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Abstract — To monitor industrial processes properly, soft-

sensors are widely used to predict significant but difficult-

to-measure quality variables. However, the prediction 

performances of traditional data-driven soft-sensors are 

usually unacceptable once suffering from high-nonlinear, 

high-dimension and imblance data issues. Therefore, a 

semi-supervised soft-sensor, which is learned by a just-in-

time method with structure entropy clustering (SS-JITL-

SEC), is proposed aiming to improve prediction 

performance with a simpler way. Inspired by a divide and 

conquer strategy, a novel SEC method is proposed to 

achieve several clusters and then to translate the highly 

complex and nonlinear modeling problems into simple and 

linear ones. Moreover, the training dataset is extended 

through a mixed semi-supervised (SS) labeling approach. 

Finally, dissimilarity-based just-in-time learning (JITL) 

works together with the resulting clustering sub-datasets to 

formulate a local adaptive prediction model. Two datasets 

from different types of wastewater treatment plants are 

used to verify the effectiveness of the proposed soft-sensor. 

The results show that the SS-JITL-SEC soft-sensor can 

achieve better prediction performance than other standard 

counterparts, and even for effective process monitoring 

with the resulted residuals. 
 

Impact Statement — Proper processes monitoring of difficult-to-

measure quality-related variables is imperative for safe and stable 

operation of industrial processes, particularly under the case of 

suffering from significantly dynamic, highly dimensional 

behaviors during supervised learning. Data-driven soft-sensors 

together with adaptive learning and semi-supervised learning are 

currently the alternatives to achieve this goal. The novelty of 
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present work is to propose a just-in-time learning for semi-

supervised soft-sensor together with a structure entropy clustering 

algorithm. Inspired by a divide and conquer strategy, a complex 

model learning problem can be simplified. Then the resulted soft-

sensor can be used for online monitoring of difficult-to-measure 

variables. The proposed case studies demonstrate that this soft-

sensor is able to overcome the limitations of standard modeling 

problem for the complex processes using insufficient samples. 

With the proposed soft-sensors, we believe that the proposed 

methodology could be applied for a wider range of fields, such as 

chemical plants, wind power plants and so on. 

 
Index Terms—Clustering, Semi-supervised learning, Adaptive 

algorithms, Industrial processes monitoring 

 

I. INTRODUCTION 

ITH the development of industrial processes, proper 

monitoring of significant but difficult-to-measure quality 

variables has recently received more and more attention [1-4]. 

Online measurement equipment usually fails in industrial 

processes due to harsh working conditions and high costs of 

maintenance, even though they can achieve acceptable results 

[5-7]. Therefore, soft-sensors are studied and act as an 

alternative to back up a hardware sensor or to address the 

industrial process monitoring problems by justifying the 

residuals between the predictive and real values. Though 

refining the hidden information from easy-to-measure variables 

and analyzing mechanism knowledge of industrial processes, 

various types of soft-sensors can be constructed and applied [8-

10]. 

In general, soft-sensors are categorized as mechanism 

modeling and data-driven modeling [11]. Mechanism modeling 
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aims to establish prediction models by analyzing mechanism 

knowledge and translating them into mathematical 

relationships [12-14]. However, due to the complexity of 

industrial processes as well as lack of mechanism knowledge, 

mechanism modeling is usually difficult to be widely used, 

particularly, when unknown or unexpected working conditions 

happen. Fortunately, data-driven modeling provides a 

convenient and efficient alternative to predict the difficult-to-

measure quality variables. Data-driven modeling describes the 

inherent relationships between input and output variables 

without the need to understand all the mechanism details [2, 15-

18]. In recent years, data-driven modeling methods, such as 

partial least squares (PLS) [19], multiple linear regression 

(MLR) [20] and artificial neural networks (ANNs) [21], have 

been successfully used for industrial processes monitoring. 

However, data-driven modeling of more complex industrial 

processes implies more requirements of training samples and 

training time. To deal with these problems, Liu et al. proposed 

a bagging method to boost the utilization efficiency of training 

samples [22]. But more replicated samples do not mean more 

useful information. Li et al. proposed a co-training approach to 

enrich the training samples by labeling the unlabeled data as 

labeled data [23]. However, the computational intensity using 

the cross-validation process is unacceptable. Mohamed et al. 

combined mechanistic modeling with data-driven modeling to 

build a hybrid prediction model [24]. Despite the hybrid 

prediction model reducing dependence on training samples, the 

application scope of mechanistic modeling is limited and hard 

to generalize. 

Clustering methods provide an alternative to reduce the 

difficulty of modeling and decrease the time-consuming [25]. 

Inspired by the divide and conquer strategy, clustering methods 

herein are able to divide samples into several sub-datasets by 

analyzing the information interaction [26]. By doing so, each 

sub-dataset involves the most relevant information between 

them, making complex and nonlinear modeling problems 

translate into simple and linear problems. Thus, the prediction 

model can be built more effectively and achieve better 

prediction performance with less training data. Oyelade et al. 

proposed a k-means clustering algorithm for monitoring 

students’ academic performance [27]. Depending on the 

similarity measurement with Euclidean distance, clustering 

sub-datasets with distinct non-lapping boundaries were 

produced and then worked together with the simple regression 

models to achieve effective prediction. But some initial 

parameters of the k-means clustering algorithm must be given 

properly in advance, such as the clustering centers and the 

number of centers. Also, the computational costs of continually 

iterative training processes are often unmanageable. Lu et al. 

proposed a Gaussian mixture model (GMM) clustering method 

to extract sub-patterns of heating load [28]. The motivation of 

GMM clustering is to make full use of the joint probability 

distribution within samples to decouple the intra-relationship of 

sub-patterns. However, the method usually has terrible 

clustering results for samples with high-dimension and uneven 

spatial distribution. Therefore, designing a reliable and efficient 

clustering method is an imperative step to achieve samples 

clustering with high-dimension and uneven spatial distribution. 

Even though clustering methods can simplify the modeling 

problems for industrial process monitoring, reduce the 

difficulty of modeling and decrease the time-consuming, the 

highest priority is still to collect the appropriate training 

samples. Due to the lack of measurement devices and the high 

cost of collection, only a limited amount of labeled data, which 

contain both input and output variables, are available. On the 

contrary, a large amount of unlabeled data, which only contain 

input variables, are taken as useless for granted. Therefore, 

semi-supervised (SS) learning algorithms are necessarily 

studied to increase the utilization of unlabeled data, further 

addressing the problem of imbalance between labeled data and 

unlabeled data [29-31]. The main purpose of SS learning is to 

enrich the initial training samples by labeling the unlabeled data 

as new labeled data, then to increase training data size. Sun et 

al. proposed a self-training strategy for the classification of 

samples [32]. In this paper, the self-training strategy was used 

to select and label the unlabeled samples optimized in the outer 

loop. However, the mutual information between labeled and 

unlabeled samples is usually ignored, which makes the error be 

accumulated in prediction models and has a negative influence 

on further prediction performance. Li et al. proposed a co-

training approach to reduce the accumulation of errors [23]. The 

main principle is to divide the training samples into two 

independent parts and to estimate the output variables of 

unlabeled samples, respectively, then the appropriate unlabeled 

samples can be selected by cross-validation between two parts. 

Unfortunately, the cross-validation process is time-consuming. 

Tao et al. proposed a scalable multi-view semi-supervised 

algorithm for classification problems [33]. The algorithm 

improves computational efficiency by directly constructing a 

global regression model for each sample, and can solve large-

scale multi-view semi-supervised classification problems. 

However, the algorithm is susceptible to outliers and limited to 

classifications, rather than regressions. 

In addition, traditional prediction models are usually trained 

offline but used online, making model prediction performance 

deteriorate. Therefore, it becomes more necessary than ever to 

devote to equipping a soft-sensor with adaptive ability. One of 

the commonly used methods is resorting to the moving window 

(MW) technique. Zhou et al. used the MW technique to develop 

a model to predict fuel cell degradation [34]. The purpose of the 

MW technique is to iteratively update the model structure and 

parameters by changing the informative regions online. But it 

is susceptible to abnormal samples in the training process. Wu 

et al. proposed a time difference (TD) approach to ensure online 

prediction for variables in wastewater treatments [35]. The 

approach can adapt to gradual drifts of both secondary variables 

and corresponding targets simultaneously. However, this 

method is also easily affected by abnormal samples and only 

suitable to deal with the prediction problem of continuous data. 

Therefore, Yuan et al. proposed a multi-similarity 

measurement-driven ensemble just-in-time learning (E-JITL) 

for adaptive soft-sensors [36]. In E-JITL, different distance 

measurement strategies, such as Euclidean and Mahalanobis 

distances, are adopted for samples selection and then local 
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prediction models can be established. However, each distance 

measurement strategy often focuses on a certain aspect of 

samples information and has its own limitations. Thus, 

traditional distance measurement strategies may be insufficient 

or even fail to capture the similarity between samples. 

To solve the aforementioned problems, this paper proposed 

a semi-supervised soft-sensor of just-in-time learning with 

structure entropy clustering (SS-JITL-SEC). The main 

contributions can be reflected in the following aspects: 

1) A dissimilarity measurement strategy is defined for 

clustering and modeling. It is able to calculate distance values 

by analyzing the dissimilarity between two sets of samples, 

which cannot only effectively alleviate the negative influence 

of outliers, but also deal with high-nonlinear and high-

dimension data issues in the process industries. 

2) Depending on the proposed dissimilarity measurement 

strategy, a novel structure entropy clustering (SEC) method is 

derived for dynamic data feature extraction. Compared to the 

existing clustering methods, initial parameters of the SEC 

method do not need to be given in advance, therefore avoiding 

the heavy workforce of prior knowledge setting as well as the 

continuous and costly iterative learning processes. 

3) Since a large amount of unlabeled data are generally 

discarded wastefully, a mixed SS labeling method is proposed 

to label the unlabeled data to extend the original training dataset. 

The method considers the specific distribution scenarios of each 

unlabeled data, and then estimates the output variable of each 

unlabeled data with proper approaches. 

4) To prevent deterioration of prediction performance 

because of the significant variations within test data, the 

dissimilarity measurement strategy is assimilated into JITL and 

works with the resulted clustering sub-dataset to formulate a 

local adaptive prediction model, thereby ensuring the high 

prediction quality sequentially. 

The organization of the remainder of this paper is as follows: 

In Section II, the basic concepts of structure entropy and JITL 

are briefly introduced. Section III presents the proposed 

dissimilarity measurement strategy, SEC method as well as the 

framework of the SS-JITL-SEC soft-sensor in detail. Section 

IV demonstrates the effectiveness of the proposed soft-sensor 

through a real full-scale wastewater plant and an oxidation ditch 

(OD) wastewater plant. Section V discusses the advantages and 

disadvantages of the SS-JITL-SEC soft-sensor. Finally, Section 

VI provides the conclusion and future works. 

II. BASIS OVERVIEW 

A. Structure Entropy 

Entropy is usually used to describe the chaos of atom 

distribution in physics. A smaller entropy value indicates a 

more well-organized system. Similarly, in information theory, 

entropy describes the uncertainty degree for an information 

source in the signal. Therefore, entropy is a measurement of 

chaos in various systems [37]. When the system has 𝑛 different 

states, the probability of every state is defined as 𝑃𝑖  (𝑖 =
1,2, … , 𝑛). The entropy of the system is: 

𝐸 = − ∑ 𝑃𝑖𝑙𝑛𝑃𝑖
𝑛
𝑖=1                                 (1) 

where 𝑃𝑖  must satisfy 0 ≤ 𝑃𝑖 ≤ 1 and ∑ 𝑃𝑖
𝑛
𝑖=1 = 1. 

To assimilate entropy into clustering for samples analysis, 

the distribution of samples can be regarded as similar to the 

atom distribution. Thus, structure entropy can be used to 

describe the internal information of samples [38]. The structure 

entropy of the system is defined: 

𝐸𝑖 = ∑ (𝑆𝑖𝑗𝑙𝑜𝑔2𝑆𝑖𝑗 + (1 − 𝑆𝑖𝑗)𝑙𝑜𝑔2(1 − 𝑆𝑖𝑗))
𝑖≠𝑗
𝑗∈𝑋        (2) 

where 𝑋 is a sample set, 𝑖 = 1,2, … , 𝑛, and 𝑆𝑖𝑗  is the similarity 

between 𝑥𝑖 and 𝑥𝑗. 

𝑆𝑖𝑗 = 𝑒−𝛼𝐷𝑖𝑗                                   (3) 

where 𝐷𝑖𝑗 is the Euclidean distance between 𝑥𝑖 and 𝑥𝑗. 𝛼 is the 

curvature of the exponential function: 

𝛼 = −𝑙𝑛0.5/�̅�                                 (4) 

where �̅�  is the average Euclidean distance among all the 

samples. It is obvious that 0 ≤ 𝑆𝑖𝑗 ≤ 1, when 𝑆𝑖𝑗 = 0.5, 𝐸𝑖 = 1 

is the maximum. When 𝑆𝑖𝑗 = 0 or 1, 𝐸𝑖 = 0 is the minimum. 

According to the above definition and analysis, if the samples 

are either farther or closer to each other, their structure entropy 

values should be smaller. In other words, a smaller structure 

entropy value means that the sample may be more likely located 

in the distribution center. Outliers will also have small structure 

entropy values, but they are not the distribution centers. 

Therefore, discriminating and removing outliers is a critical 

step for subsequent clustering and modeling. 

B. Just-in-time Learning (JITL) 

JITL is an effective tool to prevent the deterioration of 

prediction performance [39]. According to the similarity 

between samples, the most similar training samples are selected 

and a local adaptive model is constructed with these training 

samples to achieve accurate prediction and reliability of soft-

sensors [40]. The major framework of JITL is shown as follows: 

Firstly, 𝑥𝑡  represents the test data, 𝑑𝑙𝑖𝑚  is a similarity 

threshold value. According to Euclidean distance values 

between 𝑥𝑡  and original training samples, the local training 

samples space Ω𝑘 can be determined: 

Ω𝑘 = {𝑥𝑖 , 𝑑(𝑥𝑡 , 𝑥𝑖) ≤ 𝑑𝑙𝑖𝑚 , 𝑖 = 1,2, … , 𝑘           (5) 

where 𝑘 represents the size of the sample space Ω𝑘. 𝑑(·,·) is the 

distance measurement between two data. In general, 

𝑑(𝑥𝑡 , 𝑥𝑖) = ‖𝑥𝑡 − 𝑥𝑖‖2                           (6) 

where ‖·,·‖2 represents the 2-norms. Then, the local function of 

𝑥𝑡 is described as follows: 

𝑓(𝑥𝑡 , 𝜃) = 

𝜃0 + 𝜃1(𝑥𝑡 − 𝑥𝑖) + ⋯ + 𝜃𝑙(𝑥𝑡 − 𝑥𝑖)𝑙 = 𝜃𝐺(𝑥𝑡 − 𝑥𝑖)    (7) 

where 𝜃 = (𝜃0, 𝜃1, … , 𝜃𝑙) , 𝐺(𝑥𝑡 − 𝑥𝑖) = (1, (𝑥𝑡 −

𝑥𝑖), … , (𝑥𝑡 − 𝑥𝑖)
𝑙)′ . The process of optimization is shown as 

follows: 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ {𝑦𝑖 − ∑ 𝜃𝑗(𝑥𝑡 − 𝑥𝑖)
𝑗𝑙

𝑗=0 }𝑓𝑖
𝑘
𝑖=1          (8) 

where 𝑦𝑖 is the output of 𝑥𝑖. 𝑓𝑖 is the function between 𝑑(𝑥𝑡 , 𝑥𝑖) 

and 𝑑𝑙𝑖𝑚: 

𝑓𝑖 = 𝐾(
𝑑(𝑥𝑡,𝑥𝑖)

𝑑𝑙𝑖𝑚
)                               (9) 

where 𝑓𝑖 describes the contribution of 𝑥𝑖 for the local model, it 

is usually determined by the kernel function 𝐾. Therefore, the 

prediction values �̂�𝑡 = 𝑥𝑡
′𝜃. 

In this paper, we use the new dissimilarity measurement 

strategy to replace the traditional 2-norms distance 
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measurement, making the JITL improve and named 

dissimilarity-based JITL. 

III. A SEMI-SUPERVISED SOFT-SENSOR OF JUST-IN-TIME 

LEARNING WITH STRUCTURE ENTROPY CLUSTERING (SS-JITL-

SEC) 

To enhance the prediction performance of soft-sensors in 

industrial processes monitoring, this paper proposes an SS-

JITL-SEC soft-sensor. Depending on the dissimilarity 

measurement strategy, an SEC method is firstly derived for 

dynamic data feature extraction. Then, a mixed SS labeling 

method is proposed to enrich the original training dataset by 

labeling unlabeled data as new labeled data. Finally, the 

dissimilarity measurement strategy is assimilated into JITL and 

works with the resulted clustering sub-dataset to build a local 

adaptive prediction model, ensuring high prediction 

performance with the change of test data.  

A. Dissimilarity Measurement Strategy 

Dissimilarity measurement strategy is a new distance 

measurement strategy, which calculates the distance by 

analyzing the dissimilarity between two high-dimension 

samples. Given samples 𝑥𝑖 ∈ 𝑋, 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑙), 0 < 𝑖 ≤
𝑛, 𝑙 presents the dimension of the samples, and 𝑛 is the number 

of samples. The dissimilarity measurement is defined as follows: 

𝑑(𝑥𝑖 , 𝑥𝑗) = (𝑙 − 𝑠(𝑥𝑖 , 𝑥𝑗)) 𝑙⁄                      (10) 

where 𝑑 is the distance value between two samples, and 𝑠 is the 

total similarities between 𝑥𝑖 and 𝑥𝑗: 

𝑠(𝑥𝑖 , 𝑥𝑗) = ∑ 𝜃(𝑥𝑖𝑝 , 𝑥𝑗𝑝)𝑙
𝑝=1                       (11) 

where 𝜃 is the similarity between 𝑥𝑖𝑝 and 𝑥𝑗𝑝: 

𝜃(𝑥𝑖𝑝 , 𝑥𝑗𝑝) = {
1, |𝑥𝑖𝑝 − 𝑥𝑗𝑝| ≤ 𝑟 

0, |𝑥𝑖𝑝 − 𝑥𝑗𝑝| > 𝑟

𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑝 ≤ 𝑙

                  (12) 

where 𝑟 is a similarity threshold value, 𝑥𝑖𝑝 and 𝑥𝑗𝑝 are the 𝑝-th 

column of 𝑥𝑖 and 𝑥𝑗. 

According to the properties of distance measurement, it is 

easy to prove that the proposed dissimilarity measurement 

strategy can satisfy non-negativity and symmetry, but it cannot 

follow the triangle inequality. Therefore, the proposed 

dissimilarity measurement strategy is only defined as a 

generalized distance measurement strategy. Fortunately, it 

satisfies the properties of a linear space, such as the calculation 

law of addition and multiplication, so it can be used to define a 

linear system space for subsequent clustering and modeling. 

Compared with the traditional Euclidean distance 

measurement, because 𝜃(𝑥𝑖𝑝 , 𝑥𝑗𝑝)  has the same weight 

influence on the final distance value of (𝑥𝑖 , 𝑥𝑗), the negative 

influence of outliers is reduced. Thus, it is a more rational 

distance measurement strategy and the reliability of the distance 

value is enhanced. 

B. Structure Entropy Clustering (SEC) 

In this paper, the dissimilarity measurement strategy replaces 

the traditional Euclidean distance measurement as a basis for 

clustering. For high-dimension samples, the calculation 

formula of structure entropy is still Eq. (2). Depending on the 

calculated structure entropy value of each sample, we can 

achieve dynamic samples clustering. Thus, the clustering 

method is named structure entropy clustering (SEC). The 

detailed steps are as follows: 

The first step is to find and determine clustering centers. 

Initial clustering centers of traditional clustering methods are 

given in advance and depend on the given prior knowledge. 

And then the clustering centers are adjusted during the iterative 

training process, which is often unmanageable and time-

consuming. However, the SEC method acquires the structure 

entropy value of each sample by one-circle calculation. 

According to the properties of structure entropy, if the structure 

entropy value approaches 0, the sample may be a clustering 

center. Therefore, it is cheap and efficient to determine the 

clustering centers of the SEC method and avoid the repeated 

iteration training process. 

The samples with the minimum structure entropy values are 

selected as the clustering centers. Then, we need to determine 

 
Fig. 1.  The framework of SS-JITL-SEC soft-sensors 
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the number of clustering centers. Each sample 𝑥 should satisfy 

the Gaussian distribution assumption 𝑓(𝑥): 

𝑓(𝑥) =
1

√2𝜋𝜎
exp (−

(𝑥−𝜇)2

2𝜎2 )                      (13) 

where 𝜎  represents the standard deviation, 𝜇  is the mean. 

Depending on the Gaussian distribution assumption, we 

determine the number of clustering centers: 5‰ of the number 

of total samples. 

After the clustering centers and their number are determined, 

we calculate the dissimilarity measurement distance between 

clustering centers and other samples. Then, these samples are 

grouped depending on the dissimilarity distance values. If the 

dissimilarity distance value is less than a control threshold value 

𝑄, the sample will be grouped into the corresponding clustering 

sub-dataset. Otherwise, the sample will be removed. Where 𝑄 

represents a specified control threshold value. In fact, the 

smaller control threshold value 𝑄 is, the more samples are in 

each clustering sub-dataset, but the worse clustering results may 

be. Therefore, a proper control threshold value 𝑄 is the primary 

factor influencing the clustering results.  

In addition, the structure entropy values of outliers also 

approach 0. But they are not suitable to serve as clustering 

centers, even they will cause failed clustering results. Therefore, 

we define a threshold value 𝑖𝑛𝑓 of the size of clustering sub-

dataset to eliminate the negative influence from outliers. If the 

size of resulted clustering sub-dataset is less than 𝑖𝑛𝑓 , the 

clustering center will be removed, and then we will re-

determine new clustering centers. 

C. A Mixed Semi-Supervised (SS) Labeling Method 

In general, a large amount of unlabeled data are discarded 

wastefully. An alternative, semi-supervised (SS) labeling 

method, deals with the problem by labeling the unlabeled data 

as labeled data to extend original training samples. However, 

traditional SS labeling methods usually ignore the negative 

influence of the surrounding labeled data on unlabeled data 

even easily fall into errors due to the outliers. Therefore, a 

mixed SS labeling method is proposed to address these issues. 

The detailed process is as follows: 

Firstly, the dissimilarity distance values between unlabeled 

data and clustering centers are calculated through Eq. (10) - Eq. 

(12). Depending on the dissimilarity distance values, unlabeled 

data with the minimum dissimilarity distance value have the 

most similarity to the clustering sub-dataset. Then, we calculate 

the dissimilarity distance values between the unlabeled data and 

labeled data from this clustering sub-dataset. If the dissimilarity 

distance value is less than 𝑤, the labeled data will be selected 

to estimate the output value of the unlabeled data. Where 𝑤 

represents a specified control threshold value. Finally, the mean 

of these selected labeled data is taken as the estimated output 

value of the unlabeled data. 

�̂�𝑖 =
1

𝑝
∑ 𝑦𝑗

𝑝
1 , 𝑑(𝑥𝑖 , 𝑥𝑗) ≤ 𝑤                        (14) 

where �̂�𝑖  is the estimated output value of 𝑥𝑖 , (𝑥𝑗 , 𝑦𝑗)  is the 

labeled data in the clustering sub-dataset and 𝑝 is the number of 

the selected labeled data. 

However, when the unlabeled data are outliers, due to the 

lack of surrounding labeled data, the output value can be only 

estimated by the training model. Thus, the negative influence of 

outliers is reduced even is eliminated. 

The mixed SS labeling method correctly labels all the 

unlabeled data. Also, since the clustering sub-datasets are 

updated, the mixed SS labeling method is used online. 

Therefore, the proposed SS labeling method can make full and 

effective use of the unlabeled data to extend the original training 

samples. 

D. JITL-SS-SEC Soft-Sensors 

In this paper, the framework of the proposed soft-sensor is 

illustrated in Fig. 1. To understand the proposed soft-sensor 

more clearly, the detailed process of SS-JITL-SEC soft-sensors 

is as follows: 

1) The first step is data pre-processing. The raw data are 

normalized to [0,1]. The normalized data will be beneficial to 

subsequent clustering and modeling. Then, they are divided into 

a labeled dataset 𝐿 and an unlabeled dataset 𝑈 depending on 

whether the output variable is contained. 

2) The second step is dynamic samples clustering. The 

labeled dataset 𝐿  is clustered by using the SEC method. 

According to the structure entropy value of each sample, 

clustering centers 𝑙1, 𝑙2, … 𝑙𝑚 is determined firstly, where 𝑚 is 

the number of clustering centers, and 𝑚 = 0.005 × 𝑛𝑢𝑚(𝐿), 

𝑛𝑢𝑚 represents the number of all the samples. Then, depending 

on the dissimilarity distance values between the clustering 

centers and other labeled data as well as newly defined a control 

threshold value 𝑄, we can select the training samples with high 

similarity to derive the clustering sub-datasets 

𝐿1, 𝐿2, … , 𝐿𝑚.The first step is data pre-processing. The raw data 

are normalized to [0,1]. The normalized data will be beneficial 

to subsequent clustering and modeling. Then, they are divided 

into a labeled dataset 𝐿 and an unlabeled dataset 𝑈 depending 

on whether the output variable is contained. 

 
Fig .2.  The schematic of the real full-scale wastewater plant 

TABLE I 

RMSE AND R OF THE PREDICTION RESULTS IN THE FIRST CASE STUDY 

Models RMSE R Models RMSE R 

k-means PLS 10.81 88.36% k-means MLR 9.32 89.96% 

SS PLS 7.68 86.78% SS MLR 7.62 86.91% 

Offline PLS 3.95 92.90% Offline MLR 3.91 93.00% 

SS-JITL-SEC 

PLS 
3.63 93.56% 

SS-JITL-SEC 

MLR 
3.56 93.67% 
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3) The third step is extending the original training samples. 

We can use the mixed SS labeling method to label the unlabeled 

dataset 𝑈. The dissimilarity distance values between unlabeled 

data 𝑥𝑢 ∈ 𝑈 and clustering centers are calculated through the 

proposed dissimilarity measurement strategy, and then the 

minimum dissimilarity distance value is found. According to 

the property of dissimilarity measurement value, 𝑥𝑢  has the 

most similarity to these labeled data from the corresponding 

clustering sub-dataset. Thus, the output �̂�𝑢  of 𝑥𝑢  can be 

estimated through the mean of the selected surrounding labeled 

data with the most similarity. However, if 𝑥𝑢  is an outlier, 

surrounding labeled data are insufficient, so the output �̂�𝑢 can 

be estimated through training models. Finally, we labeled all 

the unlabeled data and used them to extend the original training 

samples. 

4) The last step is the building of the prediction model with 

the final training samples. To prevent deterioration of 

prediction performance with the variations within test data, a 

dissimilarity-based JITL is used to update the prediction model. 

Firstly, the dissimilarity distance values between test data 𝑥𝑡 

and clustering centers 𝑙1, 𝑙2, … 𝑙𝑚  are calculated. Then, we 

select the resulted clustering sub-dataset corresponding to the 

minimum dissimilarity distance value as the final training 

samples. Finally, a local adaptive prediction model is 

constructed with the training samples online. Because the 

training samples have the most similarity to the test data 𝑥𝑡, the 

reliability of the model is improved. 

In the SS-JITL-SEC soft-sensor, the SEC method is more 

efficient than traditional clustering methods and avoids 

continually iterative training processes. At the same time, the 

mixed SS labeling method can correctly label all the unlabeled 

data, which are both normal data and outliers, more complete 

use of unlabeled data. Therefore, the SS-JITL-SEC soft-sensor 

cannot only translate the complex and nonlinear modeling 

problems into simple and linear problems but also enriches the 

information of training data used for modeling. Finally, the 

dissimilarity-based JITL constructs a local adaptive prediction 

model with the variations of test data, ensuring the high 

prediction performance of soft-sensor. 

IV. CASE STUDIES 

The SS-JITL-SEC soft-sensor can be verified in this section 

by two case studies: a real full-scale wastewater plant and an 

oxidation ditch (OD) wastewater plant with field data. In two 

case studies, partial least squares (PLS) and multiple linear 

regression (MLR) work together with SS-JITL-SEC to 

construct the final prediction models. Both PLS and MLR 

belong to one of the most commonly useful linear regression 

algorithms, and they are simple, convenient as well as are 

appropriate for most of linear regression problems. However, 

they have high requirements for the process variables. For 

example, the output variables should have a strong linear 

relationship with the input variables. Thus, this would seriously 

limit their range of applicability. 

To demonstrate the superiorities of the SS-JITL-SEC soft-

sensor, the k-means clustering, standard SS labeling method 

and offline counterparts replace the SEC method, the mixed SS 

labeling and the dissimilarity-based JITL algorithm as 

comparisons, respectively, and other sections maintain unity. 

The root means square error (RMSE) and correlation 

coefficient (R) are used to present the prediction performance. 

RMSE is the square root of the average of the squared errors 

between the real and predictive values and is used to describe 

the overall prediction error. RMSE and R are defined as follows: 

𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1     𝑖 = 1,2, … 𝑛                  (15) 

𝑅(𝑌, �̂�) =
𝑐𝑜𝑣 (𝑌,�̂�)

√𝑣𝑎𝑟 [𝑌] 𝑣𝑎𝑟 [�̂�]
                              (16) 

where 𝑌 = (𝑦1, 𝑦2 , … , 𝑦𝑛) is the real value, �̂� = (�̂�1, �̂�2, … , �̂�𝑛) 

is the predictive value, 𝑛 is the number of samples; 𝑐𝑜𝑣 is the 

covariance of 𝑌 and �̂�; 𝑣𝑎𝑟 is the variance. 

To verify the result of industrial process monitoring, we 

make a Shewhart control chart to describe the performance of 

 
Fig. 3.  The real and predictive curves in the first case study 
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monitoring [41]. These soft-sensors are constructed with 

normal training data, so the residuals between real values and 

predictive values should comply with Gaussian distribution 

𝑁(𝜇, 𝜎2) [42]. In this paper, absolute values of the residuals are 

taken as the final values. Then, according to different 

monitoring requirements, the upper limitations of residual, 𝜎, 

2𝜎 and 3𝜎 are determined. By tracking and comparing residual 

curves, achieve industrial process monitoring. 

A. A Real Full-scale Wastewater Plant 

1) Background: In this case study, the data were collected 

from a real full-scale activated sludge-based wastewater plant. 

Organic matter and nutrients were removed by the wastewater 

plant and corresponding technological process is shown in Fig. 

2. Due to the complex biochemical process, the data exhibit 

highly dynamical behaviors. Sequentially, these dynamic data 

add more complexity to the process monitoring. In the collected 

dataset, there are 400 samples and the sample rate is 1 day. Each 

set of data consists of 38 process variables. The detailed 

description of the variables can be found in [43]. The first 200 

sets of data are labeled data for modeling, and the last 100 sets 

of data are used as test data. For the remaining 100 sets of data, 

they are used as unlabeled data. 

2) Prediction Results and Analysis: The prediction results 

concerning RMSE and R are tabulated in Table I, and the main 

purpose is to compare the prediction performances of different 

soft-sensors. Firstly, by comparing the SS-JITL-SEC with the 

k-means clustering algorithm, both SS-JITL-SEC PLS and SS-

JITL-SEC MLR can achieve better prediction results. The main 

reason is that training data have the best similarity in the 

clustering sub-dataset of the SEC method, which is beneficial 

to simplify the modeling problem, and linear models can 

approach the dataset locally. Then, the standard SS method is 

used as a comparison baseline to demonstrate the advantage of 

mixed SS labeling method. Obviously, the prediction results of 

SS-JITL-SEC soft-sensors are better than using the standard SS 

method, and the RMSE decreased 52.73% and 53.28%, 

respectively. This is because the mixed SS labeling method 

labels all the unlabeled data as new labeled data and considers 

the specific distribution scenarios of each unlabeled data, and 

then estimates the output variable of each unlabeled data with 

proper approaches, leading to more new and reasonable labeled 

data available for rebuilding the prediction model. In addition, 

because the SS-JITL-SEC soft-sensor can be updated online, 

the prediction results are certainly better than the offline soft-

sensors. Finally, we notice that the SS-JITL-SEC MLR 

achieves the best prediction results in terms of RMSE and R, 

3.564 and 93.67%. This proves the MLR is more suitable for 

linear problems than the PLS in this case study. 

To describe prediction performances more intuitively, the 

real and predictive curves of soft-sensors using MLR are 

presented in Fig. 3. As we can see, the predictive curve of SS-

JITL-SEC MLR fits the real curve with the best performance, 

especially in the peaks and valleys. This mainly lies on the fact 

that the SEC method can select the most similar data including 

the peaks and valleys, which is beneficial for the prediction of 

 
Fig. 4.  The result of clustering and extending in the first 

case study 

 
Fig. 5.  The Shewhart control chart in the first case study 
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peaks and valleys. Also, the mixed SS labeling method also 

enriches the samples information of the peaks and valleys. 

Finally, the dissimilarity-based JITL continuously updates the 

prediction model, enabling the soft-sensors to cope with abrupt 

noises and outliers, such as the peaks and valleys. 

Fig. 4 profiles the change of training dataset after using the 

SS-JITL-SEC. In Fig. 4, the original training dataset is divided 

by using the SEC method into two clustering sub-datasets, C1 

and C2. As we can see, the data from the same sub-dataset have 

the most similarity, which will be beneficial to reducing the 

difficulty of modeling. Then new labeled data are produced by 

the mixed SS labeling method and added into the original 

labeled dataset to extend C1 and C2. Thus, the information of 

training data is enriched implies the prediction performance of 

model can be improved. Finally, depending on the 

characteristics of test data, we use the dissimilarity-based JITL 

to select the proper clustering sub-dataset and construct a local 

adaptive prediction model, which would avoid degradation of 

prediction performance. 

3) Process Monitoring: The Shewhart control chart is shown 

in Fig. 5 for industrial process monitoring. In Fig. 5, the blue 

line represents the residuals between the real and the predictive 

values, the three red lines are the upper control limits of residual 

to recognize the deviations. Depending on different attentions 

for process monitoring, 𝜎, 2𝜎 and 3𝜎 represent the percentage 

of qualified data, 68.27%, 95.45% and 99.73%, respectively. As 

shown in Fig. 5, if samples come across the upper control limits, 

we must diagnose and deal with these problems in time, reduce 

failure loss. In this case study, the output variable, DBO 

represents the concentration of biological oxygen demand. The 

more DBO value is, the worse the quality of effluent is. 

Therefore, predicting and monitoring DBO values as well as the 

residuals between the predictive and real values is significant 

for achieving reasonable process monitoring. 

B. An Oxidation Ditch (OD) Wastewater Plant 

1) Background: The second case is an OD wastewater plant. 

OD process is a modified activated sludge biological treatment 

process. Fig. 6 shows a schematic of the reactor for the plant. It 

consists of an OD and a secondary sedimentation tank. The 

aerated section and anoxic section are alternate in the OD. In 

this case study, the effluent biological oxygen demand (BOD) 

is the output variable and the other 13 easy-to-measure process 

variables are the input variables. More details can refer to Table 

S I in the Supporting Information. In addition, 400 sets of data 

are collected. The first 200 samples in the data set and another 

100 samples are labeled and unlabeled datasets, respectively. 

The remaining 100 samples is used as a test dataset. 

2) Prediction Results and Analysis: The prediction results 

are shown in Table II in terms of RMSE and R. To prove the 

advantages of the SS-JITL-SEC soft-sensor in this case, the 

 
Fig .6.  Schematic of the OD wastewater plant 

TABLE II 

RMSE AND R OF THE PREDICTION RESULTS IN THE SECOND CASE STUDY 

Models RMSE R Models RMSE R 

k-means PLS 0.0086 97.73% k-means MLR 0.0090 97.55% 

SS PLS 0.0087 97.83% SS MLR 0.0098 97.67% 

Offline PLS 0.0090 97.81% Offline MLR 0.0102 97.64% 

SS-JITL-SEC 

PLS 
0.0064 98.25% 

SS-JITL-SEC 

MLR 
0.0067 98.14% 

Models RMSE R Models RMSE R 

k-means PLS 0.0086 97.73% k-means MLR 0.0090 97.55% 

SS PLS 0.0087 97.83% SS MLR 0.0098 97.67% 

Offline PLS 0.0090 97.81% Offline MLR 0.0102 97.64% 

SS-JITL-SEC 

PLS 
0.0064 98.25% 

SS-JITL-SEC 

MLR 
0.0067 98.14% 

Models RMES R Models RMES R 

k-means PLS 0.0086 97.73% k-means MLR 0.0090 97.55% 

SS PLS 0.0087 97.83% SS MLR 0.0098 97.67% 

online PLS 0.0090 97.81% online MLR 0.0102 97.64% 

JITL-SS-SEC 

PLS 
0.0064 98.25% 

JITL-SS-SEC 

MLR 
0.0067 98.14% 

 

 
Fig. 7.  The real and predictive curves in the second case study 
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prediction results of SS-JITL-SEC with PLS and MLR are 

compared with k-means clustering, standard SS labeling 

method and offline counterparts. In all the soft-sensors, the SS-

JITL-SEC PLS soft-sensor achieves the best prediction with 

RMSE and R being 0.0064 and 98.26%, respectively. 
Compared with using k-means clustering, standard SS labeling 

method and offline counterparts with PLS, RMSE value 

decreases by 34.38%, 35.94% and 43.33%. Firstly, this proves 

the resulted clustering sub-dataset with the SEC method can 

acquire more similar data than k-means clustering. Then, the 

mixed SS labeling method extends the original training dataset 

by labeling all the unlabeled data with more proper approaches 

than the standard SS labeling method. Finally, the dissimilarity-

based JITL can enhance the adaptive capability and 

sequentially reduce performance deterioration during 

prediction processes. 

Fig. 7 shows the fits between real and predictive curves with 

respect to the prediction results of soft-sensors using PLS. As 

demonstrated in Fig. 7, the SS-JITL-SEC PLS soft-sensor fits 

the real curve better than using k-means clustering, standard SS 

labeling method and offline counterparts with PLS, especially 

the peaks and valleys. This is because the SS-JITL-SEC PLS 

soft-sensor fully mines the information of peaks and valleys in 

the unlabeled data to enrich the original training samples. At the 

same time, it selects the sub-dataset with the highest correlation 

with peaks and valleys in the monitoring process, and then 

builds a local adaptive prediction model with dissimilarity-

based JITL. Thus, the SS-JITL-SEC PLS soft-sensor can trace 

these abnormal data better in this case study. 

The detail change of the training dataset for the SS-JITL-SEC 

PLS soft-sensor are shown in Fig. 8. As we can see, the original 

training dataset is divided into two high-quality clustering sub-

datasets, C1 and C2 with the SEC method. Each clustering sub-

dataset shares the best similarity among data. Then, they are 

extended by the new labeled data which are produced by the 

mixed SS labeling method and share highly similar to original 

labeled data. Finally, a local adaptive prediction model is built 

for the test data with the most proper clustering sub-dataset 

online. Therefore, the SS-JITL-SEC PLS soft-sensor can 

achieve the best prediction results than others due to its adaptive 

ability. 

3) Process Monitoring: The Shewhart control chart is shown 

in Fig. 9. Similar to the first case study, the blue line represents 

the residuals between the real and the predictive values. 

According to different attentions for process monitoring, three 

red lines, 𝜎, 2𝜎 and 3𝜎, are used as the upper control limits of 

residual to recognize the deviations. The residuals obey the 

normal distribution, so they represent the percentage of 

qualified data, 68.27%, 95.45% and 99.73%. As shown in Fig. 

9, if samples come across the upper control limits, we must 

diagnose and deal with these problems in time. This 

information will be utilized to avoid serious industrial processes. 

In this case study, the larger the BOD values are, the worse the 

effluent quality. This is because the output variable, BOD, 

represents the oxidation reaction efficiency of microorganisms. 

 
Fig. 8.  The result of clustering and extending in the 

second case study 

 
Fig. 9.  The Shewhart control chart in the second case study 
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Therefore, process monitoring can be achieved by predicting 

and monitoring the BOD value as well as the residuals between 

the predictive and real values. 

V. DISCUSSIONS 

This paper focuses on enhancing the prediction performance 

of standard soft-sensors for industrial processes monitoring. 

With industrial processes becoming more and more complex, 

high-precision soft-sensors cannot achieve easily for some 

difficult-to-measured variables. Clustering methods can 

provide a powerful alternative to address the high-nonlinear and 

high-dimension data issues. In this paper, unlike the traditional 

clustering methods, the dissimilarity-based SEC method is able 

to explore the similarity between high-dimension samples, 

acquiring resulted clustering sub-datasets and simplifying the 

modeling problems. Then, the mixed SS labeling method is 

proposed to deal with the imbalance of labeled and unlabeled 

data. This method considers the specific distribution scenarios 

of each unlabeled data, and then estimates the output by the 

surrounding labeled data or training models. Finally, a local 

adaptive prediction model is constructed with the dissimilarity-

based JITL to adapt to the change of test data. To verify the 

effectiveness of the proposed soft-sensors, two case studies are 

provided. In the real full-scale activated sludge-based 

wastewater plant, the sampling period is so long that the 

collected data are dramatically dynamic. However, in the OD-

based wastewater plant, 20 samples are collected in a day, thus 

they are easier to predict and trace. In two case studies, the SS-

JITL-SEC soft-sensor has better prediction performance than 

other soft-sensors, such as using the k-means clustering, 

standard SS labeling method and offline standard counterparts. 

Finally, we further validated the monitoring performance of the 

SS-JITL-SEC soft-sensor though Shewhart control chart, and 

obtained the intuitive monitoring results. 

However, there are still some disadvantages to the proposed 

soft-sensors. Firstly, the prediction accuracy of peaks and 

valleys is still terrible and requires further improvement. Since 

they have important significance in industrial processes, it is 

necessary to achieve more accurate predictions [44]. We can 

use the time difference (TD) method to improve the prediction 

accuracy for abrupt noises and outliers in the future. Secondly, 

even though the difficulty of modeling is reduced and the 

prediction performance is improved, the SS-JITL-SEC soft-

sensor breaks the continuity of samples. When facing a larger 

continuous sample set, errors may be accumulated and even 

lead to the failure of process monitoring [45]. Therefore, 

establishing an appropriate prediction model with continuous 

samples and ensuring prediction performance of the peaks and 

valleys in the time series and large dataset can be an important 

direction of future research. 

VI. CONCLUSIONS 

This paper proposes a novel semi-supervised soft-sensor, 

which is learned by a Just-in-time method together with 

structure entropy clustering (SS-JITL-SEC). The proposed soft-

sensor can achieve the best performance compared with 

standard soft-sensors in terms of RMSE and R, even further to 

use for monitoring the high-nonlinear, high-dimension and 

imbalance data issues. The studies showed that the SS-JITL-

SEC soft-sensor can simplify the complex and nonlinear 

modeling problems with a divide and conquer strategy. Also, 

the entire unlabeled data are fully used to enrich original 

training samples and to better semi-supervised soft-sensor 

learning. Finally, a local adaptive model has been constructed 

with the resulted clustering sub-dataset to ensure prediction 

quality and adapt to significant changes in the test dataset. 

However, since the auto-correlativity and cross- correlativity in 

the time-series samples is broken by the SEC method, the 

proposed soft-sensors could be inappropriate for the time series 

and large datasets modeling. Therefore, future research will 

concentrate on addressing the time series and large dataset 

prediction issues of industrial processes and further using for 

process monitoring and diagnosis. 
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