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Abstract—Explainable Artificial Intelligence (XAI) is a
paradigm that delivers transparent models and decisions,
which are easy to understand, analyze, and augment by a
non-technical audience. Fuzzy Logic Systems (FLS) based
XAI can provide an explainable framework, while also
modeling uncertainties present in real-world environments,
which renders it suitable for applications where explainabil-
ity is a requirement. However, most real-life processes are
not characterized by high levels of uncertainties alone; they
are inherently time-dependent as well, i.e., the processes
change with time. To account for the temporal component
associated with a process, in this work, we present novel
Temporal Type-2 FLS Based Approach for time-dependent
XAI (TXAI) systems, which can account for the likelihood
of a measurement’s occurrence in the time domain using
(the measurement’s) frequency of occurrence. In Tempo-
ral Type-2 Fuzzy Sets (TT2FSs), a four-dimensional (4D)
time-dependent membership function is developed where
relations are used to construct the inter-relations between
the elements of the universe of discourse and its frequency
of occurrence. The proposed TXAI system with TT2FSs is
exemplified with a step-by-step numerical example and an
empirical study using a real-life intelligent environments
dataset to solve a time-dependent classification problem
(predict whether or not a room is occupied depending on the
sensors readings at a particular time of day). The TXAI sys-
tem performance is also compared with other state-of-the-art
classification methods with varying levels of explainability.
The TXAI system manifested better classification prowess,
with 10-fold test datasets, with a mean recall of 95.40%
than a standard XAI system (based on non-temporal general
type-2 (GT2) fuzzy sets) that had a mean recall of 87.04%.
TXAI also performed significantly better than most non-
explainable AI systems between 3.95%, to 19.04% improve-
ment gain in mean recall. Temporal convolution network
(TCN) was marginally better than TXAI (by 1.98% mean
recall improvement) although with a major computational
complexity. In addition, TXAI can also outline the most
likely time-dependent trajectories using the frequency of
occurrence values embedded in the TXAI model; viz. given
a rule at a determined time interval, what will be the next
most likely rule at a subsequent time interval. In this regard,
the proposed TXAI system can have profound implications
for delineating the evolution of real-life time-dependent
processes, such as behavioural or biological processes.

I. Introduction

Over the last few decades, the widespread applica-
tion of artificial intelligence (AI) systems have enhanced
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many aspects of everyday life from risk management
[1], sky shepherding of sheep [2], medical image seg-
mentation [3], recognition of expertise level [4], mobile
applications [5] to Covid-19 detection based on cough
samples [6]. Although opaque AI systems offer remark-
able prediction accuracy, they are limited by a lack of
explanation behind their predictions. A lack of explana-
tion renders the AI systems untrustworthy, and partic-
ularly inapplicable where users want to understand the
decision process of the AI system. To this end, there is
a growing need for transparent, human-understandable
AI systems called explainable AI (XAI) systems [7].
Several approaches taken towards the development of
XAI systems include: 1) Intrinsic: a method in which
model inference structure is fully transparent such as
short decision trees or sparse linear models, and 2) Post-
hoc: a model-agnostic meta-model is used to decipher
the inference rationale of a black-box model permutation
feature importance can be computed for decision trees.
Within post-hoc methods attempts to unravel a black-
box model into a surrogate intrinsic model have also
been undertaken. A particular category of these are the
anchor-based models.

Although anchor-based approach provides a step to-
wards implementing human-understandable explana-
tions [8], explanatory patterns rest on hard thresholds
and are constrained by Boolean logic. However, real-
life processes are characterised with uncertainty and
therefore hard thresholds based models are not partic-
ular well-suited to model them (real-life processes). In
this regard, another approach to implement XAI systems
is fuzzy logic systems (FLS) [7, 9]. The FLS based XAI
systems are well-suited for explainable modelling of
real-life processes because of FLS capability to handle
uncertainty in the input data, and subsequently improve
the process model and performance. In addition, the use
of conceptual labels (CoLs) that model uncertainty and
axioms of FLS based XAI systems pave way for human-
understandable models for describing complex, real-life
processes.

The FLS based XAI systems handle uncertainty in the
input data using fuzzy sets that convert crisp numbers
(viz. uncertain observations) to CoLs characterised with
membership values [9, 10]. The fuzzy sets are defined
by membership functions (MFs) and represent a given
CoL. The membership value is usually in the range [0,1]
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(a) Type-1 (T1) Fuzzy Set (b) Interval Type-2 (IT2) Fuzzy Set (c) General Type-2 (GT2) Fuzzy Set

Fig. 1: The three types of fuzzy sets: (a) Type-1 (T1) fuzzy sets where each crisp measurement, x ∈X, gets assigned a
membership degree, µT 1(x) ⊆ [0,1], but there is no ambiguity in the membership degree, for example as shown by
the red dashed line: µT 1(x = 1) = 0.95. (b) Interval type-2 (IT2) fuzzy sets have lower and upper membership degrees
assigned to each crisp measurement for example µIT 2(x = 1) = [0.7,0.95]. (c) General type-2 (GT2) fuzzy sets have
T1 fuzzy sets as membership degree for a crisp measurement i.e. µT 2(x = 1) = {u,µT 1(u)∣∀u ∈ [0,1],∀µT 1 ∈ [0,1]}
where u is called the primary membership degree and µ is called the secondary membership degree.

and is a soft measure of the degree of association the
associated fuzzy set has for a given crisp measurement to
belong to the CoL represented by the fuzzy set [10]. For
example, an XAI system modelling the heights of people
in a community using type-1 fuzzy sets may represent
height using CoLs of Tall, Medium, and Short. The MF
associated with each CoL’s MF will assign a crisp number
for the height of a person with a membership grade; for
example, a height of 6ft may get assigned membership
grades of 0.8,0.5,0.1 to represent CoLs of Tall, Medium,
and Short respectively.

In general, fuzzy sets can model uncertainty in the
feature domain at different levels: Type 1 (T1), interval
type-2 (IT2), and general type-2 (GT2) fuzzy sets; illus-
trated in Fig. 1. Despite the variability in the extent for
uncertainty modelling amongst the types of fuzzy sets,
all fuzzy sets are modelling uncertainty from a single
time snapshot of the feature domain. More specifically,
fuzzy sets do not integrate associated temporal informa-
tion in their membership grade calculation. This is a
critical limitation of the fuzzy sets since most real-life
systems are time-variant, i.e., their behaviour changes
with time. To model time-dependent real-life systems
more effectively, in this work, we present the theory
of a new Temporal Type-2 Fuzzy Set (TT2FS) based
approach for time-dependent XAI (TXAI).

The prowess of TXAI system for incorporating time
information for modelling time-variant processes is of
paramount significance since the insights provided by
a TXAI system can shed light on both spatial (feature
domain) and temporal behaviour of the time-dependent
process. More specifically, the TXAI is able to inform
not only about the relation between input features but
can also describe the impact of time on the evolution
of the inter-relation of the features. As an example,
let’s consider a standard XAI system composed of a T1
fuzzy set for modelling thermal sensation ‘Cold’ in the

domain of values of temperature T °C as shown in Fig.
2 (a), and a T1 fuzzy set for the time of occurrence of
concept ‘Cold’ during the months of a year as shown
in Fig. 2 (b). The notion is that the perception of ‘cold’
is mostly associated with the months of winter than in
the months of spring. Hence, using the time information
associated with a fuzzy concept (such as Cold in this
case), a temperature can belong to the concept (Cold)
differently according to a particular point in time (e.g.,
months of a year).

Crediting a fuzzy membership with its associated time
information is particularly advantageous for the mod-
elling of time-dependent noise-prone processes. More-
over, for dynamic processes, the ability to delineate
its’ (dynamic process) trajectories across time would
inform the evolution of the temporal dynamics of the
process. To this end, our proposed TXAI system has
been designed to integrate temporal information as well
as able to outline the trajectories of a time-dependent
process. To demonstrate the efficacy of TXAI system
for time-dependent process modelling, in this work, an
occupancy dataset is used [11]. Using the values of
temperature, light and carbon dioxide (CO2), and the
time the aforementioned measurements are taken, the
TXAI system is used to make a prediction of whether or
not the room is occupied.

The rest of the paper is organised as follows: in
Section II related works are outlined, Section III presents
the TXAI system definition and operations, Section IV
outlines the TXAI inference system with a numerical
step-by-step example as well as the evolution of a TXAI
model using temporal trajectories. An empirical study
using TXAI system, as well as state-of-the-art systems
(with varying levels of explainability) for performance
comparison, on the aforementioned occupancy dataset
[11] is presented in Section V, with conclusion and future
research in Section VI.
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(a) ‘Cold’ membership function in temperature domain.
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(b) ‘Cold’ membership function in time domain.

Fig. 2: An illustrative type-1 (T1) membership function (MF) for the fuzzy concept of ‘Cold’ in the (a) universe
of temperature in °C and (b) in the universe of time: months of a year. In this case, the membership degree for
experiencing ‘Cold’ at 15 °C is µColdtemp(15°C) = 0.2. Likewise considering the prevalence of particular linguistic
variable ’Cold’, viz. the likelihood of observing ‘Cold’ can be different in February µColdtime(February) = 0.85 than
March µColdtime(March) = 0.3. In this regard, the additional information of time can credit the primary membership
in feature-domain through a fuzzy relation.

II. Related Works

Fuzzy sets have enabled explainable models of com-
plex real-life processes which prove too ill-defined for
closed form mathematical analysis. In this regard, al-
though uncertainty in complex processes could be han-
dled by fuzzy sets, the time-variant characteristics of
complex processes have not been integrated into the
modelling by standard XAI systems based on state-of-
the-art fuzzy sets.

There have been few notable attempts in the literature
to model time in the MFs. The work by Garibaldi et
al. [12] on non-stationary fuzzy sets proposed that vari-
ation within a MF can be incorporated by perturbing
the parameters of the MF. Their work aims to develop
non-deterministic fuzzy reason as a way to model the
variability in fuzzy decision making to mimic the vari-
ability in expert opinions. The ability of non-stationary
fuzzy sets to integrate differing experts’ opinions is
a significant contribution since it allows for a more
comprehensive model that takes into account all experts’
opinions. However, their work does not incorporate the
variation within a fuzzy concept with respect to time,
which is the aim of the present work, to represent the
time-variant transformation of a same fuzzy linguistic
variable.

Similarly, the work by Kostikova et al. [13] propose
dynamic fuzzy sets by extending the classical fuzzy set
to include a time dimension for representing MF at
different time points. They propose four different types
of dynamic MFs depending on how many parameters
are changed in the definition of the dynamic MF. They
simulated their dynamic MFs by using differing expert
assessments on multilevel fuzzy description of a complex
system. However, the dynamic MF is essentially a set of
functions determined at different time points with no
bearing on the temporal variation in the fuzzy concept.

In another work by Maeda et al. [14], they propose

dynamic fuzzy reason to deal with the notion of time delay
between premise and consequent. An example of where
a time delay between premise and consequent assumes
critical importance is: ‘If it starts snowing, the traffic on
road will increase about 30 minutes later’. They propose
the use of fuzzy relations between a fuzzy concept
and its fuzzy time interval to assign a credit degree to
the concept. The temporal fuzzy reasoning provides a
framework for modelling delay in fuzzy reasoning and
the temporal dynamics of a fuzzy concept. In this work,
we have built on the work of Maeda et al. [14] to credit
the membership grade of a concept based on time.

To the best of the authors’ knowledge, there is no
work in the literature on fuzzy sets that delineates the
incorporation of time-based variation in a fuzzy concept
to compute the membership grade for the crisp values
of the fuzzy concept. In addition, no previous work has
aimed at delineating the trajectories of a time-variant
process with respect to time. To this end, in this work,
we propose TXAI systems that can integrate information
from both the feature domain and time domain. More
details on the proposed TXAI are outlined in Section
III.

III. Time-dependent Explainable Artificial

Intelligence (TXAI) Systems

In this section, we present the TXAI system based
on TT2FS (temporal type-2 fuzzy sets) that incorporate
information from not only the uncertainty in the input
domain of the fuzzy linguistic term, but also from its
time of occurrence. In particular, the information from
the time of occurrence is integrated into the membership
grade of the TT2FS using fuzzy relations such that it (the
membership grade of the TT2FS) varies with respect to
time (time-dependent).

In the next section, we present the most common
fuzzy relations and outline how they can be used for
implementing TT2FS.
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TABLE I: Fuzzy relations between the universe of con-
cept X and time domain T.

Name Definition of the relation

Godel RG(t,x) = {
1 if µTA(t) ≤ µA(x)
µA(x) if µTA(t) > µA(x)

Lukasiewicz RL(t,x) = 1∧(1−µTA(t)+µA(x))

Gaines-Rescher RGR(t,x) = {
1 if µTA(t) ≤ µA(x)
0 if µTA(t) > µA(x)

Mamdani RM(t,x) = µTA(t)∧µA(x)

A. Fuzzy relations between fuzzy linguistic variables and
time related measures

In this work, fuzzy relations are used to interrelate
the information with respect to the degree of truth of a
determined linguistic term or CoL, A, within the domain
X, and time, T, to form TT2FSs such that the likelihood
of occurrence of A in x ∈X, i.e. the primary membership
grade µA(x), is credited by a measure that is dependent
on time such as frequency. The application of fuzzy
relation, for constructing TT2FSs, is motivated by the
work on dynamic fuzzy reasoning models in [14]. They
outline fuzzy relations that can be used to model time
dependencies, as noted in Table I.

Before reviewing the different relations that can be
applied to construct a TT2FS, the conditions that need
to be fulfilled by the associated temporal MF (TMF) are
listed below:

(i) The TMF should be continuous.
(ii) The TMF should be convex.

(iii) The range of the TMF ⊆ [0,1].
(iv) The TMF should reflect in the value of membership

grade the intrinsic magnitudes of membership grade
in feature domain and in frequency of occurrence
domain, i.e., they should be directly proportional.
For example, if µA(x) is high and the time represen-
tation is also high then the result from the relation
between them should also be high and vice versa.

An illustrative comparison of the TT2FSs formed for the
CoL ‘Cold’ of feature thermal concept using the fuzzy
relations listed in Table I is shown in Fig. 3. The fuzzy re-
lations are applied on hypothetical primary membership
function of ‘Cold’ in feature domain (temperature) and
time domain (months of a year). As can be seen in Fig.
3, the different fuzzy relations are encapsulating distinct
inter-dependencies between time and feature domain.
All relations meet the criteria (i) - (iii) listed above
however, only the Mamdani relation meets the criterion
(iv) as well since it gives credit to µCold based on the
variable frequency of occurrence of ‘Cold’ as observed
in different months of the year. Hence, in this work, the
Mamdani relation is used to construct the TT2FSs.

B. Conditional relative frequency distribution of a fuzzy
linguistic term

In our TT2FS we employ a measure of conditional
relative frequency between time and the occurrence of a
linguistic term. We denote as A an instance of a linguistic

term from a set of conceptual labels (also called words of
the universe of discourse), CoLs ∶= [CoL1,CoL2, ...,CoLJ]
of a specific linguistic variable or input.

Definition III.1 (Discrete conditional relative frequency
with respect to time). The discretized conditional relative
frequency is defined as the likelihood of observing a linguistic
term A based on its membership grade, across time. This is
denoted as gA(tn,µA(x)) with time t discretised over N time
points (tn) such as tn ∈ [t1, ..., tN ], and is given by:

gA(tn,µA(x)) =

∑
x∈X,tn

δnj

max
[t1,...,tN ]

( ∑
x∈X,tn

δnj)

(1)

δnj is a Kronecker delta function [15] (e.g. δab = 0 if a ≠ b,
δab = 1 if a=b) that takes the value of 1 when the following
condition applies, ∃ argmaxj(µCoLj (x

tn)) ∶ Colj = A, ∀j ∈
[1, ..., J], and 0 otherwise. Note xtn is a realisation of x at
time tn.

The numerator in (1) finds the count of occurrences of
a given A for a determined time point tn across all data
instances, whereas the denominator is finding the maxi-
mum value of the count of occurrences of A across all N
time points and all data instances. The resultant discrete
conditional relative frequency gA(tn,µA(x)) is interpo-
lated to form a conditional distribution fA(t,µA(x)). For
the sake of notational simplicity, we denote the later
distribution as fA and the discrete conditional relative
frequency as gA from here onwards.

Let us assume that the linguistic variable is ther-
mal sensation defined on the input domain (x ∈ X) of
temperature in °C and the associated CoLs be: [Cold,
Comfortable, Hot]. For a given crisp input of tempera-
ture such as 15°C, the associated primary membership
grade for all three CoLs of Cold, Comfortable, and Hot
be µCold(15 °C) = [0.4], µcomf .(15°C) = [0.3], µhot(15°C) =

[0] respectively. In this illustrative case, the temperature
of 15 °C has a maximum membership grade, amongst
all CoLs, for Cold and hence 15 °C is assigned with the
CoL of Cold. Referring back to (1), for computing the
conditional relative frequency for Cold the numerator
is going to sum all the data instances where the crisp
inputs are assigned with Cold for a given time point tn
such as a particular month of a year. The denominator
finds the mode of occurrence of Cold across all months.
The result of the division will scale the gCold values to
[0,1].

An illustration for calculating the gCold values using
(1), with a total of 12 time points as the months of a
year is shown in Fig. 4 (b) with continuous values of
fCold , found using interpolation of gCold , plotted in Fig.
4 (c). Please note the associated time intervals, (as listed
in the illustration in Fig. 4 are seasons in a year such
as Winter, Spring, Summer, and Autumn), are for easing
the computational complexity of the four-dimensional
(4D) TT2FSs as will be explained later in section III-D
by taking time interval based slice of the TT2FS.
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Fig. 3: A comparison of TT2FSs for the conceptual label (CoL) ‘Cold’ for feature thermal concept constructed
with the most commonly used fuzzy relations namely Mamdani, Zadeh/Lukasiewicz, Godel, and Gaines-Rescher,
see Table I for their respective definitions. In these illustrative plots, the feature domain i.e. temperature in °C is
plotted on the x-axis, with conditional distribution, fCold on y-axis, and the time is plotted on the axis connecting
the x- and y- axis, i.e. the arc axis, with the 4 time intervals representing the typical seasons in a year. The z-axis
has the values of temporal membership function (TMF), µ ⃗Cold(x,t,fCold).

C. Temporal Type-2 Fuzzy Sets (TT2FS)

In this section, a formal definition of temporal type-2
fuzzy sets (TT2FS) is presented. TT2FS are 4D as they
incorporate information from the input domain (X), time
domain (T ), frequency of occurrence domain (F) and
are characterised by a temporal membership function
(TMF).
The computation of TMF, hereby termed as temporal
fuzzification, involves two stages: 1) fuzzification of crisp
input values of A from feature domain X to form T1
µA(x), as undertaken in standard T1 fuzzy sets; and
2) computation of the conditional distribution of A, fA.
The temporal fuzzification is illustrated in Fig. 4 (a) and
defined next.

Definition III.2 (Temporal membership function). The
temporal membership function (TMF) can be defined as

µA⃗(x,t,fA) = µA(x)⊗ fA (2)

where ⊗ is a relation operator, µA(x) is the primary
membership of A in feature domain credited by the
conditional distribution of A, denoted fA, using the
Mamdani relation (outlined earlier in Sec III-A).

Theorem III.1. The TMF of A, constructed using Mamdani
relation (2), µA⃗(x,t,fA) is ⊆ [0,1].

Proof. The range of µA⃗(x,t,fA) follows directly from the
range of primary MF of A: µA(x) ⊆ [0,1], and the condi-
tional distribution of A: fA ⊆ [0,1]. Hence, by crediting
µA(x) with fA using Mamdani relation (taking the min
or product), it follows that the range of µA⃗(x,t,fA) ⊆

[0,1]. ∎

Proposition III.1.1. If the primary membership of TMF
is normal and the conditional distribution f is normal,
according to (1), then the resultant TMF membership after
applying the Mamdani relation yields a normal temporal
membership function, therefore we can imply that

sup
x∈X

µA⃗(x,t,fA) = 1 (3)

Proof. Given a fA ⊆ [0,1] and a µA(x) ⊆ [0,1] both
with sup = 1, ∀x ∈ X by deduction, ∃x ∶ fA × µA(x) ∨
min(fA,µA(x)) = 1 ∎

Next, we define the TT2FS which are characterised by a
TMF.

Definition III.3 (Temporal Type-2 Fuzzy Sets (TT2FS)).
A TT2FS A⃗ of the universe of discourse X × T ×F is char-
acterised by a credited TMF µA⃗(x,t,fA) ∶ X ×T ×F → [0,1]
where X is the feature domain of A characterised by a T1
MF µA(x), T is the time domain of A, F is the frequency
of occurrence domain of A characterised by conditional fre-
quency distribution with respect to time fA. In mathematical
set notation, A⃗ can be written as (4):

A⃗ ={(x,t,fA,µA⃗(x,t,fA)) ∣

∀x ∈X,∀t ∈ T ,∀µA(x) ⊆ [0,1],

∀fA ∈ F ⊆ [0,1]}

(4)

where µA⃗(x,t,fA) ⊆ [0,1]. Please note the conditional dis-
tribution, fA, is a continuous distribution interpolated from
discrete conditional relative frequency, gA, and is defined
mathematically earlier in (1). A⃗ can also be expressed as:

A⃗ = ∫
x∈X
∫
t∈T
∫
fA∈F

µA⃗(x,t,fA)/fA/t/x (5)

where ∫ ∫ ∫ denotes the aggregation over all ad-
missible values of x, t, and fA. The associated TMF,
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µA⃗(x,t,fA)) ⊆ [0,1], scales the µA(x) based on its con-
ditional distribution fA as defined in (2).

D. Operations on TT2FSs

In this section, the common operations for TT2FSs
such as the union and intersection, as well as defuzzi-
fication are outlined. TT2FSs, on account of being 4D,
are more computationally intense than GT2 fuzzy sets,
which are three-dimensional (3D). A popular approach
for minimising the computational demand of 3D GT2
fuzzy sets is to use z-slice based framework [16]. Moti-
vated from the effectiveness of z-slice based framework
for simplifying the computations for GT2 fuzzy sets,
in this work, the approach of taking time interval slice
followed by z-slice (TS-ZS) is taken for performing op-
erations on TT2FSs. The TS-ZS approach is explained in
more detail as follows:

(i) TS: Time interval based slice to convert 4D TT2FSs
into 3D. The 3D time interval based TT2FS is similar
to 3D GT2 fuzzy set, with both sharing the feature
domain on x−axis. On y−axis is the frequency of
occurrence domain, for that time interval, for time
interval based TT2FS, while for GT2 fuzzy sets, pri-
mary membership grade is on y−axis. And on z−axis
is the temporal membership grade for time interval
based TT2FS while for GT2 fuzzy set secondary
membership grade is on z−axis.

(ii) ZS: z-Slice based approach for the time interval
based 3D TT2FS as utilised for GT2 fuzzy sets. The
z-slices at specific z-levels render a given 3D fuzzy
set to an equivalent IT2 fuzzy set with lower and
upper primary membership grades. For the case
of TS-ZS based TT2FSs, the primary membership
grades are the conditional distribution values for
that time interval at a given z-level.

In the following sections, a formal definition for the
operations on TT2FSs is given with A⃗ and B⃗ denoting two
TT2FSs characterised by TMFs µA⃗(x,t,fA) and µB⃗(x,t,fB)
respectively as outlined in (6):

A⃗ = ∫
x∈X
∫
t∈T
∫
f ∈F

µA⃗(x,t,fA)/fA/t/x

B⃗ = ∫
x∈X
∫
t∈T
∫
f ∈F

µB⃗(x,t,fB)/fB/t/x (6)

where X is the feature domain, T is the time domain,
and F is the frequency of the occurrence domain.

1) Union and Intersection Operations

A general procedure for undertaking the union and
intersection operations on the 4D TMFs is outlined in
Algorithm 1. The union of two TT2FSs A⃗ and B⃗ is a
TT2FS defined as A⃗∪ B⃗ in (7):

A⃗∪ B⃗ = ∫
x∈X
∫
t∈T
∫
f ∈F

µA⃗∪B⃗(x,t,f )/f /t/x (7)

Algorithm 1: Union and Intersection Operations
on TT2FSs

Result: Resultant Temporal Membership Function
(TMF) µA⃗⊘B⃗(x,t,fA⊘B) where ⊘ denotes
the operation of either union or
intersection.

Let concepts A and B on feature domain X (input
to the algorithm) have TMFs denoted by
µA⃗(x,t,fA(t,µA(x))) and µB⃗(x,t,fB(t,µB(x)))
respectively with time intervals ∆tq ∈ [∆t1, ...,∆tQ]
and zslices discretised at zi ∈ [z1,z2, ...,zI ];

For each time interval ∆tq the operation (union or
intersection) on 3D time interval based TMF is
computed independently by first taking the
z-slices at zi ∈ [z1,z2, ...,zI ] which renders the 3D
time interval based TMF into interval type 2
(IT2) TMFs;

For each IT2 TMF, the operation is done as shown
below in eq. (Alg 1.1);

for x ∈X do
for zi < zI do

µA⃗⊘B⃗,∆tq
(x,f∆tq) =∑

x
∑

f∆tq ∈[⊙(lA,lB),⊙(uA,uB)]
zi/f∆tq

(Alg 1.1)
end

end
where the summation signs in eq. (Alg 1.1) denotes the

aggregation in set theoretic operation, l and u are the
lower and upper conditional distribution values
respectively of set A⃗ and B⃗ on z-slice zi and time
interval ∆tq. For union operation, in eq. (Alg 1.1), the
⊙ denotes max and for intersection operation ⊙
denotes min.

where µA⃗∪B⃗ can be calculated by discretising the T
domain, and taking z-slices on µA⃗∪B⃗,∆tq(x,t,f ) values as
outlined in (Alg 1.1) of Algorithm 1. In particular, for
union operation, at time interval ∆tq (Alg 1.1) takes the
form of (8) when using the max t-conorm:

µA⃗∪B⃗,∆tq(x,f∆tq) =∑
x

∑
f∆tq ∈[max(lA,lB),max(uA,uB)]

zi/f∆tq (8)

Likewise, the intersection of TT2FSs can be written as
shown in (9)

A⃗∩ B⃗ = ∫
x∈X
∫
t∈T
∫
f ∈F

µA⃗∩B⃗(x,t,f )/f /t/x (9)

where µA⃗∩B⃗ can be calculated by discretising the T
domain, and taking z-slices on µA⃗∩B⃗,∆tq(x,t,f ) values as
outlined in (Alg 1.1) of Algorithm 1. In particular, for in-
tersection operation, at time interval ∆tq (Alg 1.1) takes
the form of (10) when using the min t-norm. However,
please note either product or min can be applied.

µA⃗∩B⃗,∆tq(x,f∆tq) =∑
x

∑
f∆tq ∈[min(lA,lB),min(uA,uB)]

zi/f∆tq (10)
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(a) Temporal Fuzzifier. (b) Conditional relative frequency gCold (c) Conditional distribution fCold

Fig. 4: (a) A schematic of temporal fuzzification for constructing temporal membership function (TMF). First, crisp
values of input data from feature domain (i.e. x ∈X) for a feature A are used to find primary membership function
(MF) µA(x). The values of µA(x) associated with time t ∈ T are then transformed into a conditional distribution,fA,
for each conceptual label (CoL) associated with A using discrete conditional relative frequency, gA as outlined in
(1). The TMF for A, i.e. µA⃗(x,t,fA), is computed by applying a fuzzy relation (such as Mamdani relation) on µA(x)
and fA(t,µA(x)). (b) A hypothetical calculation for conditional relative frequency of conceptual label Cold where
A denotes the thermal sensation, i.e. gCold with respect to N = 12 discrete time points (tn) i.e. the months and Q = 4
time intervals (∆tq) representing the seasons in a year. The column CountCold denotes the total number of times
Cold was observed in the corresponding months i.e. the numerator in (1). The mode for CountCold is 20, and is
observed in February, which becomes the denominator of (1). (c) A bar plot of gCold for all individual discrete time
points (months) with an interpolated continuous fCold superimposed in blue coloured solid line.

2) Defuzzification

In general, defuzzification converts a fuzzy set to an
equivalent crisp number, and can be thought of as the
inverse of fuzzification. For T1 fuzzy sets, defuzzification
usually involves computing the centroid of the T1 fuzzy
set [17] to compute a representative crisp number, as
shown in (11).

x∗ =
∑
B
b=1xbµ(xb)

∑
B
b=1µ(xb)

(11)

where x∗ is the centroid of the T1 MF defined on
the domain x ∈ X. Here, the summation sign is used as
in typical mathematical equations, i.e., for the case of
the numerator, it is summing the product of x values
and their corresponding membership values whereas for
the denominator it is summing the membership values
corresponding to all xb values ∀b ∈ [1, ...,B].

For a 3D GT2 fuzzy set, defuzzification usually in-
volves three steps, outlined as follows:

(i) Transforming a 3D GT2 fuzzy set to IT2 fuzzy sets
by slicing the GT2 fuzzy set at given z-levels such
as zi ∈ [z1, ...,zI ].

(ii) Type reducing the z-level based IT2 fuzzy sets re-
sults in two T1 fuzzy sets using Karnik Mendel
(KM) method [18]. The type-reduced T1 fuzzy
sets are composed of the left and right centroids
of the IT2 fuzzy sets. More specifically, the KM
method requires iterative process to compute left
and right centroids resulting in two T1 fuzzy sets:
[ylz1 ,ylz2 , ...,ylzI ] and [yrz1 ,yrz2 , ...,yrzI ] where ylz1 is the

left centroid at z-level 1 and yrz1 is the right centroid
at z-level 1 and so on.

(iii) Defuzzifcation of the type reduced T1 fuzzy sets,
using centroid average, to find equivalent yl and yr .

yl =
(z1 ∗ ylz1 )+ (z2 ∗ ylz2 )+ ...+(zI ∗ ylzI )

z1 + z2 + ...+ zI
(12)

yr =
(z1 ∗ yrz1 )+ (z2 ∗ yrz2 )+ ...+(zI ∗ yrzI )

z1 + z2 + ...+ zI
(13)

(iv) The final type-reduced crisp value is found using
the Nie-Tan method [19] on yl and yr .

In this work, the defuzzification of 4D TT2FS also
involves TS-ZS approach (explained earlier in section
III-D), i.e., taking the time interval based slice followed
by z-slices. The time interval based TMF is 3D, and for
each of the time interval (∆tq) based TMF, z-slices at
particular zi levels renders them as IT2 fuzzy sets. The
KM procedure [18] can be applied on IT2 fuzzy sets,
at each z-level, to compute T1 fuzzy sets composed of
[ylzi ,∆tq

,yrzi ,∆tq ] as outlined in (Alg 2.1). Using the centroid
defuzzifier, the T1 fuzzy sets are defuzzified to give one
equivalent yl and yr , for that time interval, as outlined in
(Alg 2.2) and (Alg 2.3). The Nie-Tan method [19] is then
applied to compute one crisp value for that time interval.
The defuzzification of TT2FSs, for a given time interval,
is summarised in Algorithm 2. The procedure outlined
in Algorithm 2 can be repeated for each time interval,
i.e. ∆tq where q ∈ [1, ...,Q], to obtain a crisp value for all
time intervals.
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Algorithm 2: Defuzzificaion of TT2FSs for a given
time interval ∆tq

Result: Crisp value for a given time interval,
denoted by crisp∆tq , where ∆tq is the qth
time interval.

Let feature A on feature domain X have temporal
membership function (TMF) denoted by
µA⃗(x,t,fA(t,µA(x))) with time intervals
∆tq ∈ [∆t1, ...,∆tQ] and z-slices discretised at
zi ∈ [z1,z2, ...,zI ];

For each 3D time interval based TMF, the
defuzzification can be done independently, by first
taking the z-slices at zi ∈ [z1,z2, ...,zI ] which renders
the 3D time interval based TMF into interval type 2
(IT2) MFs;

The left and right centroid for each IT2 TMF at
z-location zi , denoted by Czi ,∆tq , can be computed
using Karnik-Mendel (KM) method [18] to give
[yl ,yr ] at that z-slice zi and time interval ∆tq as
outlined in eq. (Alg 2.1);

for zi ≤ zI do

Czi ,∆tq = [ylzi ,∆tq
, yrzi ,∆tq ] (Alg 2.1)

end
Defuzzifcation of the type reduced T1 fuzzy sets,
using centroid average, to find equivalent yl∆tq and
yr∆tq ;

yl∆tq =
(z1 ∗ ylz1 ,∆tq

)+ (z2 ∗ ylz2 ,∆tq
)+ ...+(zI ∗ ylzI ,∆tq

)

z1 + z2 + ...+ zI
(Alg 2.2)

yr∆tq =
(z1 ∗ yrz1 ,∆tq )+ (z2 ∗ yrz2 ,∆tq )+ ...+(zI ∗ yrzI ,∆tq )

z1 + z2 + ...+ zI
(Alg 2.3)

A crisp value, crisp∆tq , can now be computed by
applying Nie-Tan method [19] on yl∆tq and yr∆tq .

IV. TXAI Inference System (TXAI-IS)

In this section, the TXAI inference system (TXAI-
IS) for classification problems is outlined. A general
flowchart for the TXAI-IS is outlined in Fig. 5. The
temporal fuzzifier constructs the 4D TT2FSs as outlined
in Fig. 4 (a). To analyse a given dynamic process with
respect to time, the TXAI-IS works for each time interval
∆tq where ∆tq ∈ [∆t1, ...,∆tQ] independently. To this end,
the 4D TT2FSs are first sliced based on the ∆tq, and
inference is made on time sliced 3D TT2FSs using the
temporal rules for the same ∆tq. Each time interval
would entail a unique temporal rule base. The temporal
rules can either be furnished by experts in the field or
can be learnt from the input data using evolutionary
algorithms such as genetic algorithm (GA) [20].

In addition, the assumptions of the proposed TXAI

system with TT2FSs include: 1) the input features and
output are observable, 2) a relation between input fea-
tures and output exists, and 3) the relation between
input features and output varies with time.

In the next subsections, the classification TXAI-IS is
outlined in detail as the empirical study on which TXAI
system is exemplified also undertakes a classification
problem, i.e., occupancy dataset [11] is analysed to de-
termine whether or not a room is occupied.

A. Classification

For the classification problem, the TXAI-IS will pre-
dict one class or label for a given data instance for
each time interval. The overall TXAI-IS for classification
undertakes the following steps:

(i) Compute the membership degree for the time inter-
val based 3D TT2FSs.
● The time interval based 3D TT2FSs are trans-

formed into IT2 fuzzy sets by taking slices at
predefined z-levels. The degree of membership at
each z-level, such as zi ∈ [z1, ...,zI ] where I is the
total number of z slices, for a given 3D TT2FS A
is given as follows [16]:

Ã = {(x,u,z)∣∀x ∈X, (14)

∀u ∈ [µ
Ã
(x),µÃ(x)] ⊆ [0,1]}

where µÃ is the membership degree of the IT2
fuzzy set Ã at the predefined z level.

(ii) Compute the firing strength for each rule, at each
z-level.
● The upper and lower firing strength of a given

rule p, wp and wp respectively, is the degree of
match between the rule p and the data instance
x. It is computed as:

wp(x
k
) =

a

∏
k=1
µÃ(x

k
)

wp(x
k
) =

a

∏
k=1
µ
Ã
(xk) (15)

where p is the rule number, a is the total number
of antecedents in the rule p and xk is an input (k)
of the actual data instance to be classified.

(iii) Compute the rule weight (RW) for each rule, at each
z-level.
● The RW is a measure of a given rule’s dominance

and is computed as shown in (16).

RW p = cp × sp (16)

RW p = cp × sp

where c is the confidence of the rule p and s is
the support of the pth rule.
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● The confidence of a rule is a measure of the like-
lihood to correctly classify a given data instance.
It is calculated as shown in eq. (17)

cp(Antsp⇒Consp) =
∑x∈(Antsp⇒Consp)wp(x)

∑
P
p=1,x∈(Antsp)wp(x)

(17)

cp(Antsp⇒Consp) =
∑x∈(Antsp⇒Consp)wp(x)

∑
P
p=1,x∈(Antsp)wp(x)

where Antsp and Consp are the antecedents and
consequent respectively of the rule p. The nu-
merator sums the firing strength of all the data
instances that have the same antecedents and con-
sequent as the rule p. Whereas the denominator
sums the firing strength of all the data instances
that have the same antecedents as the rule p
irrespective of the consequent- for all the rules
[1, ...,P ], where P is the total number of rules.

● The support of a rule is calculated as shown in
(18)

sp(Antsp⇒Consp) =
∑x∈(Antsp⇒Consp)wp(x)

P
(18)

sp(Antsp⇒Consp) =
∑x∈(Antsp⇒Consp)wp(x)

P

with P as the total number of rules.
(iv) Compute the association degree of each rule, with a

given data instance, for each z-level.
● The association degree of a rule p with a given

data instance x is computed as shown in (19):

hp =wp(x)×RW p (19)

hp =wp(x)×RW p

(v) Predict the label.
● Find a value of the association degree, h, for each

rule by using Nie-Tan [19] method on the h and
h which are found using (Alg 2.2) and (Alg 2.3).

● The rule with the highest association degree, h,
predicts the label for the given data instance.

(vi) The steps outlined above (i)-(v) are repeated for each
time interval to predict a label for all time intervals.

B. Numerical Step-wise Example
In this section, a binary classification problem us-

ing TXAI-IS is exemplified using a hypothetical dataset
with two input features, Feature1 and Feature2, and one
output. Let time intervals be defined over a day such
as Morning, Daytime, and Evening with three CoLs
associated with the inputs (Feature1 and Feature2) be:
[Low, Medium, High] and output labels be Output1 and
Output2.

First, TT2FSs for both inputs (Feature1 and Feature2)
are constructed using temporal fuzzifier, as outlined in
Fig. 4. Also, for each time interval, the rules will be
different but the overall process to determine the output
label is same. In the following steps, we exemplify how

the output label is predicted for one time interval, in
this example, Morning.

Let the rules (R) outlining the relation between input
features and output for Morning be as listed in (20). The
corresponding lower and upper rule weights (RW) at
each z-level are as listed in Table III. In the following
steps i)- iv) we show how a corresponding label for
Output is predicted using TXAI-IS for input values of
Feature1 = 19.7 and Feature2 be = 4.3. In this example,
the z-level is discretised at z0.2, z0.4, z0.6, z0.8, and z1.0.

R1 ∶ IF Feature1 is Low and Feature2 is Medium

THEN Output is Output2
R2 ∶ IF Feature1 is Medium and Feature2 is Medium

THEN Output is Output1
R3 ∶ IF Feature1 is High and Feature2 is High

THEN Output is Output1 (20)

(i) The degree of membership for each CoL of the
inputs Feature1 and Feature2 is determined from
the time interval (Morning) based 3D TMF. The
membership degree is the value of the conditional
distribution at a given input value and correspond-
ing z-level as outlined in (14). Let the corresponding
membership degrees for each CoL of the inputs
Feature1 and Feature2 be as noted in Table II.

TABLE II: The hypothetical lower (L) and upper (U)
degree of membership values of the conceptual labels
(CoLs) of Feature1 and Feature2 for the time interval
Morning for five z levels: z0.2, z0.4, z0.6, z0.8, and z1.0
with input value of Feature1 = 19.7, and Feature2 = 4.3.

CoLs CoLs z0.2 z0.4 z0.6 z0.8 z1.0

Feature1

Low L 0.50 0.52 0.54 0.52 0.51
U 0.61 0.63 0.64 0.61 0.60

Med. L 0.63 0.63 0.65 0.63 0.61
U 0.77 0.78 0.78 0.77 0.75

High L 0.65 0.64 0.64 0.63 0.63
U 0.69 0.69 0.68 0.68 0.67

Feature2

Low L 0.31 0.31 0.31 0.31 0.31
U 0.32 0.32 0.32 0.32 0.32

Med. L 0.50 0.55 0.55 0.54 0.53
U 0.58 0.59 0.59 0.58 0.57

High L 0.40 0.40 0.40 0.42 0.44
U 0.43 0.43 0.46 0.46 0.49

(ii) The firing strength of each rule listed in (20) are
found, using the membership degree in Table II,
as outlined in (15) and listed in Table III. As an
example, for R1 the lower firing strength at z = 0.6,
w1z=0.6

, can be calculated as follows:

w1z=0.6
(x = [19.7,4.3]) =

2
∏
k=1
µ(xk)

= 0.54∗0.55 = 0.297 (21)

(iii) The association degree of each rule with the in-
put data instance is determined, using the firing
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Fig. 5: A general schematic representation delineating the interlinks between salient components of a time-
dependent explainable artificial intelligence (TXAI) inference system (TXAI-IS).

TABLE III: The lower and upper firing strengths, w and w respectively, for the hypothetical rules listed in (20) for
time interval Morning. The rule weights (RW) at each z-level are also listed.

Rule
Firing z-level

Consequent
Rule Weight z-level

Strength, w z0.2 z0.4 z0.6 z0.8 z1.0 RW z0.2 z0.4 z0.6 z0.8 z1.0

R1
Lower 0.25 0.286 0.297 0.281 0.27

Output2
Lower 0.31 0.30 0.30 0.29 0.27

Upper 0.354 0.372 0.378 0.354 0.342 Upper 0.35 0.34 0.34 0.31 0.30

R2
Lower 0.315 0.347 0.358 0.34 0.323

Output1
Lower 0.69 0.69 0.68 0.66 0.66

Upper 0.447 0.46 0.46 0.447 0.427 Upper 0.73 0.73 0.72 0.72 0.72

R3
Lower 0.26 0.256 0.256 0.265 0.277

Output1
Lower 0.22 0.21 0.21 0.21 0.21

Upper 0.297 0.297 0.313 0.313 0.328 Upper 0.24 0.22 0.22 0.22 0.22

strength in Table III, as outlined in (19). The upper
and lower values of the association degree for the
five z-levels are as listed in Table IV. As an example,
for R2 the upper association degree at z = 0.2, h2z=0.2 ,
can be calculated as follows:

h2z=0.2 =w2z=0.2(x)×RW 2z=0.2 (22)

= 0.447∗0.73 = 0.326

(iv) The consequent of the rule with the highest associ-
ation degree with the input data instance becomes
the predicted label for a given time interval. The
crisp value for the association degree of each rule is
found using (Alg 2.2) and (Alg 2.3). As an example,
the crisp value of association degree for R3 is found

as follows:

h3l =
0.2∗(h30.2

)+ ...+1.0∗(h31.0
)

0.2+0.4+0.6+0.8+1.0

=
0.2∗0.057+0.4∗0.054+ ...+1∗0.058

3
= 0.056

h3u =
0.2∗(h30.2)+ ...+1.0∗(h31.0)

0.2+0.4+0.6+0.8+1.0

=
0.2∗0.071+0.4∗0.065+ ...+1∗0.072

3
= 0.0696

h3crisp =
0.056+0.0696

2
=

0.1256
2

= 0.063 (23)

In this illustrative example, R2 has the highest as-
sociation degree (tabulated in Table IV) hence the
predicted output for the input data instance (Fea-
ture1 = 19.7 and Feature2 be = 4.3) for time interval
Morning is the consequent of R2, i.e., Output1.

The same process can be repeated for each time interval
with their respective rules to predict a label for the
output. Hence, in this numerical example, there will be
three output labels for a total of three time intervals.
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TABLE IV: The lower (L) and upper (U) association
degrees, h, for each of the three rules (R) listed in (20)
with input data instance: Feature 1= 19.7, Feature 2 =
4.3. The association degrees’ crisp value, for each of the
rules R1-R3, denoted hcrisp is also listed.

R h z0.2 z0.4 z0.6 z0.8 z1.0 hcrisp

R1
L 0.077 0.086 0.089 0.081 0.073

0.097
U 0.124 0.126 0.128 0.11 0.103

R2
L 0.217 0.239 0.243 0.225 0.213

0.274
U 0.326 0.336 0.331 0.322 0.308

R3
L 0.057 0.054 0.054 0.056 0.058

0.063
U 0.071 0.065 0.069 0.069 0.072

C. Estimating Temporal Trajectories from TXAI Models

The temporal trajectories of a dynamic system can
be outlined by the TXAI system by making use of the
conditional distribution integrated into the TXAI system.
The trajectories of a TXAI model is motivated by the
work of Filev et al. [21] that embodies fuzzy transition
events defined by joint possibility encompassing the
current and future prototypical rules. More specifically,
the TXAI system can delineate a rule transition matrix
(RTM) which will entail the joint possibility of the
rules in present (∆t) and future (∆t+) time intervals. In
mathematical terms, for a total of U rules in time interval
∆t, and a total of V rules in time interval ∆t+, the RTM
can be written as follows [21]:

RTM(∆t,∆t+) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

π11 ... π1N

...

... ...

πM1 ... πUV

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(24)

where πcd is the rule transition possibility (RTP) for
the cth rule, rc, in time interval ∆t and the dth rule, rd ,
in time interval ∆t+ as given by (25).

πcd = ηcd ×
Scd
S∆t+

(25)

where ηcd is the joint possibility for the two rules to
be prototypical in their respective time intervals, and
the ratio Scd

S∆t+
entails the number of times rc and rd are

observed in their respective time intervals with respect
to all V rules in ∆t+. The following equations, (26) - (28),
outline how ηcd and the ratio Scd

S∆t+
are computed.

ηcd(rc,∆t , rd,∆t+) = γc(rc,∆t)×γd(rd ,∆t
+
) (26)

Where γ is computed by applying the t-norm operator
(product or minimum type) to the conditional distri-
bution values of the antecedents of a given rule (r)
in a given time interval (∆t or ∆t+); mathematically
expressed as shown in equation (27) for rule (rc) in
time interval (∆t). The computation of the conditional
distribution, f , is previously outlined in Section III-C
(in particular see (1)).

γc(rc,∆t) = fc(Ant1,rc ,∆t)× fc(Ant2,rc ,∆t)× ...× fc(Anta,rc ,∆t)
(27)

where a is the total number of antecedents (Ant) of
rule rc. The elements for computing the ratio Scd

S∆t+
are

outlined in (28):

Scd =∑rc,∆trd,∆t+ (28)

S∆t+ =
V

∑
d=1

rd,∆t+

where the numerator, Scd , represents the sigma count
of the number of times rc and rd are observed in their
respective time intervals, and the denominator, S∆t+ ,
denotes the sigma count of observing all V rules in ∆t+.

V. Case Study: Time-dependant Occupancy Dataset

In this section, a temporal occupancy dataset [11]
is used to exemplify the proposed TXAI system mod-
elling. The occupancy dataset entails measurements of
a room along with the time of when the measurement
is recorded. In particular, it includes measurements of
the room temperature, light, CO2, and a binary label of
whether or not the room is occupied. There are 8,143
data instances in the dataset taken over a period of a
few weeks.

In this work, the dataset [11] is used for classification
problem where TXAI system predicts whether or not
the room is occupied based on the room measurements.
The inputs of temperature, light, and CO2 are used to
predict whether or not the room is occupied. Three CoLs
of Low, Medium, and High are associated with inputs
of temperature, light, and CO2. The primary MF of the
CoLs for all inputs are empirically found. The time is
discretised at each hour of the day hence a total of N = 24
time points with a total of three time intervals defined
at Morning, Daytime, and Evening, as also summarised
in Table V. The z-slices are obtained on locations [0.2,
0.4, 0.6, 0.8, 1.0]. All aforementioned parameters values
are selected so as to reflect the inherent dynamics of the
system (such as discretising time at each hour) and to
obtain a good enough TXAI model without adding too
much computational complexity, for example, the more
the z-slices the more accurate the TXAI model would
be but at a greater computational cost(p = Q ∗ zI but
independent of the data size in each ∆tq ).

The conditional distribution for each CoL of every
input is computed on the entire dataset. Once the con-
ditional distributions are computed, the learning pro-
cedure focuses on the data belonging to each inter-
val. A 10-repeated nested cross-validation procedure is
adopted. The dataset is split into a disjoint stratified
train, validation and the test set to ensure a random
selection of the datasets (train, validation, and test) is
not creating any bias in the results. Each repetition,
20% of the dataset is held out as a test set, and the
remaining is used to build the train and validation sets.
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TABLE V: The classification problem is exemplified using the proposed Time-dependent eXplainable Artificial
Intelligence (TXAI) system with occupancy dataset [11]. The output for the classification problem predicts the
label of whether the room is occupied or not. The time points (tn) for calculating the frequency of occurrence are
24 on account of the number of hours in a given day with a total of three corresponding time intervals (∆tq) of
Morning (time < 11 am), Daytime (11 am < time < 7pm), and Evening (time > 7pm).

Problem Input/Output Feature/Label Conceptual Labels (CoLs) N Time Intervals, ∆tq

Classification
Input

Temperature Low, Medium, High 24 Morning, Daytime, Evening

Light Low, Medium, High 24 Morning, Daytime, Evening

CO2 Low, Medium, High 24 Morning, Daytime, Evening

Output
Occupied

Not Occupied
- - Morning, Daytime, Evening

Train and validation sets are determined in an inner
10-fold procedure, where a fold is used for validation
and the rest for training to determine the rule weights.
Balanced accuracy and other performance metrics are
computed over each validation and test set.

A rule-base is formed for each time interval. The rules
are learned using GA [22] such that they (rules) attain
optimally balanced accuracy on the validation datasets.
The GA parameters specification includes the number
of generations, set at 20, with each generation having a
population of 50. Moreover, the GA is leveraged to find
the rules that are prototypical for each time interval.
The number of antecedents in each rule can be at most
3 but not more to underpin explainability and hamper
model complexity therefore precluding over-fitting. For
the same reason, the maximum number of rules in each
candidate rule-base for each time interval was limited to
30, although further pruned when its weight (eq. (16))
does not surpass a tolerance threshold of 0.001.

In order to compare the performance of the proposed
TXAI system, numerous state-of-the-art classifiers which
can both analyse time-series data and/or are explainable
have been used. More specifically, for comparison with
temporal analysis Long Short-Term Memory (LSTM) [23]
and Hidden Markov Models (HMM) [24] are used, for
comparison with explainable models the standard GT2
based XAI system is used, and for partial explainablil-
ity Decision Trees (DT) [25] is used. In addition, a
comparison is also made with a temporal convolutional
network (TCN) [26] for comparison with deep learning
methods [27]. Parametrization and configuration was set
to default mode of their respective libraries (Sklearn
and Keras). For methods with no modelling with respect
to a time component, time is given as an extra input
feature. Moreover, the train, validation, and test dataset
splits are similar across all methods and for GT2 based
XAI in particular, the location of z-slices, and the GA
parameters for rule learning are also identical to those
of TXAI system.

A. Results

For the classification problem undertaken, using the
occupancy dataset, the proposed TXAI system and nu-
merous state-of-the-art classification methods predict

whether or not the room is occupied. The mean (and
standard deviation) f-score obtained using TXAI system
on the 10 test datasets is 95.30% which is the highest
score on the test dataset across all classifiers except TCN.
The other classification metrics investigated in this work
are balanced accuracy, recall, and precision. A bar plot
for the aforementioned classification metrics for both
the proposed TXAI and the state-of-the-art AI methods
(TCN, LSTM, DT, HMM, GT2 based XAI) on 10 times
repeated 10-fold validation and test datasets is shown in
Fig. 6 (a) and (b) respectively. In addition, a convergence
graph that outlines how the GA optimisation converges
with respect to balanced accuracy for both TXAI and
GT2 based XAI systems is also shown in Fig. 6 (c).

The rules outlined by TXAI and GT2 based XAI
systems which are prototypical for whether or not the
room is occupied are listed in Table VI. For the TXAI
system, please note that the rules are found separately
for each time interval (Morning, Daytime, and Evening)
whereas, for GT2 based XAI system, the time intervals
are one of the antecedents of the rules. In general, for
both TXAI and GT2 based XAI systems, the rules outline
that when the room measurements have higher values,
the room is more likely to be occupied, and when the
room measurements are on the lower end, the room is
more likely to be not occupied.

For the TXAI system, the temporal trajectories of a
time-variant system can also be investigated using the
rule transition matrices (RTMs), previously outlined in
section IV-C. The individual RTMs transitioning from
one time interval (∆t) to another i.e., from Morning to
Daytime, from Daytime to Evening, and from Evening
to Morning, represent the joint possibilities of observing
a given rule in ∆t+ with respect to the rules in ∆t. The
rules corresponding to the highest RTPs (rule transition-
ing possibilities) are also joined with lines in the column
RT (rule transitions) in Table VI and illustrated in a
schematic in Fig. 7.

B. Discussion

In this work, the proposed TXAI system is used to
model an occupancy dataset [11] for the classification
problem of whether or not the room is occupied. For
comparison purposes, several state-of-the-art explain-
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Fig. 6: A comparison of the classification prowess of the proposed time-dependent eXplainable artificial intelligence (TXAI)
system with numerous state-of-the-art classification systems: temporal convolutional networks (TCN), Long Short-Term Memory
(LSTM), Decision Trees (DT), Hidden Markov Models (HMM), and the standard general type-2 (GT2) based XAI system for the
classification problem using an occupancy dataset [11]. a) and b) show the classification metrics of the aforementioned systems
on 10 times the 10-fold stratified validation and test dataset respectively. The classification metrics are balanced accuracy (BAcc),
recall, precision, and f-score. c) A comparison of the convergence of TXAI with GT2 based XAI system using balanced accuracy
for a total of 20 generations with a population of 50 each resulting in a total of 1000 function evaluations.
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able (GT2 based XAI system), partially explainable (DT),
and non-explainable methods that can analyse temporal
information (LSTM and HMM) as well as TCN are also
applied to the aforementioned classification problem. As
can be noted from the Fig. 6 (a) and (b), TXAI offers
greater classification performance than all classifiers (for
e.g. for mean fscore TXAI performs better than LSTM
by 18.19%, DT by 6.81%, HMM by 4.90% , GT2 based
XAI system by 8.58% on test datasets) except TCN
(for mean fscore TCN performs better than TXAI by
4.67% on test datasets). However, the TCN classification
mechanism is not explainable hence unable to shed light
on the prediction of the room occupancy based on input
features of Temperature, Light, CO2, and Time.

With respect to the comparison with the GT2 based
XAI system, the only explainable system apart from the
proposed TXAI system, a convergence graph plotted in
Fig. 6 (c) also highlights that TXAI system converges
(∼500 function evaluations) twice as faster than standard
GT2 based XAI system (∼1000 function evaluations)
whilst also yielding higher classification metrics (Fig.
6 (a) and (b)). Moreover, the rules outlined by the
explainable systems, TXAI and XAI systems, are listed
in Table VI, and both systems are in agreement that
when the room measurements (Temperature, Light, and
CO2) have higher values, then the room is likely to be
occupied, and when the room measurements are lower,
then the room is likely to be not occupied. However,
the rules for TXAI also offer greater insight into how
the room measurements are interlinked with respect to
predicting room occupancy. For example, for the time
interval Morning, rule no 5 (see Table VI) outlines that if
both inputs of Temperature and Light have high values
then the room is likely to be occupied. In this regard,
rules across time intervals shed light on the intertwined
CoLs of the inputs prototypical for decoding the room
occupancy.

Furthermore, the TXAI systems are also able to shed
light on the temporal trajectories of the system being
modelled using RTMs, previously outlined in Section
IV-C, and illustrated in Fig. 7. The RTPs (rule transi-
tion possibilities), which are the elements of the RTMs,
represent the joint likelihood of observing a rule in one
time interval (rows) and then observing another rule
in the next time interval (columns). For example, in
the RTM transitioning from Morning to Daytime, the
rules with the highest RTP are rule number 12 (for
time interval Morning) and rule number 5 (for the next
time interval Daytime). For the particular case of the
occupancy datasets, the RTMs and the corresponding
RTPs outline the trajectory across time as the TXAI
model transitions from one time interval to another. In
this case, an analysis of the occupancy dataset can be
leveraged for the efficient energy management of smart
homes using the predictive power of the RTMs [28].

Indeed, the motivation for developing the TXAI sys-
tems is to be able to analyse time-dependent real pro-
cesses across time. In this regard, conditional distribu-
tion integrated within the TXAI model can be used to
obtain the RTMs. The RTMs entail the likelihood of
observing the transition of a real-life process from one
time point to another. The proposed TXAI system can
shed light not only on which rules are prototypical for
each of the time intervals but also on the likelihood of
observing the rules across the different time points.

VI. Conclusion

The ability of an explainable system to model a real-
life process in terms of its characteristic features is of
paramount significance to inform about the nature of the
process. In this regard, XAI systems have proved pivotal
for increasing our understanding of numerous com-
plex real-life processes. However, non time-dependent
XAI systems are not able to analyse real-life processes
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TABLE VI: The prototypical rules were obtained by the proposed time-dependent explainable artificial intelligence
(TXAI) system for the binary classification problem (room occupied or not) using the occupancy dataset. In the
column RT (Rule Transition), the rules with the highest rule transition possibility (RTP) for transitioning from one
time interval to another are marked with connecting lines: red line connects the rules with the highest RTP for
going from Morning to Daytime, blue line connects the rules with the highest RTP for going from Daytime to
Evening, and green lines connects the rules with the highest RTP for going from Evening to Morning of the next
day. The numerical values of the corresponding RTPs are also listed. The rules obtained using the standard general
type-2 (GT2) explainable artificial intelligence (XAI) system with time as another input are also outlined at the end
of the table for comparison purposes.
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2 IF Temperature is High THEN room is Occupied 0.079

3 IF CO2 is Medium THEN room is Occupied 0.050

4 IF CO2 is High THEN room is Occupied 0.046

5 IF Temperature is High AND Light is High THEN room is Occupied 0.018

6 IF Light is High AND CO2 is Medium THEN room is Occupied 0.014

7 IF Light is High AND CO2 is High THEN room is Occupied 0.012

8 IF Temperature is Medium THEN room is Occupied 0.012

9 IF Temperature is High AND CO2 is High THEN room is Occupied 0.011

10 IF Temperature is Medium AND CO2 is Medium THEN room is Occupied 0.007

11 IF Light is Low THEN room is Not Occupied 1.000

12 IF Temperature is Low THEN room is Not Occupied 0.073
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1 IF Light is High THEN room is Occupied 0.473

2 IF Temperature is High THEN room is Occupied 0.277

3 IF CO2 is High THEN room is Occupied 0.110

4 IF Temperature is Medium AND Light is High THEN room is Occupied 0.017

5 IF Temperature is High AND Light is High AND CO2 is High THEN room is Occupied 0.015

6 IF Light is Low THEN room is Not Occupied 1.000

7 IF CO2 is Low THEN room is Not Occupied 0.50

8 IF Light is Medium THEN room is Not Occupied 0.147

9 IF Temperature is High AND Light is Low THEN room is Not Occupied 0.011
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1 IF Light is High THEN room is Occupied 0.005

2 IF Light is Low THEN room is Not Occupied 1.000
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1 IF Light is High AND Time is Daytime THEN room is Occupied 0.580

2 IF Light is High AND Time is Morning THEN room is Occupied 0.425

3 IF Temperature is High AND Time is Daytime THEN room is Occupied 0.419

4 IF Light is Low AND Time is Morning THEN room is Not Occupied 1.000

5 IF CO2 is Medium AND Time is Evening THEN room is Not Occupied 0.789

Fig. 7: A schematic presenting the evolution of the occupancy system based on the rules with the highest rule
transition possibilities (RTPs) found by the proposed time-dependent explainable artificial intelligence (TXAI). The
rules in two consecutive time intervals with the highest RTPs are linked together to show how the occupancy system
is evolving from one time interval to another. A complete list of all the rules delineated by TXAI for the occupancy
dataset is enumerated in Table VI.

Rule No. 11: IF Light is Low
THEN room is Not Occupied.

Morning

Rule No. 2 If Temperature if High
THEN room is Occupied.

Daytime

Rule No. 2: If Light is Low
THEN room is Not Occupied.

Evening

0.218 0.335

0.226
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across time. This is a critical limitation of standard
XAI systems for modelling time-variant real-life pro-
cesses, especially where time is a defining parameter for
the model, i.e., the real-life process behaves differently
across time (for example, functional brain development
[29]–[32]). To this end, in this work, we propose a new
time-dependent XAI system, called TXAI, characterised
with time-conditioned distribution for analysing a time-
variant real-life process across time.

The proposed TXAI system can delineate the trajec-
tories of a dynamic, real-life process across time. In
addition, a comparison with state-of-the-art AI systems,
with varying levels of explainability, manifested that
the proposed TXAI performed better than most of the
compared AI systems (for e.g. for mean fscore TXAI
performs better than LSTM by 18.19%, DT by 6.81%,
HMM by 4.90%, GT2 based XAI system by 8.58% on test
datasets) except TCN which is a much more complex,
and a black-box method. XAI systems based on standard
FLS (e.g., T1, IT2 or GT2) are unable to integrate infor-
mation relative to the time dimension. More specifically,
TXAI system credit the membership value of a fuzzy
concept given the fuzzy concept is likely to occur at the
time of observation of fuzzy concept using conditional
distribution. The conditional distribution is then utilised
to investigate the evolution of the process across different
time intervals. In this way, the TXAI is able to predict the
likelihood of observing prototypical rules of the process
across different time intervals. For future works, the
proposed TXAI system can have profound implications
to contribute to our understanding of temporal real-life
processes, for instance human-centred systems and life
sciences. Further, for these future life science studies,
we would also endeavour that TXAI entails all ethical
concerns accounted for a more fair, and complete TXAI
analysis.
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