
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 1

AdaInject: Injection Based Adaptive Gradient
Descent Optimizers for Convolutional Neural

Networks
Shiv Ram Dubey, Senior Member, IEEE, S.H. Shabbeer Basha, Satish Kumar Singh, Senior Member, IEEE, and

Bidyut Baran Chaudhuri, Life Fellow, IEEE

Abstract—The convolutional neural networks (CNNs) are gen-
erally trained using stochastic gradient descent (SGD) based
optimization techniques. The existing SGD optimizers generally
suffer with the overshooting of the minimum and oscillation near
minimum. In this paper, we propose a new approach, hereafter
referred as AdaInject, for the gradient descent optimizers by
injecting the second order moment into the first order moment.
Specifically, the short-term change in parameter is used as a
weight to inject the second order moment in the update rule.
The AdaInject optimizer controls the parameter update, avoids
the overshooting of the minimum and reduces the oscillation near
minimum. The proposed approach is generic in nature and can be
integrated with any existing SGD optimizer. The effectiveness of
the AdaInject optimizer is explained intuitively as well as through
some toy examples. We also show the convergence property of
the proposed injection based optimizer. Further, we depict the
efficacy of the AdaInject approach through extensive experi-
ments in conjunction with the state-of-the-art optimizers, namely
AdamInject, diffGradInject, RadamInject, and AdaBeliefInject
on four benchmark datasets. Different CNN models are used in
the experiments. A highest improvement in the top-1 classification
error rate of 16.54% is observed using diffGradInject optimizer
with ResNeXt29 model over the CIFAR10 dataset. Overall, we
observe very promising performance improvement of existing
optimizers with the proposed AdaInject approach. The code is
available at: https://github.com/shivram1987/AdaInject.

Impact Statement—Adaptive moment based optimizers are
among the popular gradient descent optimization techniques for
the training of deep learning models. They try to control the
step size based on the gradient behavior. However, the existing
gradient descent optimization techniques either overshoot the
“steep and narrow” valley (i.e., minimum) or oscillate near it, due
to large step size caused by the exponential moving average of
gradients used for parameter updates. The AdaInject optimiza-
tion technique we introduce in this paper tackled this problem by
incorporating the immediate parameter change weighted second
order moment injection for the parameter updates. Using the
proposed optimization technique, a significant improvement is ob-
served in the performance of image classification using different

S.R. Dubey and S.K. Singh are with the Computer Vision and Biomet-
rics Laboratory (CVBL), Indian Institute of Information Technology, Alla-
habad, Prayagraj, Uttar Pradesh-211015, India (e-mail: srdubey@iiita.ac.in,
sk.singh@iiita.ac.in).

S.H.S. Basha is with the PathPartner Technology Pvt. Ltd., Bangalore, India
(e-mail: shabbeer.sh@pathpartnertech.com).

B.B. Chaudhuri was with the Indian Statistical Institute, Kolkata, India
and now associated with Techno India University, Kolkata, India (e-mail:
bidyutbaranchaudhuri@gmail.com).

This paper is accepted for publication by IEEE Transactions on
Artificial Intelligence. Copyright © 2022 IEEE. Personal use of this
material is permitted. However, permission to use this material for any
other purposes must be obtained from the IEEE by sending an email to
pubs-permissions@ieee.org.

CNN models. Moreover, the proposed AdaInject approach can
be used with any existing adaptive moment based optimization
technique. Hence, it can provide the alternative optimizers with
better step size control to train different deep learning models
for diverse applications.

Index Terms—Adaptive Optimizers, Convolutional Neural Net-
works, Deep Learning, Image Recognition, Parameter Update
History, Second Order Moment Injection, Stochastic Gradient
Descent.

I. INTRODUCTION

DEEP learning has shown a great impact over the perfor-
mance of the neural networks for a wide range of prob-

lems [1]. In recent past, convolutional neural networks (CNNs)
have shown very promising results for different computer
vision applications, such as object recognition [2], [3], [4],
[5]; object detection [6], [7]; face recognition [8], [9]; image
quality assessment [10]; gesture recognition [11]; Covid-19
grading [12]; and many more. CNNs have also been used as
basic building blocks in other networks like Autoencoder [13],
[14], [15], Siamese Network [16], [17], Generative Adversarial
Networks [18], [19], etc.

The training of different types of deep neural networks
(DNNs) is mainly performed with the help of stochastic gra-
dient descent (SGD) based optimization [20]. SGD optimizer
updates the parameters of the network based on the gradient
of objective function w.r.t. the corresponding parameters [21].
The vanilla SGD optimization suffers from three problems, in-
cluding 1) zero gradient in local minimum and saddle regions
leading to no update in the parameters, 2) a jittering effect
along steep dimensions due to the inconsistent changes in the
loss caused by the different parameters, and 3) noisy updates
due to the gradient computed from the batch of data. SGD
with moment (SGDM) [22] considers the first order moment
(i.e., velocity) as an exponential moving average (EMA) of
gradient for each parameter while training progresses [23].
The parameter is updated in SGDM based on the EMA of
gradient which resolves the problem of zero gradient.

Several SGD based optimization techniques have been pro-
posed in the recent past [24], [25], [26], [27], [28], [29],
[30], and etc. AdaGrad [24] controls the learning rate by
dividing it with the root of the sum of the squares of the past
gradients. However, it makes the learning rate very small after
certain iterations and kills the parameter update. AdaDelta [25]
resolves the diminishing learning rate issue of AdaGrad by

ar
X

iv
:2

10
9.

12
50

4v
2

 [
cs

.L
G

]
 1

8
Se

p
20

22

https://github.com/shivram1987/AdaInject

2 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Algorithm 1: Adam Optimizer
Initialize: θ0,m0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2t
Bias Correction
m̂t ← mt/(1− βt1), v̂t ← vt/(1− βt2)

Update
θt ← θt−1 − α · m̂t/(

√
v̂t + ε)

considering only a few immediate past gradients. However,
it is not able to exploit the global information. In another
attempt to resolve the problem of AdaGrad, RMSProp [26]
divides the learning rate by the root of the exponentially
decaying average of squared gradients. In 2015, Kingma and
Ba [27] proposed the adaptive moment based Adam optimizer.
Adam combines the ideas of SGDM and RMSprop and uses
first order and second order moments. Adam computes the
first order moment as the EMA of gradients and uses it
to update the parameter. Adam also computes the second
order moment as the EMA of the square of gradients and
uses it to control the learning rate. Adam performs well in
practice to train the convolutional neural networks (CNNs)
[27]. However, it suffers from overshooting and oscillations
near minimum and varying gradient variance due to batch
wise computation. diffGrad [28] resolved the issues as posed
by Adam by introducing a friction term in parameter update
using the rate of change in gradients. Radam [29] resolved the
variance issue as posed by Adam by rectifying the variance
of gradients during parameter update. AdaBelief [30] uses the
belief in gradients to compute the second order moment. The
belief in gradients is computed as the difference between the
gradient and the first order moment of the gradient. Other
recently proposed and notable gradient descent optimizers
are Proportional Integral Derivative (PID) [31], Nesterov’s
Moment Adam (NADAM) [32], Nostalgic Adam (NosAdam)
[33], YOGI [34], Adaptive Bound (AdaBound) [35], Adaptive
and Momental Bound (AdaMod) [36], Aggregated Moment
(AggMo) [37], Lamb [38], Adam Projection (AdamP) [39],
Gradient Centralization (GC) [40], AdaHessian [41], and An-
gularGrad [42].

The adaptive SGD optimization techniques have led to a
promising performance on deep CNN models. The majority
of the above mentioned adaptive gradient descent optimizers
suffer due to the overshooting of the minimum and oscillation
near minimum. However, it is evident that a robust online
stepsize adaptation in optimization plays an important role
in gradient descent optimization [43]. We resolve the above
issues by injecting the second order moment in first order for
the parameter update, which is weighted by the short-term
parameter update history to incorporate the robust adaptation
of step size. The major contribution of this work is summarized
as follows:

Algorithm 2: AdamInject (i.e., Adam + AdaInject)
Optimizer

Initialize: θ0, s0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2, k
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
If t = 1
st ← β1 · st−1 + (1− β1) · gt

Else
∆θ ← θt−2 − θt−1
st ← β1 · st−1 + (1− β1) · (gt + ∆θ · g2t)/k

vt ← β2 · vt−1 + (1− β2) · g2t
Bias Correction
ŝt ← st/(1− βt1), v̂t ← vt/(1− βt2)

Update
θt ← θt−1 − αŝt/(

√
v̂t + ε)

• We propose AdaInject for the adaptive optimizers by in-
jecting the short-term parameter change weighted second
order moment in EMA of gradient used for parameter
update.

• We provide an intuitive explanation in support of the
effectiveness of the proposed AdaInject in different opti-
mization scenarios.

• We show the effect of the proposed approach using toy
examples. The convergence analysis is also conducted
using regret bound which shows the convergence property
of the proposed approach.

• We validate the superiority of the proposed injection con-
cept with the recent state-of-the-art optimizers, including
Adam [27], diffGrad [28], Radam [29] and AdaBelief
[30] using a wide range of CNN models for image
classification over four benchmark datasets.

• The proposed concept is generic and can be easily in-
tegrated with any existing adaptive moment based SGD
optimizer.

The remaining paper is structured by presenting the pro-
posed Injection based optimizers in Section 2; Intuitive ex-
planation and empirical analysis in Section 3; Convergence
analysis in Section 4; Experimental analysis in Section 5; and
Concluding remarks in Section 6.

II. PROPOSED INJECTION BASED OPTIMIZERS

As per the conventions used in Adam [27], the aim of
gradient descent optimization is to minimize the loss function
f(θ) ∈ R where θ ∈ Rd is the parameter. The gradient (gt) at
tth step is computed as gt ← ∇θft(θt−1). Adam computes the
first order moment (mt) and second order moment (vt) as the
exponential moving average (EMA) of gt and g2t , respectively,
which can be written as,

mt = β1 ·mt−1 + (1− β1) · gt (1)

vt = β2 · vt−1 + (1− β2) · g2t (2)

ADAINJECT OPTIMIZER 3

where β1 and β2 are the smoothing hyperparameters, typically
set as β1 = 0.9 and β2 = 0.999. The g2t is computed as gt · gt
as in the Adam. A bias correction is performed as m̂t ←
mt/(1− βt1), v̂t ← vt/(1− βt2) to avoid very large step size
in the initial iterations. The parameter update rule in Adam
[27] is given as,

θt ← θt−1 − αm̂t/(
√
v̂t + ε) (3)

where α is the learning rate and ε = 1e−8 is a small number
for numerical stability to avoid division by zero. A detailed
algorithm of Adam optimizer is summarized in Algorithm 1.
The first order moment mt is used to update the parameters in
Adam wherein, the second order moment vt is used to control
the learning rate. It can be noticed that Adam mainly relies
on the gradients.

However, the SGDM considers only the momentum to
update the parameters as follows:

θt ← θt−1 − αmt. (4)

In order to utilize the parameter update history infor-
mation during optimization, we propose a novel concept
named AdaInject. Basically, we inject the short-term param-
eter change weighted second order moment into first order
moment to compute the injected moment using the EMA of
(gt + ∆θ · g2t)/k as,

st = β1 · st−1 + (1− β1) · (gt + ∆θ · g2t)/k (5)

where ∆θ = θt−2−θt−1 is the short-term change in parameter
θ to utilize the parameter history information and k is an
injection controlling hyperparameter, typically set to 2 in
the experiment. The injection of parameter history guided
second order moment helps the optimizers to perform the
smaller updates near minimum (i.e., “steep and narrow” valley)
to avoid the overshooting and oscillation, while reasonably
large updates are used in the small curvature regions. This
phenomenon is depicted in Fig. 1 with a detailed analysis in
the next section. We perform the bias correction of injected
moment and second order moment as ŝt ← st/(1 − βt1) and
v̂t ← vt/(1− βt2), respectively.

The parameter (θ) update of AdamInject optimizer is given
as,

θt ← θt−1 − α · ŝt/(
√
v̂t + ε) (6)

where α is the learning rate and ε = 1e−8 is a small number
for numerical stability to avoid the division by zero. We refer
to Adam optimizer with the proposed second order moment
injection as AdamInject optimizer. A detailed algorithm of
AdamInject optimizer is presented in Algorithm 2 with high-
lighted changes in blue color as compared to vanilla Adam
optimizer which is shown in Algorithm 1.

Basically, we use the proposed AdaInject concept with
four existing state-of-the-art optimizers, including Adam [27],
diffGrad [28], Radam [29] and AdaBelief [30], and propose
the corresponding AdamInject (i.e., Adam + AdaInject), dif-
fGradInject (i.e., diffGrad + AdaInject), RadamInject (i.e.,
Radam and AdaInject) and AdaBeliefInject (i.e., AdaBelief
+ AdaInject) optimizers, respectively. The algorithms for dif-
ferent optimizers (i.e., without and with AdaInject), such as

Fig. 1. A typical scenario in the optimization depicting the importance of
adaptive parameter update in optimization [43], [30].

diffGrad, diffGradInject, Radam, RadamInject, AdaBelief, and
AdaBeliefInject, are provided in Supplementary. Though we
test the proposed injection concept with four optimizers, it can
be extended to any EMA based gradient descent optimization
technique. In the next section, we analyze the property of the
proposed approach.

III. INTUITIVE EXPLANATION AND EMPIRICAL ANALYSIS

In this section, we present an intuitive explanation using a
one dimensional optimization landscape having three scenarios
and an empirical analysis using three toy examples.

A. Intuitive Explanation

The existing gradient descent optimizers such as Adam,
diffGrad, Radam, etc. only consider the EMA of gradient for
parameter update. However, the consideration of parameter
history is important as the gradient behavior and required
stepsize are different for different regions of loss optimization
landscape [43], [30]. We explain the advantange of the pro-
posed optimizer by considering three typical scenarios using a
one dimensional optimization curvature (i.e., S1, S2 and S3)
as depicted in Fig. 1. The bias correction step is ignored in
the explanation for simplicity.

S1: This scenario depicts a flat region on the optimization
landscape. An ideal optimizer is expected to perform large
parameter updates in this scenario. The |gt| and |∆θ| in flat
region are small. Thus, the EMA of gradient (i.e., mt) as well
as the EMA of proposed injected gradient (i.e., st) are small.
It leads to a small stepsize in SGD. However, the step size
is sufficiently large in both Adam and AdaInject due to the
small value of

√
vt in the denominator.

S2: The “large gradient, small curvature” is another scenario
in optimization landscape. The gradient |gt| is higher in such
regions. An ideal optimizer is expected to take the large
parameter updates in such regions. The EMA of gradient (i.e.,
mt) as well as squared gradient (i.e., vt) are large. Moreover,

4 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Fig. 2. The empirical results computed over three synthetic, non-convex functions as toy examples. Each row corresponds to a function. The 1st column
shows the used functions. The 2nd and 3rd columns show the parameter value updates for 300 iterations using Adam and diffGrad optimizers, respectively,
with and without the proposed second order injection. The regression loss based objective function is used to update the parameters. The initialization is done
at x = −1.

the EMA of the proposed injected gradient (i.e., st) is also
sufficiently large as |∆θ| is small. Hence, the SGD takes large
step in this scenario. However, both the Adam and AdaInject
take relatively smaller step due to large value of

√
vt in the

denominator. But, we show experimently that this problem
can be reduced by considering AdaBelief concept [30] with
the proposed injection idea (i.e., AdaBeliefInject).

S3: The third scenario is parameter updates near “steep and
narrow” valley (i.e., minimum). It is expected for an ideal
optimizer to decrease the step size for parameter updates in
this scenario to avoid the overshooting as well as to reduce the
oscillation near the valley. The proposed AdaInject optimizer
is very beneficial in this scenario too. The gradient |gt| is
large in this scenario, hence mt and

√
vt are also large.

The SGD suffers due to large value of mt. This problem
is reduced to a certain extent in Adam due to large value
of
√
vt in the denominator. In this scenario, |∆θ| is large,

∆θ < 0 when gt > 0 and ∆θ > 0 when gt < 0, leading
to |st|< |mt| (Note that t is expected not to be the initial
iterations near minimum, rather sufficiently large). Hence, the
proposed AdaInject method reduces st while enjoying the
benefits of Adam (i.e., large

√
vt in denominator) leading

to a reduced step size, which avoids the overshooting and
oscillation near minimum to a greater extent. In order to show
this effect using toy examples, we conduct an empirical study
with the help of synthetic, non-convex functions in the next
subsection.

B. Empirical Analysis using Toy Examples

We perform the empirical analysis using three synthetic,
one-dimensional, non-convex functions by following the pro-
tocol of diffGrad [28]. These functions are given as:

F1(x) =

{
(x+ 0.3)2, for x ≤ 0

(x− 0.2)2 + 0.05, for x > 0
(7)

F2(x) =

{
−40x− 35.15, for x ≤ −0.9

x3 + x sin(8x) + 0.85, for x > −0.9
(8)

F3(x) =



x2, for x ≤ −0.5

0.75 + x, for − 0.5 < x ≤ −0.4

−7x/8, for − 0.4 < x ≤ 0

7x/8, for 0 < x ≤ 0.4

0.75− x, for 0.4 < x ≤ 0.5

x2, for 0.5 < x

(9)

where −∞ < x < +∞ is the input. Functions F1, F2,
and F3 are illustrated in Fig. 2 in the 1st column and in the
1st, 2nd, and 3rd rows, respectively, for −1 < x < +1. The
parameter x is initialized at −1. The experiment is performed
by computing the regression loss as the objective function.
The 2nd column shows the parameter values at different
iterations using Adam and AdamInject optimizers. Similarly,
the 3rd column illustrates the parameter values at different
iterations using diffGrad and diffGradInject optimizers. It can

ADAINJECT OPTIMIZER 5

Fig. 3. The optimization illustration for Rastrigin (upper row) and Rosen-
brock (lower row) functions using Adam (left column) and AdamInject (right
column).

be noticed that Adam overshoots the minimum for both F1
and F2 functions, whereas AdamInject is able to avoid the
overshooting due to the small step size caused by the proposed
parameter change weighted second order moment injection
in parameter update. In other cases, including Adam and
AdamInject for F3 function and diffGrad and diffGradInject
for all three functions, the effect of the proposed optimizer
can be easily observed in terms of the smooth parameter
updates and less oscillations near minimum by accumulating
the injected momentum in an accurate direction. It is noticed
that AdaInject is more effective with Adam than diffGrad as
diffGrad utilizes the short-term gradient change as friction
coefficient. These results confirm that the proposed parameter
change guided second moment injection leads to accurate and
precise parameter updates, especially near “steep and narrow”
valley.

In order to demonstrate the effect of the proposed optimizer
on 2-dimensional optimization, we consider non-convex Ras-
trigin and Rosenbrock functions1, which are widely used to
show the optimization characteristics. The Rastrigin function
has one global minimum at (0.0, 0.0). However, the Rosen-
brock has one global minimum at (1.0. 1.0). The optimization
trajectories using Adam and AdamInject optimizers under the
same experimental setup are depicted in Fig. 3. It can be
noticed that Adam is not able to converge over the Rastrigin
function due to the presence of several local minima. Whereas,
the AdamInject is able to converge over the Rastrigin function
due to the improved parameter updates caused by the second
order moment injection. It is also observed that the Adam
optimizer takes more steps to reach the minimum over the
Rosenbrock function due to irregular parameter updates caused

1https://github.com/jettify/pytorch-optimizer

by long, narrow, parabolic shaped flat valley. However, the
AdamInject optimizer is able to tackle this issue and reaches
the minimum in less number of steps over the Rosenbrock
function.

IV. CONVERGENCE ANALYSIS

We use the online learning framework to show the conver-
gence property of the proposed injection based AdamInject
optimizer, similar to Adam [27]. Let’s represent the unknown
sequence of convex cost functions as f1(θ), f2(θ),..., fT (θ).
We want to estimate parameter θt at each iteration t and
assess over ft(θ). The regret bound is commonly used in such
scenarios to assess the algorithm where the information of the
sequence is not known in advance. The sum of the difference
between all the previous online guesses ft(θt) and the best
fixed point parameter ft(θ∗) from a feasible set χ of all the
previous iterations are used to compute the regret bound. The
regret bound is given as,

R(T) =

T∑
t=1

[ft(θt)− ft(θ∗)] (10)

where θ∗ = arg minθ∈χ
∑T
t=1 ft(θ). The regret bound for the

proposed injection based AdamInject is noticed as O(
√
T)

which is the same as Adam and is comparable to general
convex online learning approaches. We provide the proof in
the Supplementary. We consider gt,i as the gradient for the ith

element in the tth iteration, g1:t,i = [g1,i, g2,i, ..., gt,i] ∈ Rt is
the gradient vector in the ith dimension up to tth iterations,
and γ , β2

1√
β2

.

Theorem 1. Assume that the gradients for function ft (i.e.,
||gt,θ||2≤ G and ||gt,θ||∞≤ G∞) are bounded for all θ ∈ Rd.
Let also consider that the bounded distance is generated by
the proposed optimizer between any θt (i.e., ||θn − θm||2≤
D and ||θn − θm||∞≤ D∞ for any m,n ∈ {1, ..., T}). Let
γ , β2

1√
β2

, β1, β2 ∈ [0, 1) satisfy β2
1√
β2

< 1, αt = α√
t
, and

β1,t = β1λ
t−1, λ ∈ (0, 1) with λ is around 1, e.g 1 − 10−8.

For all T ≥ 1, the proposed injection based AdamInject shows
the following guarantee as derived in the Supplemetary:

R(T) ≤ D2

α(1− β1)

d∑
i=1

√
T v̂T,i

+
2α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

D2
∞G∞

√
1− β2

α(1− β1)(1− λ)2
+ 4D∞G

2
∞

d∑
i=1

||g1:T,i||22

(11)

The aggregation terms over the dimension (d) can be very
small as compared to the corresponding upper bounds, such as∑d
i=1 ||g1:T,i||2 << dG∞

√
T ,
∑d
i=1 ||g1:T,i||22 << dG∞

√
T

and
∑d
i=1

√
T v̂T,i << dG∞

√
T . The adaptive methods such

as the proposed optimizers and Adam show the upper bound
as O(log d

√
T), which is better than O(

√
dT) of non-adaptive

optimizers. By following the convergence analysis of Adam
[27], we also use the decay of β1,t.

6 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

TABLE I
THE EXPERIMENTAL RESULTS OF DIFFERENT CNNS IN TERMS OF TOP-1 CLASSIFICATION ERROR (%) OVER THE CIFAR10 DATASET USING DIFFERENT

OPTIMIZERS, WITHOUT AND WITH THE PROPOSED ADAINJECT. THE RESULTS WITH THE PROPOSED APPROACH ARE HIGHLIGHTED IN BOLD. THE
IMPROVEMENT IN THE ERROR DUE TO THE PROPOSED INJECTION CONCEPT IS ALSO MENTIONED. THE HIGHEST INCREASE FOR AN OPTIMIZER IS ALSO
HIGHLIGHTED IN BOLD. THE SYMBOLS ↑ AND ↓ REPRESENT THE IMPROVEMENT AND DEGRADATION IN %, RESPECTIVELY, IN THE TOP-1 ERROR. WE

FOLLOW THE SAME CONVENTION IN THE RESULTS REPORTED IN TABLE II AND III ALSO. THESE RESULTS ARE COMPUTED AS THE AVERAGE OVER
THREE INDEPENDENT TRIALS.

CNN Classification error (%) using different optimizers without and with AdaInject
Models Adam diffGrad Radam AdaBelief

Adam AdamInject diffGrad diffGradInject Radam RadamInject AdaBelief AdaBeliefInject
VGG16 7.45 7.20 (↑ 3.36) 7.24 7.04 (↑ 2.76) 7.06 6.88 (↑ 2.55) 7.29 7.07 (↑ 3.02)
ResNet18 6.46 6.20 (↑ 4.02) 6.51 6.10 (↑ 6.30) 6.18 5.87 (↑ 5.02) 6.37 6.30 (↑ 1.10)
SENet18 6.61 6.29 (↑ 4.84) 6.44 6.21 (↑ 3.57) 6.05 5.83 (↑ 3.64) 6.59 6.23 (↑ 5.46)
ResNet50 6.17 5.89 (↑ 4.54) 6.19 5.73 (↑ 7.43) 5.86 5.29 (↑ 9.73) 5.90 5.78 (↑ 2.03)
ResNet101 6.90 6.01 (↑ 12.90) 6.45 5.69 (↑ 11.78) 6.29 5.76 (↑ 8.43) 6.37 6.03 (↑ 5.34)
ResNeXt29 6.79 6.16 (↑ 9.28) 6.83 5.70 (↑ 16.54) 6.00 5.67 (↑ 5.50) 6.43 5.99 (↑ 6.84)
DenseNet121 6.30 5.63 (↑ 10.63) 5.90 5.43 (↑ 7.97) 5.25 5.10 (↑ 2.86) 6.05 5.64 (↑ 6.78)

We show the convergence of average regret of AdamInject
in below corollary with the help of the above theorem and∑d
i=1 ||g1:T,i||2 << dG∞

√
T ,
∑d
i=1 ||g1:T,i||22 << dG∞

√
T

and
∑d
i=1

√
T v̂T,i << dG∞

√
T .

Corollary 1. Assume that the gradients for function ft (i.e.,
||gt,θ||2≤ G and ||gt,θ||∞≤ G∞) are bounded for all θ ∈ Rd.
Let also consider that the bounded distance is generated by
the proposed optimizer between any θt (i.e., ||θn − θm||2≤ D
and ||θn − θm||∞≤ D∞ for any m,n ∈ {1, ..., T}). For all
T ≥ 1, the proposed injection based AdamInject optimizer
shows the following guarantee:

R(T)

T
= O(

1√
T

). (12)

Thus, limT→∞
R(T)
T = 0.

V. EXPERIMENTAL ANALYSIS

In this section, first we describe the experimental setup.
Then, we present the detailed results using different optimiz-
ers. Finally, we analyze effects of the hyperparameters.

A. Experimental Setup

We use a wide range of CNN models (i.e., VGG16
[44], ResNet18, ResNet50, ResNet101 [2], SENet18 [45],
ResNeXt29 [3] and DenseNet121 [4]) to test the suitability
of the proposed AdaInject concept for optimizers. We follow
the publicly available Pytorch implementation2 of these CNN
models. For ResNeXt29 model, we set the cardinality as 4 and
bottleneck width as 64. We train all the CNN models using
all the optimizers under the same experimental setup. The
training is performed for 100 epochs with a batch size of 64 for
CIFAR10/100 and FashionMNIST and 256 for TinyImageNet
dataset. The learning rate is set to 0.001 for the first 80 epochs
and 0.0001 for the last 20 epochs. Different computers are
used for the experiments, including Google colaboratory3. We
performed a random crop and random horizontal flip over

2https://github.com/kuangliu/pytorch-cifar
3https://colab.research.google.com/

training data. The normalization is performed for both training
and test data.

In order to demonstrate the efficacy of the proposed AdaIn-
ject based optimizers experimentally, we use four bench-
mark object recognition dataset, including CIFAR10 [46],
CIFAR100 [46], FashionMNIST [47], and TinyImageNet4

[48]. We use CIFAR and FashionMNIST datasets directly
from the PyTorch library. CIFAR10 dataset consists of a total
60, 000 images of dimension 32×32×3 from 10 object classes
with 6, 000 images per class. The training set contains 50, 000
images with 5, 000 images per class and the test set contains
10, 000 images with 1, 000 images per class in CIFAR10.
CIFAR100 dataset contains all the images of CIFAR10, but is
categorized into 100 classes. Thus, CIFAR100 dataset contains
50, 000 training images and 10, 000 test images with 500
and 100 images per class, respectively. FashionMNIST dataset
contains 70, 000 labeled fashion images of dimension 28× 28
from 10 categories. The training and test sets consist of 60, 000
and 10, 000 images, respectively. TinyImageNet dataset [48]
is a subset of the large-scale visual recognition ImageNet
challenge [49]. This dataset consists of the images from 200
object classes with 1, 00, 000 images in the training set (i.e.,
500 images in each class) and 10, 000 images in the validation
set (i.e., 50 images in each class).

B. Experimental Results

We compare the performance using four recent state-of-
the-art adaptive gradient descent optimizers (i.e., Adam [27],
diffGrad [28], Radam [29] and AdaBelief [30]), without and
with the proposed injection approach. We consider VGG16
[44], ResNet18, ResNet50, ResNet101 [2], SENet18 [45],
ResNeXt29 [3] and DenseNet121 [4] CNN models. The
experimental results over the CIFAR10 dataset are depicted
in Table I in terms of the error rate. It is observed that the
performance of all CNN models is improved with AdaInject
based optimizers as compared to its performance with corre-
sponding vanilla optimizers. The RadamInject optimizer leads
to best performance using the DenseNet121 model with a
5.10% error rate in classification. The highest improvement
is reported by the ResNeXt29 model using diffGradInject.

4http://cs231n.stanford.edu/tiny-imagenet-200.zip

ADAINJECT OPTIMIZER 7

TABLE II
THE EXPERIMENTAL RESULTS OF DIFFERENT CNNS IN TERMS OF TOP-1 CLASSIFICATION ERROR (%) OVER THE CIFAR100 DATASET USING DIFFERENT
OPTIMIZERS, WITHOUT AND WITH THE PROPOSED ADAINJECT. THESE RESULTS ARE COMPUTED AS THE AVERAGE OVER THREE INDEPENDENT TRIALS.

CNN Classification error (%) using different optimizers without and with AdaInject
Models Adam AdamInject diffGrad diffGradInject Radam RadamInject AdaBelief AdaBeliefInject
VGG16 32.71 31.81 (↑ 2.75) 31.81 30.80 (↑ 3.18) 29.31 30.07 (↓ 2.59) 31.08 30.04 (↑ 3.35)
ResNet18 28.91 27.28 (↑ 5.64) 26.50 26.23 (↑ 1.02) 26.78 25.84 (↑ 3.51) 27.28 26.31 (↑ 3.56)
SENet18 29.15 28.74 (↑ 1.41) 28.60 27.64 (↑ 3.36) 27.66 26.63 (↑ 3.72) 26.90 26.52 (↑ 1.41)
ResNet50 28.12 25.44 (↑ 9.53) 24.94 24.18 (↑ 3.05) 25.05 24.13 (↑ 3.67) 24.47 24.25 (↑ 0.90)
ResNet101 25.78 23.98 (↑ 6.98) 26.58 24.17 (↑ 9.07) 25.74 23.83 (↑ 7.42) 24.12 24.24 (↓ 0.50)
ResNeXt29 28.78 24.96 (↑ 13.27) 25.47 24.53 (↑ 3.69) 24.66 22.74 (↑ 7.79) 24.61 23.63 (↑ 3.98)
DenseNet121 26.40 24.33 (↑ 7.84) 24.14 23.66 (↑ 1.99) 25.17 23.06 (↑ 8.38) 24.68 24.06 (↑ 2.51)

TABLE III
THE EXPERIMENTAL RESULTS OF DIFFERENT CNNS IN TERMS OF TOP-1 CLASSIFICATION ERROR (%) OVER THE FASHIONMNIST DATASET USING

DIFFERENT OPTIMIZERS, WITHOUT AND WITH THE PROPOSED ADAINJECT. THESE RESULTS ARE COMPUTED AS THE AVERAGE OVER THREE
INDEPENDENT TRIALS.

CNN Classification error (%) using different optimizers without and with AdaInject
Models Adam AdamInject diffGrad diffGradInject Radam RadamInject AdaBelief AdaBeliefInject
VGG16 5.15 5.01 (↑ 2.72) 5.13 5.03 (↑ 1.95) 5.11 5.07 (↑ 0.78) 5.12 4.97 (↑ 2.93)
ResNet18 4.76 4.74 (↑ 0.42) 4.82 4.65 (↑ 3.53) 4.78 4.67 (↑ 2.30) 4.95 4.75 (↑ 4.04)
SENet18 5.14 4.95 (↑ 3.70) 5.11 4.79 (↑ 6.26) 5.08 4.79 (↑ 5.71) 5.06 4.91 (↑ 2.96)
ResNet50 5.10 4.76 (↑ 6.67) 4.93 4.77 (↑ 3.25) 4.98 4.84 (↑ 2.81) 5.10 4.78 (↑ 6.27)
ResNet101 4.94 4.65 (↑ 5.87) 5.05 4.73 (↑ 6.34) 4.91 4.64 (↑ 5.50) 5.21 4.69 (↑ 9.98)
ResNeXt29 6.16 5.59 (↑ 9.25) 5.92 5.16 (↑ 12.84) 5.78 5.37 (↑ 7.09) 5.25 4.90 (↑ 6.67)
DenseNet121 4.88 4.69 (↑ 3.89) 4.77 4.70 (↑ 1.47) 4.89 4.68 (↑ 4.29) 4.68 4.56 (↑ 2.56)

TABLE IV
THE EXPERIMENTAL RESULTS OF VGG16, RESNET18, AND SENET MODELS IN TERMS OF TOP-1 CLASSIFICATION ACCURACY (%) OVER THE

TINYIMAGENET DATASET USING DIFFERENT OPTIMIZERS. THESE RESULTS ARE COMPUTED AS THE AVERAGE OVER THREE INDEPENDENT TRIALS.

CNN Accuracy (%) using different optimizers without and with AdaInject
Models Adam AdamInject diffGrad diffGradInject Radam RadamInject AdaBelief AdaBeliefInject
VGG16 44.05 44.58 (↑ 1.20) 46.00 47.18 (↑ 2.57) 45.92 46.38 (↑ 1.00) 47.88 48.25 (↑ 0.77)
ResNet18 50.58 51.90 (↑ 2.61) 52.04 52.37 (↑ 0.63) 52.12 52.50 (↑ 0.73) 52.05 52.74 (↑ 1.33)
SENet18 48.04 49.52 (↑ 3.08) 49.51 50.28 (↑ 1.56) 50.73 51.01 (↑ 0.55) 51.76 51.94 (↑ 0.35)

Moreover, the performance of the ResNeXt29 model is also
significantly improved using AdaBeliefInject. In general, we
observe better performance gain by heavy CNN models.

The results over the CIFAR100 dataset are illustrated in
Table II. The best performance of 77.26% accuracy is achieved
by the RadamInject optimizer using the ResNeXt29 model.
The performance of ResNeXt29 is improved significantly
using the proposed injection for optimizers with highest im-
provement by AdamInject. The results due to the proposed
injection based optimizers are improved using all the CNN
models except RadamInject using VGG16 and AdaBeliefInject
using ResNet101. Note that Radam does not use second
order moment if rectification criteria is not met and Ad-
aBelief reduces the second order moment. These could be
the possible reasons that the performance of RadamInject and
AdaBeliefInject is marginally down in some cases. A very
similar trend is also noticed over FashionMNIST (FMNIST)
dataset in Table III, where the performance using the proposed
approach is improved in all the cases. The best accuracy
of 95.44% is observed for the AdaBeliefInject optimizer
using the DenseNet121 model. An outstanding improvement
in top-1 error is perceived for the ResNeXt29 model over the
FashionMNIST dataset using the optimizers with the proposed
AdaInject concept. The performance of other models is also
significantly improved due to the proposed injection approach.

TABLE V
ACCURACY (%) USING ADAMINJECT OPTIMIZER WITH DIFFERENT

VALUES OF k. RESULTS ARE COMPUTED AS THE AVERAGE OVER THREE
INDEPENDENT TRIALS. NOTE THAT BEST AND SECOND BEST RESULTS

ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY.

Model Dataset k=1 k=2 k=3 k=4 k=5 k=10 k=20 k=50

VGG16

CIFAR10 92.68 92.80 92.78 92.50 92.61 91.85 90.75 87.76
CIFAR100 67.04 68.19 67.53 68.29 68.48 68.25 66.97 61.08
MNIST 94.94 94.99 94.91 94.91 94.93 94.8 94.47 94.15
TinyImageNet 42.46 44.58 43.14 42.71 44.21 44.04 44.05 40.55

ResNet18

CIFAR10 93.71 93.80 93.88 93.75 93.76 93.41 92.24 89.36
CIFAR100 71.97 72.72 73.30 73.26 73.59 72.76 69.99 64.43
MNIST 95.15 95.26 95.19 95.33 95.18 95.16 94.84 94.52
TinyImageNet 49.09 51.90 48.47 50.43 51.17 50.11 49.37 43.64

We also perform the experiment over the TinyImageNet
dataset using VGG16, ResNet18 and SENet18 models and
show the results in terms of the classification accuracy in
% in Table IV for different optimizers with and without the
proposed injection concept. It is observed from this experiment
that the proposed approach is able to improve the performance
of the existing optimizers over large scale dataset as well.
These results confirm that the proposed injection updates
the parameter in an optimal way by utilizing the short-term
parameter update information with second order moment.

8 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

TABLE VI
ACCURACY (%) USING ADAMINJECT OPTIMIZER WITH DIFFERENT BATCH
SIZE (BS) AND LEARNING RATE (LR). RESULTS ARE COMPUTED AS THE

AVERAGE OVER THREE INDEPENDENT TRIALS. NOTE THAT BEST RESULTS
ARE HIGHLIGHTED IN BOLD.

Model Dataset Batch Size (BS) Learning Rate (LR)
32 64 128 0.0001 0.001 0.01

VGG16

CIFAR10 92.46 92.80 92.45 91.16 92.80 92.45
CIFAR100 67.00 68.19 68.03 66.92 68.19 66.97
MNIST 94.90 94.99 94.96 94.75 94.99 94.85
TinyImageNet 41.67 44.58 42.69 45.18 44.58 39.33

ResNet18

CIFAR10 93.94 94.13 93.71 92.36 94.13 93.65
CIFAR100 73.05 74.16 72.76 70.79 74.16 67.31
MNIST 95.27 95.33 95.25 95.13 95.33 95.26
TinyImageNet 49.63 51.90 50.18 49.30 51.90 45.96

C. Effect of Injection Hyperparameter (k)

In the previous results, we use the value of the injection
hyperparameter (k) as 2. We show a performance comparison
by considering the value of k as 1, 2, 3, 4, 5, 10, 20, and 50
in Table V. The results are presented using the AdamInject
optimizer for VGG16 and ResNet18 models over the CI-
FAR10, CIFAR100, FMNIST, and TinyImageNet datasets. It
is noticed that k = 2 is better suitable for the VGG16 model
on CIFAR10, MNIST and TinyImageNet datasets. Moreover,
the accuracy using k = 2 is also either best or second best for
the ResNet18 model on CIFAR10, MNIST and TinyImageNet
datasets. It is also evident that the results on fine-grained
CIFAR100 dataset are best using k = 5 for both VGG16
and ResNet18 models. It is suggested to consider the value
of k ∈ {2, 3, 4, 5}. The original selection of the value of k as
2 is also justified from this analysis.

D. Effect of Batch Size and Learning Rate

In the previous experiments, the batch size (BS) and learn-
ing rate (LR) was set to 64 and 0.001, respectively. In this ex-
periment, we analyze the impact of batch size and learning rate
as detailed in Table VI. The results are reported for VGG16
and ResNet18 models on CIFAR10, CIFAR100, MNIST and
TinyImageNet datasets. The batch size is considered as 32,
64 and 128, respectively. It is evident from the results that
the batch size as 64 is better suitable with the proposed
AdamInject optimizer in all the cases. The learning rate is
considered as 0.0001, 0.001 and 0.01, respectively. Note that
the learning rate is divided by 10 once in all the cases after
80 epochs of training for a fair comparison. It is noticed that
the proposed optimizer performs best for 0.001 learning rate
in almost all the cases. This analysis confirms the suitability
of original batch size (i.e., 64) and learning rate (i.e., 0.001)
choices used for the experiments.

VI. CONCLUSION

In this paper, we present a novel and generic injection based
EMA of gradients for parameter update by utilizing the param-
eter change information along with the second order moment.
The proposed injection approach leads to an accurate and
precise update by performing smaller updates near minimum
to avoid the overshooting as well as oscillation and reasonably
higher updates in the small curvature regions. The effect of

the proposed injection based optimizers is observed using toy
examples. The convergence property of the proposed optimizer
is also analyzed. The object recognition results for different
CNN models over benchmark datasets using four optimizers
show the superiority of the proposed injection concept. It
is noticed that the injection hyperparameter as 2 yeilds to
better results in majority of the cases using the AdamInject
optimizer. It is also noted that the batch size as 64 and
learning rate as 0.001 are better suitable with the proposed
AdamInject optimizer. The intuitive explanation, empirical,
convergence, and experimental analyses are evident that the
proposed injection based optimizers lead to better optimization
of CNNs by avoiding the overshooting of the minimum and
reducing the oscillation near minimum to a greater extent.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[3] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[5] J. Kantipudi, S. R. Dubey, and S. Chakraborty, “Color channel pertur-
bation attacks for fooling convolutional neural networks and a defense
against such attacks,” IEEE Transactions on Artificial Intelligence,
vol. 1, no. 2, pp. 181–191, 2020.

[6] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440–1448.

[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Proceedings of the
Advances in neural information processing systems, 2015, pp. 91–99.

[8] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 815–
823.

[9] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014,
pp. 1701–1708.

[10] Z. Pan, F. Yuan, X. Wang, L. Xu, S. Xiao, and S. Kwong, “No-reference
image quality assessment via multi-branch convolutional neural net-
works,” IEEE Transactions on Artificial Intelligence, 2022.

[11] Y. Zou and L. Cheng, “A transfer learning model for gesture recognition
based on the deep features extracted by cnn,” IEEE Transactions on
Artificial Intelligence, vol. 2, no. 5, pp. 447–458, 2021.

[12] C. De Vente, L. Boulogne, K. V. Venkadesh, C. Sital, N. Lessmann,
C. Jacobs, C. I. S. Gutierrez, and B. Van Ginneken, “Automated covid-
19 grading with convolutional neural networks in computed tomography
scans: A systematic comparison,” IEEE Transactions on Artificial Intel-
ligence, vol. 1, no. 01, pp. 1–1, 2021.

[13] K. Zeng, J. Yu, R. Wang, C. Li, and D. Tao, “Coupled deep autoencoder
for single image super-resolution,” IEEE transactions on cybernetics,
vol. 47, no. 1, pp. 27–37, 2015.

[14] Z. Chen, K. Yin, M. Fisher, S. Chaudhuri, and H. Zhang, “Bae-net:
Branched autoencoder for shape co-segmentation,” in Proceedings of
the IEEE International Conference on Computer Vision, 2019, pp. 8490–
8499.

[15] G. Dewangan and S. Maurya, “Fault diagnosis of machines using
deep convolutional beta-variational autoencoder,” IEEE Transactions on
Artificial Intelligence, 2021.

[16] X. Dong and J. Shen, “Triplet loss in siamese network for object
tracking,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 459–474.

[17] H. Fan and H. Ling, “Siamese cascaded region proposal networks for
real-time visual tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 7952–7961.

ADAINJECT OPTIMIZER 9

[18] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[19] K. K. Babu and S. R. Dubey, “Pcsgan: Perceptual cyclic-synthesized
generative adversarial networks for thermal and nir to visible image
transformation,” Neurocomputing, vol. 413, pp. 41–50, 2020.

[20] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of the COMPSTAT, 2010, pp. 177–186.

[21] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[22] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[23] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proceedings of the
International Conference on Machine Learning, 2013, pp. 1139–1147.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[25] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[26] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning,” Lecture 6a overview of mini-batch gradient descent course,
2012.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations, 2015.

[28] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, S. K. Singh, and
B. B. Chaudhuri, “Diffgrad: an optimization method for convolutional
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, 2019.

[29] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the
variance of the adaptive learning rate and beyond,” in Proceedings of
the International Conference on Learning Representations, 2019.

[30] J. Zhuang, T. Tang, S. Tatikonda, N. Dvornek, Y. Ding, X. Papademetris,
and J. S. Duncan, “Adabelief optimizer: Adapting stepsizes by the belief
in observed gradients,” in Proceedings of the Conference on Neural
Information Processing Systems, 2020.

[31] W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, and L. Zhang, “A pid controller
approach for stochastic optimization of deep networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 8522–8531.

[32] T. Dozat, “Incorporating nesterov momentum into adam,” in Proceedings
of the International Conference on Learning Representations Workshops,
2016.

[33] H. Huang, C. Wang, and B. Dong, “Nostalgic adam: weighting more
of the past gradients when designing the adaptive learning rate,” in
Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 2019, pp. 2556–2562.

[34] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adaptive
methods for nonconvex optimization,” in Advances in neural information
processing systems, 2018, pp. 9793–9803.

[35] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” in International Conference on
Learning Representations, 2018.

[36] J. Ding, X. Ren, R. Luo, and X. Sun, “An adaptive and momental bound
method for stochastic learning,” arXiv preprint arXiv:1910.12249, 2019.

[37] J. Lucas, S. Sun, R. Zemel, and R. Grosse, “Aggregated momentum:
Stability through passive damping,” in Proceedings of the International
Conference on Learning Representations, 2019.

[38] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimization
for deep learning: Training bert in 76 minutes,” in Proceedings of the
International Conference on Learning Representations, 2019.

[39] B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, Y. Uh, and J.-W. Ha, “Slow-
ing down the weight norm increase in momentum-based optimizers,”
arXiv preprint arXiv:2006.08217, 2020.

[40] H. Yong, J. Huang, X. Hua, and L. Zhang, “Gradient centralization: A
new optimization technique for deep neural networks,” in Proceedings
of the European Conference on Computer Vision, 2020.

[41] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney,
“Adahessian: An adaptive second order optimizer for machine learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 12, 2021, pp. 10 665–10 673.

[42] S. Roy, M. Paoletti, J. Haut, S. Dubey, P. Kar, A. Plaza, and
B. Chaudhuri, “Angulargrad: A new optimization technique for an-
gular convergence of convolutional neural networks,” arXiv preprint
arXiv:2105.10190, 2021.

[43] M. Toussaint, “Lecture notes: Some notes on gradient descent,”
2012. [Online]. Available: https://ipvs.informatik.uni-stuttgart.de/mlr/
marc/notes/gradientDescent.pdf

[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[45] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[46] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, University of Tront, 2009.

[47] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[48] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231N, vol. 7, p. 7, 2015.

[49] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

Shiv Ram Dubey is with the Indian Institute of
Information Technology (IIIT), Allahabad since July
2021, where he is currently the Assistant Profes-
sor of Information Technology. He was with IIIT
Sri City as Assistant Professor from Dec 2016 to
July 2021 and Research Scientist from June 2016
to Dec 2016. He received the PhD degree from
IIIT Allahabad in 2016. Before that, from 2012 to
2013, he was a Project Officer at Indian Institute
of Technology (IIT), Madras. He was a recipient of
several awards including Best PhD Award in PhD

Symposium at IEEE-CICT2017, Early Career Research Award from SERB,
Govt. of India and NVIDIA GPU Grant Award Twice from NVIDIA. His
research interest includes Computer Vision and Deep Learning.

S.H. Shabbeer Basha is associated with PathPartner
Technology Pvt. Ltd., Bangalore, as a lead computer
vision engineer. At PathPartner, he is involved in
R&D activitis on neural network compression and
deep learning. He received the PhD degree from IIIT
Sri City. His research interests include Computer
Vision, Deep Learning, Deep Model Compression,
Unsupervised Domain Adaptation, Transfer Learn-
ing, and Multi-Task Learning.

Satish Kumar Singh is with the Indian Institute of
Information Technology Allahabad, as an Associate
Professor from 2013 and heading the Computer Vi-
sion and Biometrics Lab (CVBL). Earlier, he served
at Jaypee University of Engineering and Technology
Guna, India from 2005 to 2012. His areas of interest
include Image Processing, Computer Vision, Bio-
metrics, Deep Learning, and Pattern Recognition. Dr.
Singh is proactively offering his volunteer services
to IEEE for the last many years in various capacities.
He is the senior member of IEEE. Presently Dr.

Singh is Section Chair IEEE Uttar Pradesh Section (2021-2022) and a member
of IEEE India Council (2021). He also served as the Vice-Chair, Operations,
Outreach and Strategic Planning of IEEE India Council (2020) & Vice-Chair
IEEE Uttar Pradesh Section (2019 & 2020). Prior to that Dr. Singh was
Secretary, IEEE UP Section (2017 & 2018), Treasurer, IEEE UP Section
(2016 & 2017), Joint Secretary, IEEE UP Section (2015), Convener Web
and Newsletters Committee (2014 & 2015). Dr. Singh is also the technical
committee affiliate of IEEE SPS IVMSP and MMSP and presently the Chair
of IEEE Signal Processing Society Chapter of Uttar Pradesh Section.

https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gradientDescent.pdf
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gradientDescent.pdf

10 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Bidyut Baran Chaudhuri received the PhD degree
from IIT Kanpur, in 1980. He was a Leverhulme
Postdoctoral Fellow with Queen’s University, U.K.,
from 1981 to 1982. He joined the Indian Statistical
Institute, in 1978, where he worked as an INAE
Distinguished Professor and a J C Bose Fellow at
Computer Vision and Pattern Recognition Unit. He
is now affiliated to Techno India University, Kolkata
as Pro-Vice Chancellor (Academic). His research
interests include Pattern Recognition, Image Pro-
cessing, Computer Vision, and Deep learning, etc.

He pioneered the first workable OCR system for printed Indian scripts
Bangla, Assamese and Devnagari. He also developed computerized Bharati
Braille system with speech synthesizer and has done statistical analysis of
Indian language. Prof. Chaudhuri received Leverhulme fellowship award, Sir
J. C. Bose Memorial Award, M. N. Saha Memorial Award, Homi Bhabha
Fellowship, Dr. Vikram Sarabhai Research Award, C. Achuta Menon Award,
Homi Bhabha Award: Applied Sciences, Ram Lal Wadhwa Gold Medal,
Jawaharlal Nehru Fellowship, J C Bose fellowship, Om Prakash Bhasin
Award, etc. Prof. Chaudhuri is the fellow of INSA, NASI, INAE, IAPR, The
World Academy of Sciences (TWAS) and life fellow of IEEE (2015).

SUPPLEMENTARY

A. Convergence Proof

Theorem 2. Assume that the gradients for function ft (i.e.,
||gt,θ||2≤ G and ||gt,θ||∞≤ G∞) are bounded for all θ ∈ Rd.
Let also consider that the bounded distance is generated by
the proposed optimizer between any θt (i.e., ||θn − θm||2≤
D and ||θn − θm||∞≤ D∞ for any m,n ∈ {1, ..., T}). Let
γ , β2

1√
β2

, β1, β2 ∈ [0, 1) satisfy β2
1√
β2

< 1, αt = α√
t
, and

β1,t = β1λ
t−1, λ ∈ (0, 1) with λ is around 1, e.g 1−10−8. For

all T ≥ 1, the proposed injection based AdamInject optimizer
shows the following guarantee:

R(T) ≤ D2

α(1− β1)

d∑
i=1

√
T v̂T,i

+
2α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

D2
∞G∞

√
1− β2

α(1− β1)(1− λ)2
+ 4D∞G

2
∞

d∑
i=1

||g1:T,i||22

(13)

Proof: Following can be written from Lemma 10.2 of
Adam [27],

ft(θt)− ft(θ∗) ≤ gTt (θt − θ∗) =

d∑
i=1

gt,i(θt,i − θ∗,i)

Following can be also written by utilizing the update formula
of the proposed injection with Adam (i.e., AdamInject) with
k = 2 and after discarding ε,

θt+1 = θt −
αtŝt√
v̂t

= θt −
αt

(1− βt1)

(β1,t√
v̂t
st−1 +

(1− β1,t)√
v̂t

(gt + ∆θg2t)

2

)
(14)

where β1,t is the 1st order moment coefficient at tth iteration.
We can write the following w.r.t. the ith dimension of param-
eter vector θt ∈ Rd,

(θt+1,i − θ∗,i)2 = (θt,i − θ∗,i)2 −
2αt

1− βt1

(β1,t√
v̂t,i

st−1,i

+
(1− β1,t)√

v̂t,i

(gt,i + ∆θg2t,i)

2

)
(θt,i − θ∗,i)

+ α2
t (

ŝt,i√
v̂t,i

)2

(15)

We can reorganize the above equation as,

gt,i(θt,i − θ∗,i) =
(1− βt1)

√
v̂t,i

αt(1− β1,t)

(
(θt,i − θ∗,i)2

−(θt+1,i−θ∗,i)2
)

+
2β1,t

1− β1,t
(θ∗,i−θt,i)st−1,i

+
αt(1− βt1)

(1− β1,t)
(ŝt,i)

2√
v̂t,i
−∆θg2t,i(θt,i − θ∗,i).

(16)

We can rewrite it as follows:

(17)gt,i(θt,i − θ∗,i)

=
(1− βt1)

√
v̂t,i

αt(1− β1,t)

(
(θt,i − θ∗,i)2 − (θt+1,i − θ∗,i)2

)
+

√
2β1,t

αt−1(1− β1,t)
(θ∗,i − θt,i)2

√
v̂t−1,i

√
2β1,tαt−1(st−1,i)2

(1− β1,t)
√
v̂t−1,i

+
αt(1− βt1)

(1− β1,t)
(ŝt,i)

2√
v̂t,i
−∆θg2t,i(θt,i − θ∗,i)

Next, we use the Young’s inequality, ab ≤ a2/2+b2/2 as well
as the information that β1,t ≤ β1. We also replace ∆θ with
θt−1 − θt Thus, we can write the above equation as,

gt,i(θt,i − θ∗,i) ≤
1

αt(1− β1)

(
(θt,i − θ∗,i)2

− (θt+1,i − θ∗,i)2
)√

v̂t,i

+
β1,t

αt−1(1− β1,t)
(θ∗,i − θt,i)2

√
v̂t−1,i

+
β1αt−1(st−1,i)

2

(1− β1)
√
v̂t−1,i

+
αt

(1− β1)

(ŝt,i)
2√

v̂t,i

− (θt−1,i − θt,i)(θt,i − θ∗,i)g2t,i
(18)

In order to compute the regret bound, we aggregate it as
per the Lemma 10.4 of Aadm [27] across the dimensions
for i ∈ {1, . . . , d} and the convex function sequence for

ADAINJECT OPTIMIZER 11

t ∈ {1, . . . , T} in the upper bound of ft(θt)− ft(θ∗) as,

R(T) ≤
d∑
i=1

1

α1(1− β1)
(θ1,i − θ∗,i)2

√
v̂1,i

+

d∑
i=1

T∑
t=2

1

(1− β1)
(θt,i − θ∗,i)2(

√
v̂t,i

αt
−
√
v̂t−1,i

αt−1
)

+

d∑
i=1

T∑
t=1

β1,t
αt(1− β1,t)

(θ∗,i − θt,i)2
√
v̂t,i

+
2β1αG∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+
2αG∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

T∑
t=1

(θt,i − θt−1,i)(θt,i − θ∗,i)g2t,i

(19)

It can be further refined with the assumptions that α = αt
√
t,

||θt− θ∗||2≤ D, ||θm− θn||∞≤ D∞ and ∆θ = (θt− θt−1) is
very small. Moreover, ∆θ ≈ 0 as step size is very small when
t is large. Then, we can approximate ∆θ with an upper bound
of 1/t2. Thus, the above equation can be written as,

(20)

R(T) ≤ D2

α(1− β1)

d∑
i=1

√
T v̂T,i

+
2α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+
D2
∞
α

d∑
i=1

t∑
t=1

β1,t
(1− β1,t)

√
tv̂t,i

+D∞

d∑
i=1

T∑
t=1

√
t

t2
g2t,i

≤ D2

α(1− β1)

d∑
i=1

√
T v̂T,i

+
2α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+
D2
∞G∞

√
1− β2

α

d∑
i=1

t∑
t=1

β1,t
(1− β1,t)

√
t

+D∞

d∑
i=1

T∑
t=1

g2t,i
t

As per the finding of Adam [27], i.e.,
∑t
t=1

β1,t

(1−β1,t)

√
t ≤

1
(1−β1)(1−γ)2 , the regret bound can be further rewritten as,

(21)

R(T) ≤ D2

α(1− β1)

d∑
i=1

√
T v̂T,i

+
2α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

D2
∞G∞

√
1− β2

α(1− β1)(1− λ)2
+D∞

d∑
i=1

T∑
t=1

g2t,i
t

Finally, we utilize Lemma 10.3 of Adam [27] to approximate
the upper bound as

∑T
t=1

g2t,i
t ≤ 4G2

∞||g1:T,i||22. Thus, the
final regret bound is given as,

R(T) ≤ D2

α(1− β1)

d∑
i=1

√
T v̂T,i

+
2α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

d∑
i=1

||g1:T,i||2

+

d∑
i=1

D2
∞G∞

√
1− β2

α(1− β1)(1− λ)2
+ 4D∞G

2
∞

d∑
i=1

||g1:T,i||22

(22)

B. Algorithms

This section provides the Algorithms for different opti-
mization techniques, including diffGrad (Algorithm 3), diff-
GradInject (Algorithm 4), Radam (Algorithm 5), RadamInject
(Algorithm 6), AdaBelief (Algorithm 7) and AdaBeliefInject
(Algorithm 8).

Algorithm 3: diffGrad Optimizer
Initialize: θ0,m0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
ξt ← 1/(1 + e−|gt−gt−1|)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2t
Bias Correction
m̂t ← mt/(1− βt1), v̂t ← vt/(1− βt2)

Update
θt ← θt−1 − αξtm̂t/(

√
v̂t + ε)

12 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Algorithm 4: diffGradInject (diffGrad + AdaInject)
Optimizer

Initialize: θ0, s0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2, k
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
ξt ← 1/(1 + e−|gt−gt−1|)
If t = 1
st ← β1 · st−1 + (1− β1) · gt

Else
∆θ ← θt−2 − θt−1
st ← β1 · st−1 + (1− β1) · (gt + ∆θ · g2t)/k

vt ← β2 · vt−1 + (1− β2) · g2t
Bias Correction
ŝt ← st/(1− βt1), v̂t ← vt/(1− βt2)

Update
θt ← θt−1 − αξtŝt/(

√
v̂t + ε)

Algorithm 5: Radam Optimizer
Initialize: θ0,m0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2
While θt not converged

t← t+ 1
ρ∞ ← 2/(1− β2)− 1
gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2t
ρt = ρ∞ − 2tβt2/(1− βt2)
If ρt ≥ 5
ρu = (ρt − 4)× (ρt − 2)× ρ∞
ρd = (ρ∞ − 4)× (ρ∞ − 2)× ρt
ρ =

√
(1− β2)× ρu/ρd

α1 = ρ× α/(1− βt1)
Update
θt ← θt−1 − α1 ×mt/(

√
vt + ε)

Else
α2 = α/(1− βt1)
Update
θt ← θt−1 − α2 ×mt

Algorithm 6: RadamInject (i.e., Radam + Inject) Op-
timizer

Initialize: θ0, s0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2, k
While θt not converged

t← t+ 1
ρ∞ ← 2/(1− β2)− 1
gt ← ∇θft(θt−1)
If t = 1
st ← β1 · st−1 + (1− β1) · gt

Else
∆θ ← θt−1 − θt−2
st ← β1 · st−1 + (1− β1) · (gt −∆θ · g2t)/k

vt ← β2 · vt−1 + (1− β2) · g2t
ρt = ρ∞ − 2tβt2/(1− βt2)
If ρt ≥ 5
ρu = (ρt − 4)× (ρt − 2)× ρ∞
ρd = (ρ∞ − 4)× (ρ∞ − 2)× ρt
ρ =

√
(1− β2)× ρu/ρd

α1 = ρ× α/(1− βt1)
Update
θt ← θt−1 − α1 × st/(

√
vt + ε)

Else
α2 = α/(1− βt1)
Update
θt ← θt−1 − α2 × st

Algorithm 7: AdaBelief Optimizer
Initialize: θ0,m0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · (gt −mt)

2

Bias Correction
m̂t ← mt/(1− βt1), v̂t ← vt/(1− βt2)

Update
θt ← θt−1 − αm̂t/(

√
v̂t + ε)

ADAINJECT OPTIMIZER 13

Algorithm 8: AdaBeliefInject (AdaBelief + AdaInject)
Optimizer

Initialize: θ0, s0 ← 0, v0 ← 0, t← 0
Hyperparameters: α, β1, β2, k
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
If t = 1
st ← β1 · st−1 + (1− β1) · gt

Else
∆θ ← θt−2 − θt−1
st ← β1 · st−1 + (1− β1) · (gt + ∆θ · g2t)/k

vt ← β2 · vt−1 + (1− β2) · (gt − st)2
Bias Correction
ŝt ← st/(1− βt1), v̂t ← vt/(1− βt2)

Update
θt ← θt−1 − αŝt/(

√
v̂t + ε)

	I Introduction
	II Proposed Injection based Optimizers
	III Intuitive Explanation and Empirical Analysis
	III-A Intuitive Explanation
	III-B Empirical Analysis using Toy Examples

	IV Convergence Analysis
	V Experimental Analysis
	V-A Experimental Setup
	V-B Experimental Results
	V-C Effect of Injection Hyperparameter (k)
	V-D Effect of Batch Size and Learning Rate

	VI Conclusion
	References
	Biographies
	Shiv Ram Dubey
	S.H. Shabbeer Basha
	Satish Kumar Singh
	Bidyut Baran Chaudhuri

