it can
be easily seen that a mass representing ignorance is neutral,
i.e., given a mass function m with focal sets A1, . . . , An,
and a categorical mass function B1 on element B, such that
A1, . . . , An ⊆ B, the following equation is true:

κ(B1,m) = 0. (28)

Table IV shows the conflict values between m1,m2,m3 and
m4 to m9 that are given in Table III.

Here, we can easily see that such a conflict view indeed
concerns the described object, and not the mass functions
themselves. If we look at the conflict between masses mea-
sured by Equation (8), it is more reasonable to assign m1 to
the cluster of Group 2 (made up by m4,m5,m6) and m2 to
the cluster of Group 3 (made up by m7,m8,m9), as m1 is an
evidence corpus supporting ω1 and m2 supporting ω2.

Obviously, even though conflict measure satisfies the prop-
erty of ignorance neutrality, it does not yield to others: for
instance it is not a metric as it does not satisfy the identity of
indiscernible. Therefore, the impossibility theorem still largely
applies to conflict-based view, meaning that they are at odd
with distance-based approaches. This supports somehow the
claim [48] that conflict and distances are two different key
notions, yet it should be noticed that other recent works try to
reconcile these two notions [14], [49].

C. An (imprecise) probabilistic view

One can also interpret evidence corpus with a probabilistic
view in mind, or try to return to conventional probabilities on
the singletons of FoD by some transformations. One example
of such works is the ones of Cuzzolin [22], which adopt a
geometric interpretation of the issue. Here, we are confronted
with two different views:

• The first one consists of transforming mass functions
into representative probabilities over the initial FoD,
for instance, using the well-known pignistic transforma-
tion [50], calculated by Equation (29), or plausibility
transforms [51] (Equation (5)).

BetP (ω) =
∑

A⊆Ω,ω∈A

1

|A|
m(A)

1−m(∅)
(29)

In such a view, m1,m2 and m3 are transformed into
uniform distributions on the singletons, and one could
argue that in the less expressive setting of probabilities,
the same clustering as in Table III would make sense.

• The second view consists of seeing mass functions as
ill-known probabilities, and consider the bounds given
by Equations (4) and (5) as lower and upper probability
bounds on singletons, formally [Bel(ω), P l(ω)], ω ∈ Ω,
as illustrated in Figure 3, in the geometric style of
Cuzzolin. In this case, the bounds obtained for m1 are:

[Bel(ω1), P l(ω1)] = [0, 0.9],

[Bel(ω2), P l(ω2)] = [0.1, 1],

and the bounds for m2 are

[Bel(ω1), P l(ω1)] = [0.1, 1],

[Bel(ω2), P l(ω2)] = [0, 0.9],

which are in line with our more epistemic view, as m1

would tend to be of kind ω2, and m2 of kind ω1. Still,
these would be quite uncertain statements, as the width
of the intervals witnesses.

Fig. 3. Projection of m1 and m2 from belief space B to probabilistic space
P . Probability intervals are defined by belief function Bel and plausibility
function Pl as lower and upper bounds.

The length of the interval represents the uncertainty level
of the probability, interpreted from the imprecision in the
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corresponding evidence corpus. From this representation, it is
meaningless to assign m1, m2 and m3 into the same cluster as
they are similar at the imprecision level. We can say that the
object represented by m1 (m2) could be of any class (both ω1

and ω2), with a higher possibility to be closer to ω2 (ω1). Thus,
it is more reasonable to say that m1 and m2 could belong to
both Group 2 and Group 3, rather than group it with m3.

The projection from belief space B to probabilistic space
P gives another illustration of the issue. In this view, the im-
precision is kept by probabilistic intervals, fewer assumptions
are imposed than in the metric view, and the clustering result
is quite consistent with standard interpretation [1], [10], [33]
of mass functions.

The main message of this section is that when considering
the problem of summarizing or clustering objects, it is crucial
to be clear about the interpretation of the structures, and
the task we aim to undertake, as what we will consider
as acceptable results critically depends on it. Whether the
impossibility theorem applies or not highly depend on the
chosen interpretation, as illustrated by the comparison between
Figure 2 and Figure 3. Therefore, the clarification of the inter-
pretation is essential to reach a practically relevant solution.

VI. CONCLUSIONS AND PERSPECTIVES

This paper has studied how compatible combination rules
and the computation of centroid were in the problem of
building a synthetic mass function from several ones. Our
conclusion is that they quickly become incompatible both in
theory and practice, and therefore not interchangeable. Our
goal was not to propose some new methodologies to combine
mass functions or to answer the clustering problem, but rather
to clarify some connections between distance and combination.
From the aspect of applications, this impossibility theorem
can help in explaining the failure of some learning tasks
over evidential corpus. It indicates that using a metric-based
learning algorithm over evidential corpus primarily concerns
our knowledge about an object, and not the object (e.g., to
predict, to cluster) itself. After all this, we would like to end
this paper by some further discussions.

Centroid vs combination, when use what?: In this paper,
we have mainly discussed the fact that using distances or using
set-based combination rules to aggregate mass functions are
essentially two different things, as well as (in Section V) the
fact that one should be careful about what has to be aggregate
(knowledge about an object vs. the object itself). This means
that one should be careful about their purpose when using
those tools, as their fitness depends on the context. For in-
stance, while metric-consistency and therefore idempotence is
essential in clustering tasks, they are not especially relevant in
learning and combining predictive models, where one typically
wants reinforcement effects when sources agree.

Beyond impossibility theorem: When summarising the in-
formation contained in different mass functions, both centroid
computation (through distance minimisation) and combination
rules make sense. This paper shows that these two views can
quickly become conflicting, as requiring only a few properties
leads to our impossibility theorem.

A possibility to obtain more favourable results would be to
abandon some of these properties, such as ignorance neutrality.
For example, a simple (weighted) average of mass functions is
compatible with the minimisation of some specific distances,
but clearly violates ignorance neutrality. Disjunctive rules are
another kind of rules not satisfying ignorance neutrality, but
in their cases, we would be more pessimistic about the fact
that they can give the centroid for some distance, given the
fact that they are the dual of conjunctive rules.

Some questions as perspectives: While our results show
that combination-based and distance-based aggregation are
irreconcilable to some extent, the two previous paragraphs
indicate that the story has not ended. Indeed, many other
questions remain unsolved, to be tackled in further research:

• Simply looking at Equation (11), can we easily char-
acterise those distances (among the many ones existing
within TBF) for which the solution is unique and easy
to determine? What properties do we need for that? In
which situations one is preferable to the other?

• How can we relax the presented properties to turn im-
possibility into more positive results? We already men-
tioned the possibility of looking at rules not satisfying
ignorance neutrality. However, an alternative could be
to relax the requirement made on distances, turning to
pseudo distances or non-symmetric divergences (such as
the celebrated Kullback-Leibler one).

• Clustering information rather than the objects they refer
to may have an interest in itself: to identify different
situations regarding the information, e.g., detect those
zones with high epistemic uncertainty/imprecision to per-
form active learning [52]. Also, previous empirical results
have shown that in some situation, such as classification,
using distances between information about the objects
rather than between the objects as a proxy may deliver
good results [24]. Yet, the question of how to properly
classify/cluster objects (and not the information we have
on them) with uncertain distances remains largely open,
and is an avenue of research we intend to investigate.
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Rogova, Eds., 2019, pp. 79–97.

[7] K. Zhou, A. Martin, and Q. Pan, “Evidence combination for a large num-
ber of sources,” in 2017 20th International Conference on Information
Fusion (Fusion). IEEE, 2017, pp. 1–8.

[8] T. Denoeux, N. El Zoghby, V. Cherfaoui, and A. Jouglet, “Optimal object
association in the dempster–shafer framework,” IEEE transactions on
cybernetics, vol. 44, no. 12, pp. 2521–2531, 2014.

[9] T. Denoeux, “Distributed combination of belief functions,” Information
Fusion, vol. 65, pp. 179–191, 2021.

[10] D. Dubois and H. Prade, “Representation and combination of uncer-
tainty with belief functions and possibility measures,” Computational
intelligence, vol. 4, no. 3, pp. 244–264, 1988.

[11] T. Denœux, “The cautious rule of combination for belief functions and
some extensions,” in 2006 9th International Conference on Information
Fusion. IEEE, 2006, pp. 1–8.

[12] H. Laghmara, T. Laurain, C. Cudel, and J.-P. Lauffenburger, “Hetero-
geneous sensor data fusion for multiple object association using belief
functions,” Information Fusion, vol. 57, pp. 44–58, 2020.

[13] F. Xiao, “Multi-sensor data fusion based on the belief divergence
measure of evidences and the belief entropy,” Information Fusion,
vol. 46, pp. 23–32, 2019.

[14] A. Martin, “About conflict in the theory of belief functions,” in Belief
Functions: Theory and Applications. Springer, 2012, pp. 161–168.

[15] A.-L. Jousselme and P. Maupin, “Distances in evidence theory: Compre-
hensive survey and generalizations,” International Journal of Approxi-
mate Reasoning, vol. 53, no. 2, pp. 118–145, 2012.

[16] H. E. Stephanou and S.-Y. Lu, “Measuring consensus effectiveness by
a generalized entropy criterion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 10, no. 4, pp. 544–554, 1988.

[17] W. L. Perry and H. E. Stephanou, “Belief function divergence as a
classifier,” in Proceedings of the 1991 IEEE International Symposium
on Intelligent Control. IEEE, 1991, pp. 280–285.

[18] S. Konieczny, J. Lang, and P. Marquis, “Distance-based merging: a
general framework and some complexity results,” KR, vol. 2, pp. 97–
108, 2002.

[19] S. Benferhat, D. Dubois, S. Kaci, and H. Prade, “Possibilistic merging
and distance-based fusion of propositional information,” Annals of
Mathematics and Artificial Intelligence, vol. 34, no. 1, pp. 217–252,
2002.

[20] S. Coste-Marquis, C. Devred, S. Konieczny, M.-C. Lagasquie-Schiex,
and P. Marquis, “On the merging of dung’s argumentation systems,”
Artificial Intelligence, vol. 171, no. 10-15, pp. 730–753, 2007.

[21] T. Burger, “Geometric views on conflicting mass functions: From
distances to angles,” International Journal of Approximate Reasoning,
vol. 70, pp. 36–50, 2016.

[22] F. Cuzzolin, The Geometry of Uncertainty - The Geometry of Impre-
cise Probabilities, ser. Artificial Intelligence: Foundations, Theory, and
Algorithms. Springer, 2021.

[23] T. Denœux, O. Kanjanatarakul, and S. Sriboonchitta, “Ek-nnclus: a
clustering procedure based on the evidential k-nearest neighbor rule,”
Knowledge-Based Systems, vol. 88, no. C, pp. 57–69, Nov. 2015.

[24] A. Trabelsi, Z. Elouedi, and E. Lefevre, “Decision tree classifiers for
evidential attribute values and class labels,” Fuzzy Sets and Systems,
vol. 366, pp. 46–62, 2019.

[25] T. Denœux, “A k-nearest neighbor classification rule based on dempster-
shafer theory,” IEEE transactions on systems, man, and cybernetics,
vol. 25, no. 5, pp. 804–813, 1995.

[26] E. Lefevre, O. Colot, and P. Vannoorenberghe, “Belief function combi-
nation and conflict management,” Information Fusion, vol. 3, no. 2, pp.
149–162, 2002.

[27] S. B. Hariz, Z. Elouedi, and K. Mellouli, “Clustering approach using
belief function theory,” in International Conference on Artificial Intel-
ligence: Methodology, Systems, and Applications. Springer, 2006, pp.
162–171.

[28] A.-L. Jousselme, D. Grenier, and Éloi Bossé, “A new distance between
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