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Abstract

In this paper, we introduce a new benchmark dataset
for the challenging writing in the air (WiTA) task—an
elaborate task bridging vision and NLP. WiTA imple-
ments an intuitive and natural writing method with fin-
ger movement for human-computer interaction (HCI). Our
WiTA dataset will facilitate the development of data-driven
WiTA systems which thus far have displayed unsatisfactory
performance—due to lack of dataset as well as traditional
statistical models they have adopted. Our dataset consists
of five sub-datasets in two languages (Korean and English)
and amounts to 209,926 video instances from 122 partic-
ipants. We capture finger movement for WiTA with RGB
cameras to ensure wide accessibility and cost-efficiency.
Next, we propose spatio-temporal residual network archi-
tectures inspired by 3D ResNet. These models perform un-
constrained text recognition from finger movement, guar-
antee a real-time operation by processing 435 and 697
decoding frames-per-second for Korean and English, re-
spectively, and will serve as an evaluation standard. Our
dataset and the source codes are available at https:
//github.com/Uehwan/WiTA.

1. Introduction
As new types of technologies integrate into people’s

daily lives, the need for text entry systems that suit the mod-
ern mobile devices has emerged [22]. Among various ad-
vanced text-entry methods, writing in the air (WiTA), in
which people write letters with finger movement in free
space, has drawn much attention [46]. Ideal WiTA systems
enable people to write text without focusing on the key-
board layout on a tiny screen and implement a natural and
intuitive text-entry system, while securing privacy. Applica-
tions that would benefit from WiTA by immensely improv-
ing user experience include automotive interfaces, remote

*equal contribution

Figure 1. An example instance of the dataset collected in this work.
The person in the example is writing “re” from the word “recog-
nized”. WiTA offers a private communication tool for HCI.

signatures, and smart system controls.
Developing feasible WiTA systems is challenging due to

the interdependence among the involved gestures and lack
of concrete anchors or reference positions [8]. Further, un-
derstanding the correlation between various writing patterns
and the corresponding characters is complicated—leading
to an elaborative task bridging vision and natural language
processing (NLP). As a result, contemporary WiTA systems
hardly achieve satisfactory performance, which prevents
their deployment into real-world applications. Conventional
WiTA systems, in general, rely on traditional statistical
models with hand-crafted features, which restricts their per-
formance [3, 29]. Although researchers have attempted to
apply data-driven approaches for designing WiTA systems,
the current datasets available possess multiple limitations.
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For instance, [8, 46] used expensive motion sensors to cap-
ture users’ writing pattern, [8, 12] forced users to follow
predefined unistroke writing pattern, and [35, 12] only col-
lected videos capturing a single English lower-case letter,
which are not comprehensive enough for the development
of WiTA systems. Moreover, [18] adopted an egocentric
view that demands users to wear a motion capturing device.

To overcome the limitations mentioned above, we collect
a benchmark dataset in this work; Fig. 1 shows an example
data instance. Among multiple modalities for capturing fin-
ger movement in the air, we choose RGB cameras as the
sensing device due to their superior accessibility, low cost,
and generality compared to other sensing modalities such as
depth or gyro sensors. In addition, we adopt a third-person
view rather than an egocentric view to improve user experi-
ence by removing the possibility of attaching additional de-
vices on users [30]. We also allow users to follow their nat-
ural handwriting patterns to maximize usability. Finally, we
collect five sub-datasets—to ensure universality and actual-
ize unconstrained text recognition from finger movement—
in two languages: Korean lexical, English lexical, Korean
non-lexical, English non-lexical, and the mixture of the two
languages in a non-lexical format. As far as we are aware,
our dataset is the most comprehensive benchmark dataset
for the WiTA task, and we expect our dataset would facili-
tate the research on WiTA.

Next, we propose baseline models for the WiTA task,
which will serve as an evaluation standard for forthcom-
ing WiTA systems. The baseline models receive a se-
quence of image frames and transform the input into a se-
quence of characters written in the air. The proposed base-
line models perform the decoding process in an end-to-end
manner—performing unconstrained text recognition from
finger movement. For developing the baseline models, we
propose spatio-temporal residual network architectures in-
spired by 3D ResNet [37]. The proposed spatio-temporal
residual networks effectively deal with both spatial and tem-
poral contexts within the WiTA input signals. Furthermore,
we conduct a thorough ablation study to examine the effect
of each design choice and offer insights for the development
of more advanced WiTA systems.

2. Related Works

2.1. Writing Recognition System

Finger Writing. In finger writing recognition systems,
users write text in the air with right or left index finger.
Then, recognition systems capture and interpret the finger
movement to produce the text users have intended to write.
For capturing finger movement, recognition systems inte-
grate various types of sensors. One category of sensors get
attached to users’ body and gather the finger movement in-
formation. Examples of such sensors include smartwatches

[41, 28, 43] and custom-manufactured sensors [34, 20].
This category of sensors lessen the usability since users
have to carry these sensors for text-entry, and physical con-
tacts could cause discomfort [30].

A few research groups have attempted to improve the us-
ability of WiTA by excluding body-installed sensors. One of
the approaches encodes each character or word into a set of
actions and formulates WiTA as action recognition [27, 9].
Accordingly, users have to learn the new encoding systems,
which in turn degrades usability. Typing in the air is another
example of this approach [42]. Moreover, another group of
researchers has employed Kinect (depth) [46, 6, 29] or mo-
tion sensors [8, 24] to exclude body-installed sensors. How-
ever, users do not always have access to these high-cost sen-
sors due to their limited availability.

RGB cameras, which omit physical contacts, offer an
easy-to-deploy and low-cost way for capturing finger move-
ment. Contemporary approaches utilizing RGB cameras for
WiTA focus on a fingertip tracking to formulate WiTA as
handwriting recognition [2, 18, 30] or treat WiTA as gesture
recognition by performing word-based recognition of writ-
ten text [14, 13]. In contrast, we propose end-to-end base-
line models for the WiTA task—recognizing the text written
in the air on a character basis. The end-to-end architectures
for unconstrained text recognition lead to simplification of
the design process as well as enhancement of the perfor-
mance. In addition, the proposed baselines improve usabil-
ity since users are not required to slow down their writing
for finger detection and tracking.

2.2. Convolution for Spatio-Temporal Data

One of the representative applications that utilize convo-
lution over spatio-temporal data is video action recognition.
In video action recognition, convolution deals with macro-
scopic semantics within a sequence of images. Among var-
ious convolution architectures [44, 26], 3D ResNet and its
variants have exhibited satisfactory performance in video
action recognition [37]. Moreover, the performance of
a spatio-temporal convolution surpasses traditional vision
methods when a simple average pooling and a multi-scale
temporal window are applied [38]. In the process of taking
short-term and long-term temporal contexts into account,
two-path architectures have suggested [10, 11]. Deformable
kernels would enable flexible reception fields and result in
performance enhancement [39]. Further, [36] has shown
varying the amount of channel interactions can increase the
accuracy of 3D convolutional networks.

Recently, researchers have attempted to apply convolu-
tion to the hand gesture recognition task [32, 45, 25, 33].
These works concentrate on recognizing a set of pre-defined
simple hand gestures. Contrary to these works, we aim to
recognize the text written in the air with spatio-temporal
convolution. The WiTA task involves more complex hand



Figure 2. The data collection environments. We varied the back-
ground for each data collection process to remove the performance
dependency on the background variation.

gestures than the simple hand gesture recognition task and
requires unconstrained text recognition from the complex
hand gestures. For the WiTA baseline models, we focus
on short-term semantic context [40] and design spatio-
temporal convolution architectures. The proposed spatio-
temporal convolution keep the temporal structure of input
sequences and generate a sequence of vectors rather than a
single vector for classification.

3. WiTA Dataset

3.1. Participants

In total, we recruited 122 participants1 (74 male and 48
female). The participants aged from 19 to 42 (average =
24.33, std = 2.39). One of the participants is left-handed,
two participants are ambidextrous, and the rest are right-
handed. All of them use Korean as their mother tongue, and
they could read and write both Korean and English without
any difficulties.

3.2. Environment and Apparatus

We collected our data in nine environments to ensure the
robustness to background variations (Fig. 2): three semi-
nar rooms, three resting areas, one lab environment, and
two outdoor areas. Moreover, we modified the viewpoints
for different data collection processes to diversify the back-
grounds in our dataset. We set up a laptop (MS Surface)
equipped with an RGB camera (29fps) on a desk or a ta-
ble in each data collection environment. We captured image
sequences with the resolution of 224×224.

1Table 7 in the supplementary material summarizes the statistics of the
participants.

Figure 3. Examples of text for writing.

3.3. Writing Interface

We implemented the data collection interface2 using
PyQT53 which supports cross-platform application devel-
opment. The beginning page of the interface collects the
demographics of participants. Next, the main page of the
interface displays the text to write at the top center area,
and the middle area shows the current video. The right mid-
dle area contains a group of buttons for controlling the data
collection process: “start”, “stop”, “next” and “redo”.

3.4. Text for Writing

To verify the generality of the proposed WiTA task
among multiple languages at least in a preliminary manner,
we collected five sub-datasets in two languages. The text
for each type of the dataset was composed as follows (Fig.
3 shows example texts in our dataset):

• Korean4 Lexical: We utilized the dataset5 collected
by the National Institute of Korean Language (NIKL).

2Fig. 8 in the supplementary material depicts the writing interface.
3https://riverbankcomputing.com/software/pyqt/

download5
4A Hangul (Korean syllable), which is the basic building block of Ko-

rean words, consists of two to three letters: first letter, middle letter and
optional last letter. Consonants can be placed at the first and last letter po-
sitions, while vowels at the middle letter position. For example, the Hangul
‘대’ consists of two letters (‘ㄷ’ and ‘ㅐ’) while ‘한’ of three letters (‘ㅎ’,
‘ㅏ’, and ‘ㄴ’).

5https://www.korean.go.kr/front/reportData/
reportDataView.do?mn_id=45&report_seq=1

https://riverbankcomputing.com/software/pyqt/download5
https://riverbankcomputing.com/software/pyqt/download5
https://www.korean.go.kr/front/reportData/reportDataView.do?mn_id=45&report_seq=1
https://www.korean.go.kr/front/reportData/reportDataView.do?mn_id=45&report_seq=1


Figure 4. Co-occurrence statistics of our WiTA dataset.

Specifically, we retrieved the most frequent 6,000 Ko-
rean words dataset.

• Korean Non-Lexical: We randomly generated non-
lexical words by sampling from the most common
1,989 syllables (Hangul) dataset6. We restricted the
lengths of the generated words to range from one to
three.

• English Lexical: We retrieved the top 6,000 most-
frequent words from Google 1B dataset [7].

• English Non-Lexical: We randomly generated non-
lexical words by sampling from 26 alphabets. The
lengths of the non-lexical words are between 3 and 7.

• Mixture Non-Lexical: For testing multi-lingual WiTA
systems, we generated non-lexical words using both
Korean and English syllables7.

We randomly sampled a word at every data collection pro-
cess, resulting in very few numbers of duplicated text.

3.5. Data Statistics and User Behavior Analysis

Data Statistics. Tables 1 and 2 summarize the statistics
of the WiTA dataset collected in this work and compares it
with those of previous studies. In respect of dimension, our

6In theory, 11,172 distinct Korean syllables (Hanguls) exist, but about
2,000 of them are practically used [21]. NIKL provides this dataset as well.

7We expect we could verify the performance of a unified WiTA model
for multiple languages with this dataset in the future.

dataset is the most comprehensive compared to recent stud-
ies. Moreover, our dataset covers both Korean and English
in addition to lexical and non-lexical phrases, while other
datasets simply provide single-letter to less-than-three-letter
videos. Since our dataset supplies videos containing seman-
tic words, they capture the complex interdependence be-
tween gestures for different characters (C/V≥3); it would
foster the development of WiTA systems for real-world ap-
plications. Furthermore, our dataset is the only dataset that
is accessible to the public at the moment.

Fig. 4 visualizes the co-occurrence statistics8. The lex-
ical data is more biased than the non-lexical data in both
languages. Especially, the non-lexical English shows a well-
scattered distribution. In the case of Korean, the non-lexical
data is more biased than that of English since only about
2,000 pairs out of 11,172 possible Hanguls are practically
used—though the non-lexical Korean data shows more even
distribution than that of lexical Korean data. Thus, the non-
lexical data would play a vital role in the development of
unconstrained text recognition from finger movement.

User Behavior Analysis. For the analysis of user be-
haviors in WiTA, we selected 12 participants for each lan-
guage and analyzed the data by manually labeling the fin-
gertips. Fig. 5 exemplifies a set of WiTA patterns. In both
languages, users tend to squeeze characters to fit the whole
word within the screen though not consistent for all cases.
Moreover, most of the patterns are not recognizable even
given the text since users were asked to freely and naturally
write.

Next, Table 3 displays the quantitative analysis result.
The participants wrote the Korean text faster than the En-
glish text and revealed a larger deviation in the case of Ko-
rean. We consider the difference in writing speed could have
resulted from the fact that the participants were more famil-
iar with Korean than English. Next, the scales appear dis-
tinctive for both languages since a Korean Hangul consists
of two or three letters. We utilized the number of Hanguls
for measuring the scale of Korean WiTA while the num-
ber of characters for English WiTA. The Korean scale is
approximately 2.5 times larger than that of English, which
accounts for the scale difference.

4. Methodology

4.1. Problem Formulation

We formulate the WiTA decoding for unconstrained text
recognition as follows. Given a sequence of image frames
that capture user’s writing in the air I = (I1, ..., In) where
Ii (1 ≤ i ≤ n) is an image frame, a WiTA decoding al-

8As a Hangul consists of two to three letters, we analyzed the co-
occurrence between the first and the second letters, and between the second
and the third letters. For English, we analyzed the co-occurrence between
the former and the latter letters of every pair.



Table 1. Comparison of datasets. The proposed WiTA dataset is the most comprehensive and provides rich types of data instances. Our
dataset supplies videos containing semantic text written in the air, which capture the interdependence between gestures for different char-
acters. C/V, Sem, K, E, C and N in the table stand for character/video, inclusion of semantic words, Korean, English, Chinese and numbers,
respectively.

Dataset Year People Videos Frames Text C/V Sem Sensor View Environment Access

VBFR [19] 2007 69 1,794 - E 1 - RGB ego Indoor -
VBHR [35] 2012 21 1,290 - E 1 - RGB 3rd Indoor -
ANWE [46] 2013 - 375 44,522 ECN 1 - RGB-D 3rd - -

AWR [8] 2015 22 11,120 - E ≤3 X Motion - Indoor -
PGEI [18] 2016 24 - 93,729 EC 1 - RGB-D ego Indoor+Outdoor -
WiFi [12] 2018 5 26,000 - E 1 - WiFi - Indoor -
FDT [30] 2019 5 1,800 - EN 1 - RGB 3rd - -

WiTA (ours) 2021 122 209,926 1,757,307 KE ≥3 X RGB 3rd Indoor+Outdoor X

Figure 5. Examples of WiTA patterns. Users’ natural writing patterns are complex and challenging; most of the patterns are not recognizable
even given the text. One thing to note is Korean gets written in the order of left-to-right, top-to-bottom and first-to-middle-to-last-letters.

Table 2. Summary of video and text statistics. The numbers in each
cell indicate (average/std).

Language Type #Frames #Characters

Korean Lexical 87.82/32.72 3.05/1.08
N-Lexical 79.36/31.02 2.00/0.82

English Lexical 78.75/28.65 6.59/2.54
N-Lexical 68.08/21.49 5.03/1.41

Table 3. Summary of User Behavior Analysis. The unit of the
metrics in the table is pixel. HPS and CPS in the table stand for
Hangul-per-second and character-per-second, respectively

Language Metric Avg. Std. Range

Korean
HPS 3.98 1.06 (2.11, 7.11)

x-Scale 43.56 12.58 (21.96, 99.78)
y-Scale 38.26 18.45 (11.47, 147.22)

English
CPS 3.57 0.86 (1.82, 5.74)

x-Scale 18.35 7.27 (7.32, 52.78)
y-Scale 14.39 8.64 (3.73, 57.46)

gorithm aims to find the labeling l∗ with the highest condi-

tional probability:

l∗ = argmax
l

p(l|I). (1)

For the labeling, we adopt the concept of Connectionist
Temporal Classification (CTC) [16] where there is a map-
ping between a labeling and paths denoted as π’s. An op-
erator B maps a set of paths onto a labeling, i.e., multi-
ple label sequence paths reduce to the same labeling by B.
For instance, B(a,−, a, a, b) = B(−, a,−, a,−, b,−) =
(a, a, b), where − indicates a blank. Thus, the conditional
probability can be evaluated as follows:

p(l|π) =
∑

π∈B−1(l)

p(π|I), (2)

where

p(π|I) =
T∏
t=1

p(πt, t|I) =
T∏
t=1

ytπt
, (3)

where πt is the label observed at time t along path π and
ytπt

is the softmax-normalized output.
In practice,



Figure 6. Overall architecture of the WiTA baseline models. We design four types of spatio-temporal residual network architectures for the
WiTA task. Each model receives a sequence of image frames and the sequence gets transformed into a sequence of characters—conducting
unconstrained text recognition.

p(l|π) =
|l′|∑
s

αtsβ
t
s, (4)

where l′ is a modified labeling for which blanks get added at
the beginning and the end of l as well as between every pair
of consecutive labels, αts and βts are forward and backward
variables defined for searching paths, and s indicates steps.

Finally, given pairs of input I and target label z in a
training set S, the objective loss function becomes

Lctc = −
∑

(I,z)∈S

ln p(z|I). (5)

The loss function accomplishes maximum likelihood train-
ing which simultaneously maximizes the log probabilities
of all the correct labeling classifications in the training set.

4.2. Text Encoding

We encode text into a sequence of separate letters. More-
over, we employ a special character ‘∼’ to distinguish con-
secutive Hanguls for Korean and two identical characters
that appear adjacent to each other for English. For example,
“대한” and “success” becomes (ㄷ,ㅐ, ∼,ㅎ,ㅏ,ㄴ) and
(s, u, c, ∼, c, e, s, ∼, s), respectively.

4.3. Spatio-Temporal Residual Network

We propose spatio-temporal (ST) residual network archi-
tectures (Fig. 6) inspired by convolutional residual blocks

without bottlenecks [17]. Each convolutional residual block
consists of two convolution layers followed by a ReLU non-
linearity [31]. The output of the i-th residual block becomes

xi = xi−1 + F(xi−1; θi), (6)

where xi denotes the tensor computed by the i-th convolu-
tional block and F(; θi) implements the composition of two
convolutions with the parameters θi and the application of
the ReLU non-linearity. We consider four types of convolu-
tion blocks to design the proposed ST residual network ar-
chitectures9: mixed 3D-2D convolutions (ST-MC), reversed
MC (ST-rMC), residual 3D convolutions (ST-R3D) and 2D
convolutions followed by 1D convolutions (ST-R(2+1)D).

We place a 3D pooling layer in the middle of the ST-
MC and ST-rMC networks to better capture both spatial and
temporal contexts. In the cases of ST-R3D and ST-R(2+1)D,
we omit the 3D pooling layer since a sufficient amount of
temporal contexts are captured via a number of ST convo-
lutions. Next, we employ an adaptive spatial pooling layer
at the end of each ST residual network. The spatial pooling
layer preserves the temporal structure of the input tensor
which gets transformed into a sequence of characters.

9Table 8 in the supplementary material analytically depicts the convo-
lution architectures.



5. Experiments

5.1. Settings

Data Split. For training, validation, and testing the
WiTA models, we split the collected dataset into three sets
with an approximate ratio of 8 : 1 : 1. We divided the data
by person to ensure robustness of the developed model to-
wards different individuals.

Metrics. We evaluated each WiTA baseline model with
two metrics: average decoding frames per second (D-FPS)
and character error rate (CER). On one hand, we include the
D-FPS as a performance metric since ensuring a real-time
operation is crucial for decoders. We measure D-FPS by av-
eraging the total number of frames decoded in a second.
On the other hand, CER represents the decoding accuracy
which is defined as

CER =
MCD(S, P )

lengthc(P )
× 100 (%), (7)

where MCD(S, P ) is the minimum character distance (the
Levenshtein measure) between the decoded phrase S and
the ground-truth phrase P , and lengthc(P ) is the number of
characters in P . The Levenshtein measure counts the num-
ber of insertions, deletions and substitutions of characters
or words to transform S into P .

5.2. Implementation Details

We trained the WiTA models with the learning rate
warm-up scheme [15] and the Adam optimizer [23] after
resizing images to 112×112. We set the learning rate as
1e − 3. We set the batch size as 4 for 18-layered models,
8 for 10-layered models and 1 for measuring D-FPS. For
model selection and stopping condition of training proce-
dures, we followed the early stopping scheme [5]. All mod-
els converged within 175 epochs of training.

To investigate the effect of each design choice, we
trained WiTA models using different schemes. We con-
trolled the following conditions: the number of layers (10 or
18), the type of pooling layers (max-pooling [4] or average-
pooling [38]), data augmentation (random rotation and pho-
tometric distortions including brightness, contrast, satura-
tion and hue), the loading of pre-trained weights (trained on
the Kinetics-400 dataset) and the composition of training
data.

5.3. Results and Analysis

Search of Optimal Learning Configuration. In order
to identify the best learning configuration, we fixed the ar-
chitecture as ST-R3D and varied the learning conditions.
Most of the better performing configurations, including the
best one, came from 10-layered models for English, while
the best configuration for Korean came from 18-layered

models as shown in Table 4. We suspect the reason Ko-
rean requires a deeper model is due to higher complexity
in writing. The general pattern in English is that the per-
formance improves with augmentation and the pre-trained
weights with a few exceptions (the 18-layered models with
max pooling). For Korean, the pre-trained weights and aug-
mentation had a different effect on the model performance;
generally, the pre-trained weights boosted the performance,
while augmentation did not. We presume this phenomenon
occurred since some Hanguls have similarities in shape,
causing ambiguity and confusion when rotated. Moreover,
it is likely that the last letter was mistakenly considered as
the first letter since the first and the last letters of Hangul are
consonants. There are some exceptions to this pattern: when
augmentation is used along with max-pooling but the pre-
trained weights, it enhances the performance. Ultimately,
the best configurations for Korean and English mismatched.
This suggests that it is important to carefully select the de-
sign choices based on the characteristics of the language.

Effect of Model Architecture. In Table 5, the best learn-
ing configurations from Table 4 were adopted to compare
the performance of different baseline architectures. For Ko-
rean, the pre-trained weights, 18-layers and max pooling
were used for all of the four networks, whereas for English,
10 layers, average pooling, and augmentation were adopted
for all four networks. For both languages, ST-R3D dis-
played the lowest CER, and ST-rMC outperformed ST-MC
(MC failed to converge in the English dataset)—indicating
that extracting temporal information in the later layers leads
to better performance. However, none of the network archi-
tectures using 2D convolution could beat the performance
of the ST-R3D architecture (only using 3D convolution).
This implies that capturing both temporal and spatial in-
formation simultaneously throughout the entire network is
crucial in the WiTA task. In both languages, D-FPS ensures
real-time operations: 435.27 and 697.39 for Korean and En-
glish, respectively.

Impact of Training Data Configuration. Table 6 sum-
marizes the effect of training data configuration on perfor-
mance and demonstrates the increase in the amount of data
prompts performance gains. It is worth noting that the total
number of videos for lexical and non-lexical data are not
the same. The total number of videos for the lexical data is
approximately five times more than that of the non-lexical
data. The performance gap between the model trained solely
on the lexical data and the model on the non-lexical data is
less severe in Korean than in English. We suspect this is be-
cause the Korean non-lexical data do not deviate too much
from the ordinary sequence of characters that appear in the
Korean lexical dataset, whereas the English data display a
huge discrepancy between the non-lexical and the lexical
data as shown in Fig. 4.



Table 4. Results of the ablation study for searching the optimal learning condition on the validation dataset. We controlled four factors in
our study: the number of layers, the type of pooling, the application of augmentation and the usage of pre-trained weights.

Training Condition Korean (CER) English (CER)

#Layers Pooling Agmnt Prtrn Lexical N-Lexical Overall Lexical N-Lexical Overall

10 Max - - 49.85 64.24 51.71 29.77 42.75 31.47
10 Max X - 44.55 58.66 46.37 29.07 43.40 30.95
10 Avg - - 45.34 62.05 47.50 27.24 42.21 29.20
10 Avg X - 39.00 54.13 40.96 27.12 42.32 29.12

18 Max - - 67.28 79.08 68.81 33.10 49.35 35.24
18 Max X - 29.72 40.35 31.09 82.03 87.99 82.81
18 Max - X 28.02 39.79 29.54 84.93 90.91 85.72
18 Max X X 64.75 76.04 66.21 33.10 49.35 35.24
18 Avg - - 65.84 73.92 66.88 76.85 91.45 78.76
18 Avg X - 68.94 77.74 70.07 41.29 60.71 43.84
18 Avg - X 52.90 69.68 55.06 63.81 78.14 65.69
18 Avg X X 69.44 76.33 70.33 29.44 40.26 30.80

Table 5. Architectural impact on the performance. We measured the performance on the test dataset.

Model
Korean (CER) English (CER)

Lexical N-Lexical Overall D-FPS Lexical N-Lexical Overall D-FPS

ST-MC 60.42 69.21 61.48 704.26 - - - -
ST-rMC 54.18 67.47 55.78 791.28 92.78 93.96 92.94 1046.67
ST-R3D 31.62 44.37 33.16 435.27 28.10 36.46 29.24 697.39
ST-R(2+1)D - - - - 86.80 91.98 87.51 588.13

Table 6. Effect of training data configuration on the performance. Each row represents a training dataset configuration and the performance
on the test dataset. The numbers below the ‘Training Data Configuration’ column indicate the amount of the data consisting the each row.

Training Data Configuration Korean (CER) English (CER)

Lexical N-Lexical Lexical N-Lexical Overall Lexical N-Lexical Overall

100% 38.77 54.06 40.61 32.14 51.98 34.85
100% 79.72 78.39 79.56 92.95 94.58 93.17

50% 50% 53.03 64.65 54.43 47.32 58.23 48.81
50% 100% 41.50 54.14 43.02 36.71 42.71 37.53

100% 50% 34.49 47.60 36.07 28.20 40.83 29.93
100% 100% 31.62 44.37 33.16 28.10 36.46 29.24

6. Conclusion

In this work, we collected a benchmark dataset for WiTA
systems. To the best of our knowledge, our benchmark
dataset is the most comprehensive and the only dataset en-
abling real-world implementation. The dataset consists of
five sub-datasets in two languages including both lexical
and non-lexical text to ensure universality. We captured
the finger movement with RGB cameras in a third-person
view from 122 participants—resulting in 209,926 videos.
This data collection setting guarantees accessibility, cost-
efficiency, and generality. Next, we proposed baseline mod-

els for the WiTA task. In developing the baseline models,
we designed four spatio-temporal (ST) residual network ar-
chitectures inspired by 3D ResNet. The proposed ST resid-
ual networks effectively handle both spatial and temporal
contexts within the input sequence capturing finger move-
ment. The proposed models exhibited 33.16% and 29.24%
of CER in Korean and English datasets, respectively, with
the processing speed of 435 and 697 D-FPS securing a real-
time operation. We expect that our dataset and proposed
baseline models would activate the research on WiTA; we
make our dataset and the source codes public.
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Supplementary Material
In this supplementary material, we describe the details of
our study not included in the main manuscript due to space
limit. We include the following additional details: statistics
of the WiTA dataset, description of the model architectures,
the full ablation study results on the effect of training data
configuration, and the discussion on future research direc-
tion. Moreover, Fig. 7 displays the annotated result of Fig.
1. The tracking of the fingertip reveals the text written in the
air—though the tracking is hardly possible for laypersons,
ensuring a private communication tool.

A. Data Collection Procedure
First, we informed the participants (see Table 7 for par-

ticipant statistics) the data collection procedure and gath-
ered the demographics (see Fig. 8 for the interface). We
asked the participants to assume that a perfect AI system
will decode their writing in the air and write as naturally as
possible. As a warm-up, the participants familiarized them-
selves with the writing interface using the first ten phrases.
Then, the participants wrote 75 phrases of lexical Korean
and English texts, respectively and 15 phrases of non-
lexical Korean, English and the Mixture texts, respectively.
Each participant wrote and captured 195 (=75×2+15×3)
phrases and each data collection process took approxi-
mately 50 minutes. In total, the data we collected includes
209,926 video instances.

B. Additional Statistics of the WiTA Dataset
Figure 9 shows the histogram of characters in each

dataset split. The lexical datasets are biased towards cer-
tain characters. For example, in the English data, the char-
acter that made the most appearance (i.e., ‘e’) appeared ap-
proximately 70 times more than the character that made the
least appearance (i.e., ‘z’). On the other hand, the English
non-lexical data shows a well-balanced data distribution
within each dataset as well as across train, validation, and
test datasets. Combining all the characters in each dataset,
every character appears within 300 to 400 times, and the
most appeared character was approximately only 10% more
than the least appeared character. Likewise, the Korean non-
lexical data are more fairly distributed compared to the Ko-
rean lexical data. In particular, the first Korean non-lexical
characters are well spread out, while the lexical bar graph
shows a drastic difference between the most appeared char-
acter and the least appeared character. Although following
the general distribution of the lexical data, the second and
the third Korean non-lexical data are relatively more spread
out. The drastic difference in the number of appearances of
more-likely-to-appear characters and less-likely-to-appear
characters in Korean non-lexical data is inevitable because

Figure 7. The annotated example instance of the dataset collected
in this work. The person in the example is writing “re” from the
word “recognized”. WiTA offers a private communication tool for
HCI.

Table 7. Summary of the participant statistics.

Metric Type Value

Gender
Male 74/122

Female 48/122
Neutral -

Age
Range 19 - 42

Average 24.33
s.t.d. 2.39

Comfort-Hand
Left 1/122

Right 119/122
Both 2/122

Korean
Fluency

Reading 4.82/5.00 (0.47)
Writing 4.61/5.00 (0.43)
Overall 4.70/5.00 (0.45)

English
Fluency

Reading 4.33/5.00 (0.39)
Writing 4.16/5.00 (0.37)
Overall 3.45/5.00 (0.30)

less appearing characters are simply not used frequently in
the Korean language in general.

C. Additional Description on Model Architec-
tures

Table 8 describes the spatio-temporal (ST) residual net-
work architectures. While ST-MC, ST-rMC, and ST-R3D
contain a pair of convolutions in each convolution block,
the ST-R(2+1)D architecture includes two pairs of convo-



(a) Interface of the beginning page.

(b) Interface of the main page.
Figure 8. Typing interface. The interface consists of two pages.
The beginning page gathers the demographics of participants and
the main page captures the videos of WiTA.

lutions in each convolution block. Except for the ST-R3D
architecture, all other architectures entail 2D convolutions.
The proposed ST residual networks offer a way to scale-up
or scale-down the model depths. For 10-layered models, n
in the table is 1 while n is 2 for 18-layered models. Though
models with more than 18 layers are possible, it is highly
probable that such models would hit the hardware memory
limit during the training procedure.

D. Additional Ablation Study
In order to examine how the introduction of non-lexical

data affects the performance of the models, we varied the
percentage of lexical and non-lexical data. First, we exam-
ined the performance of the model using the entire dataset
(100% lexical, 100% non-lexical) and decreased the non-
lexical data to 50% (the first group of Table. 9). The per-
formance for both English and Korean decreased when the
amount of the non-lexical data was reduced. However, the
lack of the non-lexical data less-affected the performance in
English than in Korean. We designed a similar experiment
but using only 50% of the lexical data (the third group of
Table 9). In this case, however, the performances of the En-

glish and Korean models were almost equally affected by
the lack of non-lexical data.

Next, we only used 100% of the lexical data and then
added in the non-lexical data by 50% and 100% while re-
moving the lexical data by the same amount of the non-
lexical data that was added in so that the total amount of the
used data remained the same (the second group of Table 9).
Similarly, we repeated the same process using a less amount
of data. We started the experiment by only using 50% of the
lexical data and then added the non-lexical data by 50% and
100% while removing the lexical data by the same amount
of the non-lexical data (the fourth group of Table 9). Since
the former experiment used more data, the results of the
former experiment show higher performance overall. How-
ever, both experiments follow similar patterns—the perfor-
mance of the model for Korean decreases with the addition
of the non-lexical data, while the performance of the En-
glish model increases with the addition of the non-lexical
data.

We suppose the English non-lexical data being well dis-
tributed allowed the models to better understand the lan-
guage. On the other hand, for Korean, although there are
thousands of distinct Korean syllables (Hanguls), only a
fraction of them are practically used. Therefore, removing
the lexical data to account for the addition of non-lexical
data led the models to get trained on less-likely-to-appear
data—degrading the performance.

Finally, we compared the performance of the model us-
ing only lexical data and non-lexical data (the fifth group
of Table. 9). For a fair comparison, we only used 20% of
the lexical data which is equivalent to the number of 100%
of the non-lexical data. For both languages, higher perfor-
mance was obtained when using only lexical data.

E. Discussion
We collected a benchmark dataset for the development

of WiTA systems in this work. The dataset allows accessi-
ble, cost-efficient, and general WiTA systems. Furthermore,
the WiTA baselines designed with the proposed spatio-
temporal (ST) residual networks implement such easy-to-
deploy WiTA systems. The ST residual networks effectively
deal with the spatial and temporal contexts inherent in the
input image sequences. We demonstrated that the baseline
models displayed moderate performance in both Korean
and English with reasonable operation time. However, a few
future works still exist for further improvement of the per-
formance of the proposed baselines.

First of all, we can investigate more efficient and ef-
fective model architectures in future studies. The need for
a study on model architectures that achieve higher accu-
racy through less computational complexity remains. We
can hardly train the current baseline models with a larger
batch size because of the high computational complexity. If



Figure 9. The histogram of each character by dataset split. The non-lexical datasets display more even distribution than the lexical datasets
in both languages.

Table 8. Spatio-temporal residual network architectures. n is 1 for the 10-layered models and 2 for the 18-layered models.

Layer Name ST-MC ST-rMC ST-R3D ST-R(2+1)D

Stem Block 3× 7× 7, stride 1× 2× 2
1× 7× 7, stride 1× 2× 2,
3× 1× 1, stride 1× 1× 1

Conv Block 1
[
3× 3× 3, 64
3× 3× 3, 64

]
× n

[
1× 3× 3, 64
1× 3× 3, 64

]
× n

[
3× 3× 3, 64
3× 3× 3, 64

]
× n


1× 3× 3, 144
3× 1× 1, 64
1× 3× 3, 144
3× 1× 1, 64

× n

Conv Block 2
[
3× 3× 3, 128
3× 3× 3, 128

]
× n

[
1× 3× 3, 128
1× 3× 3, 128

]
× n

[
3× 3× 3, 128
3× 3× 3, 128

]
× n


1× 3× 3, 230
3× 1× 1, 128
1× 3× 3, 230
3× 1× 1, 128

× n

Pooling (Middle) Spatio-temporal pooling (maximum or average) - -

Conv Block 3
[
1× 3× 3, 256
1× 3× 3, 256

]
× n

[
3× 3× 3, 256
3× 3× 3, 256

]
× n

[
3× 3× 3, 256
3× 3× 3, 256

]
× n


1× 3× 3, 460
3× 1× 1, 256
1× 3× 3, 460
3× 1× 1, 256

× n

Conv Block 4
[
1× 3× 3, 512
1× 3× 3, 512

]
× n

[
3× 3× 3, 512
3× 3× 3, 512

]
× n

[
3× 3× 3, 512
3× 3× 3, 512

]
× n


1× 3× 3, 921
3× 1× 1, 512
1× 3× 3, 921
3× 1× 1, 512

× n

Pooling (Last) Global adaptive spatial pooling (maximum or average)

Fully Connected 512× 256 fully connections

future research results in a lighter and faster model architec-
ture, we expect that the training efficiency will improve as
well. In addition, the fast and accurate model architectures
will maximize the usability of WiTA systems. This will fos-
ter the active utilization of WiTA in various fields.

Next, we can diversify the data collection environments
in the following study. In this study, we collected the data

in several environments but used one type of device. In the
following studies, we can make WiTA performance more
robust by collecting data using various devices from more
diverse environments. With the introduction of new de-
vices, the data collection conditions, including FPS, im-
age resolution, color space, and the background, will vary.
In particular, we would collect data in consideration of a



Table 9. Effect of training data configuration on the performance. Each row represents a training dataset configuration and the performance
on the test dataset. The numbers below the ‘Training Data Configuration’ column indicate the amount of the data consisting the each row.
We designed five groups of experiments and the double lines separate each experiment group below.

Training Data Configuration Korean (CER) English (CER)

Lexical N-Lexical Lexical N-Lexical Overall Lexical N-Lexical Overall

100% 100% 31.62 44.37 33.16 28.10 36.46 29.24
100% 50% 34.49 47.60 36.07 28.20 40.83 29.93

100% 0% 38.77 54.06 40.61 32.14 51.98 34.85
90% 50% 59.16 72.43 60.76 28.43 40.94 30.14
80% 100% 64.66 74.25 65.82 30.99 39.90 32.20

50% 100% 41.50 54.14 43.02 36.71 42.71 37.53
50% 50% 53.03 64.65 54.43 47.32 58.23 48.81

50% 0% 53.22 63.58 54.46 83.06 91.15 84.16
40% 50% 69.42 79.80 70.67 62.30 71.46 63.55
30% 100% 70.64 79.14 71.66 48.79 48.54 48.75

20% 0% 66.07 74.75 67.11 88.18 92.40 88.76
0% 100% 79.72 78.39 79.56 92.95 94.58 93.17

dynamic background environment. As these environmental
factors diversify, the reliability of the WiTA system devel-
oped through the data will enhance.

Furthermore, we can improve accuracy by integrating
the WiTA system with typo correction systems. We would
not be able to reduce ambiguity between some characters,
no matter how much data is available. Thus, there may exist
limitations in driving performance improvement with data
alone. Using typo correction systems can remove apparent
typos. Moreover, we expect that using the character lan-
guage model (LM) [1] in WiTA systems can reduce typos
by employing semantic context. We can utilize LM in WiTA
systems in an end-to-end manner or a modular manner.

Last but not least, we can extend the current WiTA pro-
posed in this work to various languages. Currently, the
dataset contains Korean and English. Related researchers
and we can expand the WiTA dataset using the data collec-
tion tool disclosed in this study. In the process of supporting
various languages, it is necessary to consider the unique fea-
tures of the language, such as designing a specific encoding
method for each language. In addition, when multiple lan-
guage data is collected, a single integrated WiTA system can
support multiple languages at once. Then, the WiTA system
can handle various types of user inputs and become versa-
tile.


