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Abstract—Rewards are critical hyperparameters in reinforce-
ment learning (RL), since in most cases different reward values
will lead to greatly different performance. Due to their commer-
cial value, RL rewards become the target of reverse engineering
by the inverse reinforcement learning (IRL) algorithm family.
Existing efforts typically utilize two metrics to measure the IRL
performance: the expected value difference and the mean reward
loss, which we call them EVD and MRL respectively. Unfortu-
nately, in some cases, EVD and MRL can give completely opposite
results, due to MRL focusing on whole state-space rewards while
EVD only considering partly sampled rewards. Such situation
naturally rises to one fundamental question: whether current
metrics and assessment are sufficient and accurate for more
general use. Thus, in this paper, based on the metric called
normalized mutual information of reward clusters (C-NMI) we
propose a novel IRL assessment; we aim to fill this research
gap by considering a middle-granularity state space between the
entire state space and the specific sampling space. We utilize the
agglomerative nesting algorithm (AGNES) to control dynamical
C-NMI computing via a 4-order tensor model with injected
manipulated trajectories. With such a model, we can uniformly
capture different-dimension values of MRL, EVD, and C-NMI,
and perform more comprehensive and accurate assessment and
analyses. Extensive experiments on several mainstream IRLs are
experimented in Object World, hence revealing that the assess-
ing accuracy of our method increases 110.13% and 116.59%
respectively when compared with the EVD and MRL. Meanwhile,
C-NMI is more robust than EVD and MRL under different
demonstrations.

Impact Statement—In this work, we pay attention to the
inconformity problem of MRL- and EVD-based IRL assessment.
There are two main challenges for us to address: (1) how to
design a novel metric by combining the advantages of both MRL
and EVD, and (2) how to construct a comprehensive assessment
method for accurate comparison and analysis. To address such
challenges, we craft a novel assessment of IRL based on the
metric called normalized mutual information of reward clusters
(C-NMI). Hence we attempt to fill the existing research gap by
considering a middle-granularity state space between the entire
state space and the certain sampled space. We list all of the
notation and parameters used in the rest of this paper in Table I.
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TABLE I: Parameters and Notation

Notation Meaning

π
policy, π∗ optimal policy, πu learned policy, πsub/πinv subo-
ptimal/inverted policy

r
reward set, re ground truth reward set, ru learned reward
set, rinv inverted reward set

D demonstration, D∗ expert demonstration, Ds∗/Di∗

suboptimal/inverted manipulated demonstration

τ
trajectory, τ∗ optimal trajectory, τsub/τ inv suboptimal/inv-
erted trajectory

C reward cluster, C = {C1, C2, . . .} reward clusters set

S′ S′ = {s′|re
s′ ∈ Ce

i }, Ce
i denotes any subset in Ce, the sampl-

ed state space
k cluster number, |k| = X
o top K of cluster ranking, |o| = Y
m percentage of manipulated trajectories, |m| = Z
g metrics, |g| = V
p percentage of manipulated trajectories injected
B 4-order tensor, B ∈ RX×Y ×Z×V

Qv
1 , Qv

3 upper- and lower-quartiles of Bi,j,z,v

Col
Col1 the number of primary color, Col2 the number of
secondary color

DS experimental datasets
A IRL algorithm
ϵ assessing accuracy of metric, ϵ average assessing accuracy

Index Terms—reinforcement learning, reverse engineering, mu-
tual information, assessment, tensor model

I. INTRODUCTION

REINFORCEMENT learning (RL) together with
unsupervised- and supervised-learning constitute

the complete framework of machine learning in the AI
field. Compared with the expert supervision that utilized
in supervised learning, RL relies on step-by-step reward
feedback from the interaction between the autonomous
agent and the environment. RL algorithm can learn the
corresponding optimal policy from a large number of
trajectories via a series of action attempts of the agent during
training time. Because of this unique characteristics, RL can
be regraded as autonomous learning, and greatly drives AI
development to grounding applications, including the Boston
Dynamics robots [28] and AlphaGo Zero [27] software agent.

In RL, different rewards usually lead to performance’s
significant differences. As the critical hyperparameter in RL,
the reward refers to the feedback given by the corresponding
environment according to the agent’s action selection perfor-
mance at each state. Reward can guide the agent to learn a
optimal policy which maximize the sum of expected rewards.
Utilizing a simple car driving for example, we may simply
design two rewards: +1 means taking an action into a state that
has a predefined safe distance to the car in front of our car,
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while -1 means taking an action into a state not having a safe
distance. However, artificial rewards for the given task do not
work well in many cases, such as drone autonomous driving
and Unmanned aerial vehicle. From this, we can see that well
designed rewards have high commercial value, and need to be
carefully predesigned according to the expert knowledge.

Unfortunately, RL rewards have become the target of reverse
engineering through inverse reinforcement learning (IRL) [37].
IRL algorithms aim to learn rewards by imitating history
expert trajectories, while IRL is designed to make the manually
design of rewards become easier. More specifically, given a
certain number of expert trajectories, IRL can obtain approx-
imate rewards via model learning. Such a situation makes
IRL become a double-edged sword, meaning that instead of
providing help for RL training, IRL can also be used as a kind
of reverse engineering to achieve approximated rewards. In
recent years, with the development trend of online open AI, the
reverse engineering vulnerability of IRL has become a serious
challenge. For example, Facebook [26] has opened up a large
number of expert trajectories of several RL models on Github
to encourage researchers to retrain, and eventually upload
their new models back to Facebook. Hence, it is necessary to
explore accurate assessments on IRL performance, and further
expose the threat of reward reverse engineering.

IRL methods are mainly classified into two categories: lin-
ear methods, including MMP [55], MWAL [56], MaxEnt [54],
and AN [40]; and non-linear kernel function-based ones,
including GPIRL [53], LEARCH [39], and FIRL [41]. Under
the scenario of IRL performance assessing, there are generally
two assessment metrics: expected value difference and mean
reward loss, which we call them EVD and MRL respectively.
EVD pay attention to the expected value of several sampling
trajectories, while MRL focuses the entire state space and get
the mean reward loss. However, as the motivating example
shows in Section. III, EVD and MRL can give completely
opposite assessing results. For this reason, which assessment
metric should be trusted? This is the fundamental point that
inspires us to rethink whether the current metrics are sufficient
for accurate evaluation. Thus, it is necessary to develop a novel
metric that can fill the gap with middle granularity between
the entire state space and the specific sampling space.

In this work, we propose a novel assessing metric of reverse
engineering on RL rewards, and develop a metric via nor-
malized mutual information of reward clusters (C-NMI). We
employ an agglomerative nesting algorithm (AGNES) [52] for
dynamical C-NMI computing to quantify the reward clusters’
similarity compared with the reward ground truth. We build a
4-order tensor model embedded with manipulated trajectories,
which are formed from both suboptimal [43] and inverted [42]
trajectories. Based on such a 4-order tensor model, we can
uniformly capture and store different-dimension metric values
of MRL, EVD, and C-NMI. We can also perform compre-
hensive assessment by computing a lower 1.5 × interquartile
range (IQR) [33] whisker for MRL and EVD, and an upper
1.5 × IQR whisker for C-NMI.

In our experiment, we target Object World (OW) as the
benchmark, and implement 7 mainstream IRL algorithms:
MaxEnt, MMP, GPIRL, MWAL, FIRL, AN, and LEARCH.

For setting the ground truth, the consistency between MRL
and EVD is analyzed. In our datasets, statistical analysis shows
that C-NMI has better assessing accuracy than MRL and EVD.
In detail, C-NMI-based assessment can achieve the highest
accuracy of 0.89, and is robust under different cases as well.

We summarize our contributions as follows:
1) We make the first attempt to craft a novel assessment

of IRL based on the metric called normalized mutual
information of reward clusters (C-NMI), which can
fill the existing research gap by considering a middle-
granularity state space between the entire state space and
the certain sampled space.

2) We first construct a 4-order tensor model with injected
manipulate trajectories to realize the dynamically calcu-
lating of C-NMI.

3) We give extensive experiments on seven mainstream
IRLs, which shows that C-NMI increases 110.13% and
116.59% respectively when compared with the EVD and
MRL. Meanwhile, C-NMI is more robust than EVD and
MRL under different demonstrations.

The rest of this paper is organized as follows. The related
work is organized in Section. II. Section. III describes the mo-
tivating examples. Section. IV demonstrates the preliminaries.
Section. V proposes a mutual information-based assessment
of reverse engineering on RL rewards. Section. VI reports
experiments and the corresponding detailed analysis. Finally,
Section. VII gives the conclusion.

II. RELATED WORK

Critical Hyperparameter stealing Existing works have re-
vealed hyperparameter stealing attack and more directly model
stealing attack. Against open application programming inter-
faces (including Amazon machine learning and BigML [20]),
researchers found such attacks that can steal the machine
learning model almost perfectly. While our work make the
first attempt to assess the reverse engineering threats against
the open RL platform. Wang et al. [29] focused on revealing
hyperparameter stealing, in which the stolen hyperparameter
is highly important for model performance. Similarly, for
RL model, reward function is the critical hyperparameter,
which should be designed before model begins. However,
comparing with the hyperparameters within the traditional
machine learning model, the number of rewards are unknown,
which is a challenge for IRL reverse engineering. Thus, we
both pay attention to the unknown hyperparameters’ number,
and the specific values of reward function in RL model.

IRL assessment Many studies [53] [40] have shown differ-
ent measures with various names on IRL performance, includ-
ing the EVD, MRL, approximation error, percent mispredic-
tion, feature expected distance, policy loss, and learning score.
In earlier works, the approximation error is usually utilized
to assess the similarity between the original reward function
and the reward function approximated by IRL. Currently,
EVD and MRL are used to evaluate the reward function’s
similarity. In our work, we also employ them as a highly
important measures. Some other measures, such as percent
misprediction and feature expected distance, are used from a
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(a) Ground Truth V.S. LEARCH-based IRL

(b) Ground Truth V.S. MWAL-based IRL

Fig. 1: The opposite results given by EVD and MRL under
the Object World benchmark (a) LEARCH algorithm and (b)
MWAL algorithm.

very different angle (state action value function) to indirectly
reflect the reward function’s similarity, that is, to compare
the new learned policy’s action with an expert’s action of
trajectories. Furthermore, a RL algorithm’s learning score is
obtained through using an approximated reward to actually
interact with the environment. However, from the reverse
engineering perspective, the percent misprediction, feature
expected distance, and learning score, are far from direct
and unsuitable. Therefore, we introduce mutual information
to assess the discreteness similarity between original rewards
and rewards by approximated IRL. [30] proposed a mutual
information-based method for improving IRL, they just used
the mutual information for features ranking based on the
relevant evaluation results in the IRL training process; this
is totally different from our use in assessing discrete reward
clusters.

III. MOTIVATING EXAMPLE

We choose Object World, a popular game that has appeared
in many IRL-related experiments. We choose two different
IRL algorithms, LEARCH and MWAL, to analyze the con-
fused IRL results. We use the metrics MRL and EVD.

Figure 1 presents two graphs for comparison. The left graph
shows the ground truth of true discrete rewards. There are only
three types of rewards: +1 means an agent reaching a white
square, -1 for the black square, and 0 for the gray square.
The IRL results are shown in the right part of each graph. For
comparison, we use a red dotted line to surround each cluster
of +1 rewards, and a green dotted line for -1 reward clusters.
Moreover, for the right graph in Figure 1 (a) and (b) we utilize
different color dotted lines to represents the clustering result
given by IRL algorithm, LEARCH and MWAL respectively.

We can see that when assessing with MRL metric, it indi-
cates that the MWAL’s performance is better (MRL=4.5314);
meanwhile, under the assessment of EVD shows that the
LEARCH gives the better result (EVD=16.6681). Obviously,
under such scenario, MRL and EVD give completely opposite
assessing results, and which metric should we trusted to
determine the effectiveness of IRL algorithm? This is the
fundamental point that inspires us to rethink whether the
current metrics are sufficient for accurate evaluation. One
possible reason is that MRL focuses the entire state space
and get the mean reward loss, while EVD pay attention to
the expected value of several sampling trajectories. Thus, it
is necessary to develop a novel metric that can fill the gap
with middle granularity between the entire state space and the
specific sampling space, further, to give an accurate evaluation
result. In fact, from the aspect of clustering result, we can see
that the result of LEARCH is much similar to the original
ground truth, which inspires us that reward cluster-related
features should be considered in an accurate assessment.

IV. PRELIMINARIES

A. Reinforcement learning (RL)

The five-tupleM = {S,A, P, γ, r}, is generally be utilized
to represented the markov decision process, in which S
denotes the state space, and A represents the action space,
P (s′|s, a) denotes the corresponding transition probability that
transfers from state s to s′ (s, s′ ∈ S) with action selection a ∈
A, γ denotes the discount factor and it ranges from 0 to 1, the
fifth element r denotes the reward function. And the optimal
policy π∗ can be denoted as π∗ = argmaxπ E[

∑∞
t=0 γ

trst |π].
The purpose of RL is to obtain a policy, for which the

input should be the observation s, and the output is the
action selection probability under each state. At time t the
action selecting is at, and the policy can be computed as the
probability p(at|st).

From the beginning to the end of a certain task, the agent
can generate a trajectory τ = {s1, a1, . . . , sT , aT }. The state-
action value function can be calculated as Qπ(st, at) =
E(rt+1+γrt+2+γ2rt+3+ . . . |st, at), and it an be simplified
as E(γt′−trnt′+1|st, at), t′ ∈ {t, t + 1, . . . , T}. According
to the Bellman equation (dynamic programming equation),
the state value function can be represented as Vπ(st) =∑

at
π(at|st)Qπ(st, at). Thus, the state-action value function

can also be represented as Qπ(st, at) = E[rt + Vπ(st+1)].
In order to obtain a good policy, R̄θ =

∑
τ R(τ)pθ(τ)

should be maximized through a gradient ascent-based update
θ ← θ + η∇R̄θ.

B. Inverse reinforcement learning (IRL)

IRL can be described as M\r together with the expert
demonstration D∗ = {τ1, τ2, . . .}, where τi is represented
as τi = {si,1, ai,1, . . . , si,T , ai,T }. The purpose of IRL is to
find a reward function r, and under r the optimal policy π∗

can give the maximum probability when following the given
expert trajectories. The probability of choosing action a at state
s can be represented as P (a|s) ∝ exp(Qr(s, a)), in which
Qr(s, a) = E[r+Vr(s

′)]. While the state value function Vr(s)
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can be calculated as
∑

a p(a|s)Qr(s, a), thus, P (a|s) can be
represented as exp(Qr(s, a)− Vr(s)). Under reward function
r the log likelihood of the given expert trajectories can be
represented as:

log p(D∗|r) =
∑
i

∑
t

log p(ai,t|si,t),

=
∑
i

∑
t

(Qr(si,t, ai,t)− Vr(si,t)),
(1)

and maximizing Equation 1 directly to obtain reward function
r.

C. Classical Metrics: MRL and EVD

Mean reward loss (MRL) measures the average difference
between the learned rewards and the true rewards, and MRL
can be calculated as follows:

MRL(re, ru) =
1

|S|

|S|∑
i=1

|resi − rusi |, si ∈ S, (2)

in which re denotes the true reward, and we use ru to
represent the learned reward.

Expected value difference (EVD) measures the difference
between the expected cumulated reward under the ground truth
rewards and the learned rewards, which can be represented as
follows:

EVD(re, ru) = E[
∞∑
t=0

γtrest |π
∗]− E[

∞∑
t=0

γtrest |π
u], (3)

where π∗ denotes the optimal policy under the true re-
wards re, and πu is derived from the IRL’s inverse re-
wards ru. E[

∑∞
t=0 γ

trest |π
∗] ≈ 1

ζ

∑ζ
i=1

∑T
t=1 γ

tresi,t , s ∈ τ ∗,
E[
∑∞

t=0 γ
trest |π

u] ≈ 1
ζ

∑ζ
i=1

∑T
t=1 γ

tresui,t , s
u ∈ τu, where ζ

is the number of selected trajectories; and τ ∗/τu denotes the
T steps trajectory generated by policy π∗/πu.

MRL and EVD both range from 0 to +∞, the smaller their
value, the better the IRL performance.

V. MUTUAL INFORMATION-BASED IRL ASSESSMENT

In this section, as shown in Figure 2, we propose our
mutual information-based assessment in detail. We define and
compute the reward clustering-based metric, and present our
comprehensive 4-order tensor model embedded in manipulated
trajectory.

A. Generating reward clusters

Given the reward set r, we utilize the he agglomerative
nesting algorithm (AGNES) to obtain the reward-close clus-
ters. As shown in Algorithm 1, which begins with |r| clusters.
In line 5, we calculate the minimum distance between cluster
Cα and Cβ , which can be calculated as follows:

(Cα, Cβ) = argmin
Ci∈Cx,Cj∈Cx

Dal(Ci, Cj),

= argmin
Ci∈Cx,Cj∈Cx

1

|Ci||Cj |
∑
ri∈Ci

∑
rj∈Cj

d(ri, rj),
(4)

where Ci and Cj are clusters, and Ci
⋂
Cj = ∅, d(ri, rj) is

the Euclidean distance [35] between two rewards ri ∈ Ci and
rj ∈ Cj . In line 6, we merge two individual clusters whose
distance is shortest into a larger cluster New C, and reform
the clustering Cx as follows:

Cx = (Cx \ {Cα, Cβ})
⋃
{New C}. (5)

We then repeat the operations from line 4 to line 8 until the
number of cluster reaches |k|.

Algorithm 1 Reward clustering

Input: reward set r = {r1, r2, . . . , r|r|}, cluster number k =
{k1, k2, . . . , k|k|}

Output: {C1,C2, . . . ,C|k|}
1: repeat
2: x← 1
3: // initial setting

Cx = {Cx;1, . . . , Cx;|r|} = {{r1}, . . . , {r|r|}}
4: repeat
5: // individual clusters merging

Calculating the minimum distance between cluster Cα
and Cβ with Equation 4

6: New C = Cα
⋃
Cβ

7: Reforming clustering Cx with Equation 5
8: until |Cx| ≥ kx
9: x← x+ 1

10: until x > |k|
11: return {C1,C2, . . . ,C|k|}

B. C-NMI

Given the ground truth reward set re, if the number of
clusters is assumed as kx ∈ k for clusters Ce

x, then we have
Ce
x = {Cex;1, Cex;2, . . . , Cex;kx

}; furthermore, Cex;i
⋂
Cex;j = ∅

(i, j ∈ {1, 2, . . . , kx}), and
⋃kx

i=1 Cex;i = re.
In order to compute the mutual information of reward clus-

ters, we first conduct state space sampling to make the cluster
comparison under the same space. Figure 3 illustrates this state
space sampling. We first descend all of the clusters in Ce

x based
on the size of each cluster |Cex;i|. According to the top K of
cluster ranking oy ∈ o, we form Ce

x,y = {Cex,y;1, . . . , Cex,y;oy},
and then obtain the corresponding state space S ′ as follows:

S ′ = {s′|res′ ∈ Cex,y;i}, i = {1, . . . , oy}, (6)

where Cex,y;i denotes any subset in Ce
x,y .

Next, we compute the mutual information of reward clusters
(C-MI) between Cu

x,y and Ce
x,y by measuring how much

reward information one cluster gives about another. C −
MI(Cu

x,y;C
e
x,y) can be calculated as follows:

|Cu
x,y|∑

i=1

|Ce
x,y|∑

j=1

p(Cux,y;i, Cex,y;j) log
p(Cux,y;i, Cex,y;j)
p(Cux,y;i)p(Cex,y;j)

, (7)

where Cu
x,y is the clustering result for ru. p(Cux,y;i, Cex,y;j) =

|Cu
x,y;i

⋂
Ce
x,y;j |

|S′| denotes the probability that a certain reward
r belonging Cux,y;i ⊂ Cu

x,y and Cex,y;j ⊂ Ce
x,y . Meanwhile,
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Fig. 2: Illustration of mutual information-based IRL assessment. The whole framework contains two parts, in which the first
one is the C-NMI computing, and the second one is the 4-order tensor model.

Fig. 3: Illustration of state space sampling. For the left map,
different colors denote different clusters, in which “blue”
represents cluster Cex;1, “green” denotes cluster Cex;2, “black”
is cluster Cex;3, and “red” is cluster Cex;4. Then ranking Ce

x

based on each clusters’ size, and sampling the top 3 clusters
to form a new state space S ′ which colored by “gray”, while
the remaining states is colored with “white”.

p(Cux,y;i) =
|Cu

x,y;i|
|S′| represents the probability that r belonging

Cux,y;i. Similarly, p(Cex,y;j) =
|Ce

x,y;j |
|S′| .

The C-MI(Cu
x,y;C

e
x,y) ranges from 0 to +∞, and the C-MI

will increase with the higher dependence of clusters Cu
x,y and

Ce
x,y . C-MI=0 if and only if Cu

x,y and Ce
x,y are completely

independent.
To rescale C-MI, we calculate the normalized mutual infor-

mation of reward clusters (C-NMI) between Cu
x,y and Ce

x,y ,
which can be represented as follows:

C −NMI(Cu
x,y,C

e
x,y) =

C −MI(Cu
x,y;C

e
x,y)√

H(Cu
x,y) ·H(Ce

x,y)
, (8)

where H(Cu
x,y) = −

∑|Cu
x,y|

i=1 p(Cux,y;i) log p(Cux,y;i),
H(Ce

x,y) = −
∑|Ce

x,y|
j=1 p(Cex,y;j) log p(Cex,y;j), and C-

NMI(Cu
x,y,C

e
x,y) ∈ [0, 1]. C-NMI=1 means that the two

clusters are exactly coincident.

C. 4-order tensor model

Towards dynamic compositions of variables including clus-
ter number, top K of cluster ranking, and percentage of
manipulated trajectories, we design a 4-order tensor model to
uniformly capture and store different-dimension metric values
of MRL, EVD, and C-NMI. Hence, we can conduct a more
comprehensive assessment, as well as evaluate the accuracy
for our proposed metric C-NMI.

Figure 4 depicts the overall architecture of the 4-order
tensor model. This architecture contains three layers. The 4-
order tensor layer is responsible for capturing and storing
multi-dimensional metrics. The second layer is designed for
extracting key metric values based on the interquartile range
(IQR) of statistics, and the output layer outputs the final results
for assessment.

4-order tensor We construct a 4-order tensor B ∈
RX×Y×Z×V , where X = |k|, Y = |o|, Z = |m|, and
V = |g|. In the third order, we implement a method (see
Algorithm 2) to inject suboptimal and inverted trajectories as
manipulated ones. Randomly choosing a subspace π′ ⊂ π,
and π′ contains the optimal policy π∗. The operation com-
mand cmd == 0 means injecting suboptimal trajectories as
manipulated ones; else, it means injecting inverted trajectories.
From line 2 to line 3, we compute the suboptimal policy πsub

and generate the corresponding trajectories τsubi , which can
be calculated as follows:

πsub = arg max
π′\{π∗}

E[
∞∑
t=0

γtrest |π], (9)

τsubi = {si,1, ai,1, . . . , si,T , ai,T |πsub}. (10)

In line 5, we invert re, and obtain the inverted reward set rinv .
From line 6 to line 7, we compute the inverted policy, and we
generate the inverted trajectories as follows:

πinv = argmax
π

E[
∞∑
t=0

γtrinvst |π], (11)
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Fig. 4: Framework of the 4-order tensor model. This framework contains three layers, in which the first layer is the 4-order
tensor layer, the second one is the extraction layer, and the last one is the output layer.

τ invi = {si,1, ai,1, . . . , si,T , ai,T |πinv}. (12)

We then repeat operations from line 9 to line 14 to inject
τsubi and τ invi as manipulated trajectories until the control
percentage reaches p|p|, which can be represented as follows:

Ds∗
i = {τsub1 , . . . , τ subpi·|Ds∗|, τ

∗
1 , . . . , τ

∗
(1−pi)·|Ds∗|}, (13)

Di∗
i = {τ inv1 , . . . , τ invpi·|Di∗|, τ

∗
1 , . . . , τ

∗
(1−pi)·|Di∗|}. (14)

Finally, we output the manipulated demonstrations Ds∗ and
Di∗.

Thus, the 3rd order m contains |p|-dimension fea-
tures, which can be represented as (m1, . . . ,m|p|) =
(p1, p2, . . . , p|p|); meanwhile, the 4th order g has three-
dimension features to separately represent three metrics, and
it can be represented as (g1, g2, g3) = (MRL, EVD, C-NMI).
By expanding tensor B along g, we can obtain the matrix
B(g):

B(g) =

Bx,y,z,1

Bx,y,z,2

Bx,y,z,3

 , (15)

where Bx,y,z,1 = (B1,1,1,1, . . . , B|k|,1,1,1, . . . , B1,|o|,|m|,1,
. . . , B|k|,|o|,|m|,1), Bx,y,z,2 = (B1,1,1,2, . . . , B|k|,|o|,|m|,2),
and Bx,y,z,3 = (B1,1,1,3, . . . , B|k|,|o|,|m|,3).

Key metric value extraction Through the 4-order tensor,
we obtain the multi-dimensional sequence for each metric.
Bx,y,z,1 denotes the sequence for MRL, Bx,y,z,2 denotes the
sequence of EVD and Bx,y,z,3 represents the corresponding
sequence C-NMI. Then, we extract the key metric values of
MRL, EVD, and C-NMI based on the IQR of the correspond-
ing multi-dimensional sequence, because it is a commonly
used robust measure of scale [21]. The IQR of Bx,y,z,v can
be computed as follows:

IQR(Bx,y,z,v) = Qv
3 −Qv

1, (16)

Algorithm 2 Manipulated trajectory injection

Input: expert demonstration D∗, ground truth rewards re,
policy subspace π′ = {π∗, π2, . . . , π|π′|}, percentage
controlling coefficient p = {p1, . . . , p|p|}, pi ∈ [0, 1],
operation command cmd

Output: manipulated demonstrations Ds∗,Di∗

1: if cmd==0 then
2: Computing the suboptimal policy πsub with Equation 9
3: Generating the suboptimal trajectory τsubi with Equa-

tion 10
4: else
5: rinv = −re
6: Computing the inverted policy πinv with Equation 11
7: Generating the inverted trajectory τ invi with Equation

12
8: end if
9: repeat

10: // control percentage of manipulated trajectories
i← 1

11: Infecting τsubi as manipulated trajectory and obtain Ds∗
i

with Equation 13
12: Infecting τ invi as manipulated trajectory and obtain Di∗

i

with Equation 14
13: i← i+ 1
14: until i > |p|
15: return Ds∗ = {Ds∗

1 , . . . ,Ds∗
|p|}, D

i∗ = {Di∗
1 , . . . ,Di∗

|p|}

where Qv
3 and Qv

1 indicate the upper- and lower-quartiles of
Bx,y,z,v, respectively. Thus, the upper 1.5× IQR whiskers can
be represented as Qv

3 + 1.5 × IQR(Bx,y,z,v), and the lower
1.5×IQR whiskers is Qv

1 − 1.5 × IQR(Bx,y,z,v). These can
separately characterize the highest and lowest occurring values
of Bx,y,z,v, thereby avoiding the influence of outliers.

According to the definitions of MRL, EVD, and C-NMI,
we set the lower 1.5× IQR whiskers of Bx,y,z,1 and Bx,y,z,2

as the key metric values of MRL and EVD, respectively. We
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TABLE II: Experimental environment configuration

Platform Experiment environment Environment configuration

IRL algorithms

GPU MSI GeForce RTX 2070
VENTUS

RAM 32GB

Graphic Memory 151MiB

Software Matlab R2017b

set the upper 1.5× IQR of Bx,y,z,3 as the key metric value
for C-NMI.

VI. EXPERIMENTS

A. Experimental setup

Benchmark The parameters for the experiment platform are
shown in Table II. Since the Object World is most commonly
used in IRL experiments, we utilize this environment as
our experimental benchmark. Object World is a gridworld
where dots of primary colors, e.g., blue and green, and
secondary colors, e.g., red and cyan, which are placed on the
grid randomly, as shown in Figure 1. In Object World, the
agent maximizes its expected discounted reward by following
a policy that provides the probabilities of actions (moving
up/down/left/right or staying still) at each state, with each
subject to a transition probability. Each state, i.e., grid block,
is described by the shortest distances to dots among each color
group. The reward is assigned such that if a block is 1 step
within a green dot and 3 steps within a blue dot, the reward
is +1; if it is 3 steps within a blue dot only, the reward is −1;
and 0 otherwise. Considering the number of primary colors
Col1 = 2, and the number of secondary colors Col2 = 2.
For constructing the benchmark of Object World, we use a

common Matlab function named round(rand(1)) to assign each
grid a value of 0 or 1; if it is 1, then we place an object on
this grid. Meanwhile, each object is randomly assigned one of
the Col1 primary and Col2 secondary colors.

Parameter setting For the 4-order tensor, we vary the
cluster number k in the range {2, 3, . . . , 10}, and the top K
of cluster ranking in the range {1, . . . , k}. We also vary the
percentage controlling coefficient p in {10%, 30%, 50%}. The
trajectory length is set to be 8, and |D| = 128 following the
literature [53], thereby ensuring satisfied training converge of
the IRL algorithm. For the 7 state-of-the-art IRL algorithms,
we directly utilize the standard setting follow the correspond-
ing works: MMP [55], MWAL [56], MaxEnt [54], AN [40],
GPIRL [53], LEARCH [39], and FIRL [41].

Datasets According to the grid map size, we build six
datasets for experiment analysis, which can be recorded as
DS = {DS5×5, . . . , DS50×50}. Moreover, for each training
dataset DS we utilize the IRL algorithm toolkit which is
developed by Levine et al. [53] to generate 20 grid map
samples randomly, which can be represented as DSi×i =
{ds1i , ds2i , . . . , ds20i }.

Baseline In the field of IRL algorithm assessing, there is
not existing one specific “ground truth” to give an expert
evaluation, as different researchers utilize different evaluation
metrics, such as only use EVD, MRL, or use both of them.

TABLE III: Definition of function Fbl

lmrl levd baseline l

1 1 1

-1 -1 -1

1 0/-1 0

-1 0/1 0

0 1/-1 0

TABLE IV: Definition of function Facc

l(A) lmetric(A) Facc(l(A)− lmetric(A))

1 1 1

0 0 1

-1 -1 1

1 0/-1 0

0 1/-1 0

-1 1/0 0

Thus, in order to evaluate the assessing accuracy of C-NMI,
we utilize MRL together with EVD to design a baseline
for accuracy comparison among different metrics. Through
ranking MRL and EVD values in ascending order, we can
obtain two ordered sets mrl and evd. Then, we divide
mrl and evd into three subsets with same sizes, and use
tertiles1() and tertiles2() to represent the lower- and upper-
tertiles [25], respectively.

Using the IRL algorithm A, we define the function
MRL(A) = Q1

1 − 1.5 × IQR(Bi,j,z,1). If MRL(A) ≤
tertiles1(mrl), A has a good performance, and tagging A
with lmrl(A) = 1; while MRL(A) ≥ tertiles2(mrl) shows
that A performs poor, thus tag A with lmrl(A) = −1; lastly,
lmrl(A) = 0 indicates moderate performance. Similarly, we
also have levd(A) = 1,−1, or0. Finally, we define the baseline
as follows:

l(A) = Fbl(lmrl(A) + levd(A)). (17)

Fbl is defined in Table III. If lmrl(A) + levd(A) = 2, then
Fbl(lmrl(A) + levd(A)) = 1; if lmrl(A) + levd(A) = −2, the
value of Fbl equals −1; and 0 otherwise.

Evaluation Metrics According to the baseline, under a spe-
cific demonstration D ∈ D = {D∗,Ds∗

1 , . . . ,Ds∗
|p|,D

i∗
1 , . . . ,

Di∗
|p|}, given A, we can calculate the assessing accuracy of

metric, which can be represented as follows:

ϵmetric(A
D) =

∑|DS|
i=1

∑|DSi×i|
j=1 Facc(l(A

D
dsji

)− lmetric(A
D
dsji

))

|DS| · |DSi×i|
,

(18)
in which dsji denotes the jth sample in DSi×i. Facc is
defined in Table IV. If l(AD

dsji
) − lmetric(A

D
dsji

) = 0, then

Facc(l(A
D
dsji

) − lmetric(A
D
dsji

)) = 1; otherwise, Facc equals
0. The average assessing accuracy across different demonstra-
tions can be calculated as follows:

ϵ̄metric(A) =

∑|D|
ϵmetric(A

D)

|D| , (19)
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in which metric ∈ {mrl, evd,c-nmi, ws}, and ws repre-
sents the weighted sum of metric MRL and EVD which
can be denoted as ws = ω1·MRL+ω2·EVD, (ω1, ω2) ∈
{( 12 ,

1
2 ), (

2
5 ,

3
5 ), (

3
5 ,

2
5 )}.

For lc−nmi(A), similarly, ranking C-NMI values by de-
scending order and obtaining ordered set c-nmi. We make
comparison of C-NMI(Ce,CA) and tertiles1/2(c-nmi) un-
der the given learned result CA. Thus, we can tag A with
lc−nmi(A) = 1,−1 or 0. In the same way, we can obtain
lws(A). Noting that ϵ, ϵ̄ both range from 0 to 1, and the larger
ϵ, ϵ̄ represent the performance is better.

B. Average assessing accuracy analysis of C-NMI

In this section, to compare the average assessing accuracy
of different metrics, we take MRL, EVD, C-NMI, and the
weighted sum metrics ω1·MRL+ω2·EVD into consideration.
As shown in Table V, we can obtain several observations:
under LEARCH algorithm, C-NMI increases 116.95% and
132.69% respectively when comparing with EVD and MRL
metric. In addition, the average metric value among different
IRLs has increased 110.13% and 116.59% respectively when
compared with EVD and MRL. Under GPIRL algorithm, C-
NMI will give the highest accuracy.

For ws metric, when the combination of (ω1, ω2) = (25 ,
3
5 )

results in the highest accuracy (0.89) with GPIRL. Under
most algorithms, C-NMI’s performance is better than the ws.
Furthermore, when the combination is ( 25 ,

3
5 ) which can give

the best performance, our the average assessing accuracy of
C-NMI improves the mean by up to 72.69%. Thus, generally
speaking, compared with all other assessing metrics C-NMI
has the best performance.

In order to verify the above observations more intuitively,
we visualize the rewards learned through 7 mainstream IRLs
for a case study. We target the same 40 × 40 grid map for
comparison. Eight subgraphs are presented in Figure 5 for
comparison: subfigure (a) shows the ground truth rewards,
and subfigures (b) to (h) reveal the learned rewards under
different IRL algorithms. Table VI compares the corresponding
key metric values of MRL, EVD, and C-NMI with the
baseline. We mark the key metric value with an underline
if lmetric(A) = −1, and bold if lmetric(A) = 1. It can be
seen that MRL gives a wrong assessment of MWAL, and
EVD makes a mistake with MaxEnt; conversely, C-NMI gives
exactly the correct assessment for all of the IRL algorithms
compared to the baseline.

C. Hyperparameters analysis

Cluster number (k) Under different cluster numbers, the
performance of C-NMI metric is shown in Figure 7(a). Varying
the cluster number k in the range of {2, 3, . . . , 10}, and record
the average C-NMI assessing accuracy for all k. It can be seen
that a higher average assessing accuracy is obtained for a larger
k, which reveals that, with the increase of cluster number k,
the rewards division is finer, and the C-NMI can give a better
evaluating performance of IRL algorithms. When k ≥ 8, C-
NMI can reach the optimal ϵ̄. Thus, 8 is a good choice for k
in the C-NMI computing.

Top K of cluster ranking (o) In order to verify o’s influence
on the average assessing accuracy of C-NMI, we vary o in
the range of {2, 3, . . . , 10}, then make comparison among 7
mainstream IRLs. As shown in Figure 7(b), o = 7 is a good
choice, since the optimal average assessing accuracy can be
achieved with all 7 IRL algorithms. As the top K of cluster
ranking o increases, the performance of C-NMI increases as
well, which indicates that the larger the state space sampling,
the better the performance of C-NMI.

D. Robustness comparison
To validate the robustness of the different assessment met-

rics, we compare the performance of MRL, EVD, C-NMI, and
ω1·MRL+ω2·EVD under different demonstrations. The results
are shown in Figure 6, in which we use a dotted red line
to surround the smallest accuracy variance among different
demonstrations. It can be seen that for all of the algorithms, the
assessing accuracy of C-NMI varies in the smallest range. This
indicates that C-NMI has the highest robustness compared to
the other metrics. In other words, C-NMI will give a more
stable high assessing accuracy for any D ∈ D. One possible
reason for this is that when D is mixed with manipulated
trajectories, IRL algorithms may give “unbalanced” policies
that learn well in some states but poorly in others. Our C-
NMI samples multiple state spaces in the whole state space
to calculate the reward clusters’ similarity, which can resolve
the problem of the “unbalanced” policy to some extent.

In addition, we also find that the robustness of MRL and
EVD is not good enough. The reason for this is that MRL
computes the mean reward loss on the global space, and thus
it can not handle the “unbalanced” policy in extreme situations.
For instance, the learned policy gives extremely close rewards
in a few states, and very far rewards in others. Meanwhile,
EVD may randomly sample initial states that locate in the
well-learned space, and give a good assessment under the
“unbalanced” policy.

VII. CONCLUSION

In this work, we pay attention to the inconformity problem
of MRL- and EVD-based IRL assessment. There are two main
challenges for us to address: (1) how to design a novel metric
by combining the advantages of both MRL and EVD, and
(2) how to construct a comprehensive assessment method for
accurate comparison and analysis. To address such challenges,
we craft a novel assessment of IRL based on the metric
called normalized mutual information of reward clusters (C-
NMI). Hence we attempt to fill the existing research gap
by considering a middle-granularity state space between the
entire state space and the certain sampled space. We utilize
the agglomerative nesting algorithm (AGNES) to controlling
dynamical C-NMI computing via a 4-order tensor model
with injected manipulated trajectories. Furthermore, we give
extensive experiments on seven mainstream IRLs. We analyze
the experimental results on various aspects, including accuracy
and robustness. The experimental results show that our method
increases 110.13% and 116.59% respectively when compared
with the EVD and MRL. Meanwhile, C-NMI is more robust
than EVD and MRL under different demonstrations.
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(a) Ground Truth (b) MMP

(c) MWAL (d) MaxEnt (e) AN

(f) GPIRL (g) LEARCH (h) FIRL

Fig. 5: Rewards visualization for the case study of (a) ground truth, (b) MMP, (c) MWAL, (d) MaxEnt, (e) AN, (f) GPIRL,
(g) LEARCH, and (h) FIRL under a 40 × 40 grid map. For each subfigure the x-axis denotes the horizontal position of the
given grid map, and the y-axis represents the vertical position of the given grid map. Moreover, for the 40× 40 grid map, the
range of x-axis and the y-axis are all in {0, 1, . . . , 39}.
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Fig. 6: Robustness comparison of different metrics for IRL algorithms MMP, MWAL, MaxEnt, AN, GPIRL, LEARCH, and
FIRL.
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TABLE V: Comparison of ϵ̄metric(A) for different metrics

Metric IRL Algorithm

MMP MWAL MaxEnt AN GPIRL LEARCH FIRL

MRL 0.69 0.61 0.72 0.75 0.77 0.52 0.73
EVD 0.72 0.64 0.74 0.77 0.80 0.59 0.76

C-NMI 0.79 0.71 0.79 0.80 0.89 0.69 0.88
1
2

MRL+ 1
2

EVD 0.76 0.70 0.77 0.78 0.86 0.65 0.85
2
5

MRL+ 3
5

EVD 0.77 0.71 0.78 0.81 0.89 0.67 0.87
3
5

MRL+ 2
5

EVD 0.74 0.68 0.75 0.77 0.84 0.61 0.83

TABLE VI: Comparison of the corresponding key metric values of the case study with the baseline under different IRL
algorithms

Key Metric Value IRL Algorithm

MMP MWAL MaxEnt AN GPIRL LEARCH FIRL

MRL 19.3472 8.9254 7.9420 21.3749 1.6033 10.0911 4.3376
EVD 70.4981 61.2417 8.9814 80.7064 0.9338 24.7630 2.4415

C-NMI 1.6758 1.0037 4.0712 0.9984 9.9471 5.8319 8.0213

Baseline -1 -1 0 -1 1 0 1
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Fig. 7: Comparison of ϵ̄c−nmi(A) under (a) various cluster
number k, and (b) various top K of cluster ranking o.
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