
1

Discovering High Utility Episodes in Sequences
Wensheng Gan, Member, IEEE, Jerry Chun-Wei Lin, Senior Member, IEEE,

Han-Chieh Chao, Senior Member, IEEE, and Philip S. Yu, Fellow, IEEE

Abstract—Sequence data, e.g., complex event sequence, is more commonly seen than other types of data (e.g., transaction data) in
real-world applications. For the mining task from sequence data, several problems have been formulated, such as sequential pattern mining,
episode mining, and sequential rule mining. As one of the fundamental problems, episode mining has often been studied. The common
wisdom is that discovering frequent episodes is not useful enough. In this paper, we propose an efficient utility mining approach namely
UMEpi: Utility Mining of high-utility Episodes from complex event sequence. We propose the concept of remaining utility of episode, and
achieve a tighter upper bound, namely episode-weighted utilization (EWU), which will provide better pruning. Thus, the optimized EWU-based
pruning strategies can achieve better improvements in mining efficiency. The search space of UMEpi w.r.t. a prefix-based lexicographic
sequence tree is spanned and determined recursively for mining high-utility episodes, by prefix-spanning in a depth-first way. Finally, extensive
experiments on four real-life datasets demonstrate that UMEpi can discover the complete high-utility episodes from complex event sequence,
while the state-of-the-art algorithms fail to return the correct results. Furthermore, the improved variants of UMEpi significantly outperform the
baseline in terms of execution time, memory consumption, and scalability.

Index Terms—intelligent system, utility mining, episode mining, high-utility episode

F

1 Introduction

Discovering interesting patterns from various types of data (e.g.,
transaction data, sequence, graph, stream data, etc.) is the key
problem in data mining and analytics [1]. In the past decades,
pattern mining [2], [3] is well-studied for a wide range of
applications. As a fundamental topic in Knowledge Discovery
from Data (KDD) [1], the support-based pattern mining task
has several related research subfields, including frequent itemset
mining (FIM) [2], [3] and association rule mining (ARM) [4],
[5] from transaction data, sequential pattern mining (SPM) [6]
from sequential data, and frequent episode mining (FEM) [7]
from a long event sequence. Up to now, many studies have been
dedicated to these subfields and have arisen many important real-
world applications. Note that the problem formulation of SPM and
FEM are not the same although they have something in common.
An episode is a non-empty ordered set of events [7]. FIM and
SPM have been well-studied, however, FEM is heavily under-
developed. One of the reasons is that FEM is more challenging
and more complicated than FIM and SPM, due to the intrinsic
property of utility and complexity in complex event sequences.
In particular, computing statistics from a long event sequence
turns out to be complex for episodes. Unfortunately, most of
the developed techniques for FIM and SPM cannot be applied
to address the task of frequent episode mining.

The common wisdom is that discovering frequent patterns
(e.g., itemsets, sequential patterns, episodes) is not useful enough.

• Wensheng Gan is with Harbin Institute of Technology (Shenzhen), Shen-
zhen, PR China, and with University of Illinois at Chicago, IL, USA. Email:
wsgan001@gmail.com

• Jerry Chun-Wei Lin is with the Western Norway University of Applied
Sciences, Bergen, Norway. Email: jerrylin@ieee.org

• Han-Chieh Chao is with the National Dong Hwa University, Hualien,
Taiwan, R.O.C. Email: hcc@ndhu.edu.tw

• Philip S. Yu is with University of Illinois at Chicago, IL, USA. Email:
psyu@uic.edu
Manuscript received September 2019. (Corresponding author: Han-Chieh
Chao)

However, most of the pattern mining algorithms in above subfields
mainly adapt the co-occurrence frequency (aka support) [2], [3] to
measure the interestingness of patterns. If the observed support
of a pattern in process data is high, we assume that it deviates a
lot from the expectation and this pattern is considered important.
However, other implicit factors, such as the utility, interest, and
risk, are not effectively utilized for evaluating the usefulness of
the discovered knowledge. In some cases, frequent-based pattern
mining approach might easily result to many trivial patterns,
omitting the true interesting patterns [8]. For example, in shopping
behavior analysis, not only the association relationship between
items/products but also the combination of products which have
the most high utility can bring valuable knowledge for the retailers
or managers. Inspired by the utility theory [9], a new mining
framework namely utility-driven mining (abbreviated as utility
mining [8]) has been introduced. Basically, the utility of a pattern
refers to its importance, which can be measured in terms of utility,
profit, risk, cost or other subjective measure depending on the user
preference. Given a database and a user-specified minimum utility
threshold (minUtil), a pattern is called a high-utility pattern if its
total utility in this database is no less than minUtil. Utility mining
has been a fruitful and active research field in data science, such
as high-utility itemset mining (HUIM) [10], [11], [12], [13] and
high-utility sequential pattern mining (HUSPM) [14], [15], [16].

As mentioned before, in addition to the transaction data,
there exists other types of data, such as complex event sequence,
graph, and stream data. For example, an event sequence is a long
sequence of events, and each event has its type and occurred time.
An episode is a set of partially ordered events. Mannila et al. [7]
first introduces the frequent episode mining problem as well as two
mining algorithms, WINEPI and MINEPI. Different from itemset,
rule, and sequential pattern, episode is an interesting way for
representing partial order relationships between events. Complex
event sequence is commonly seen and important, especially in
data science. The topic of frequent episode mining (FEM) [7],
[17], [18] is different from the widely-studied frequent sequential
pattern mining (SPM). For the problem of high-utility episode

ar
X

iv
:1

91
2.

11
67

0v
1

 [
cs

.D
B

]
 2

5
D

ec
 2

01
9

2

mining (HUEM) in complex event sequence, it is more commonly
seen in real-world, but more complicated and challenging than
other tasks, e.g., HUIM and HUSPM. Discovering high-utility
episodes is difficult and challenging for two main reasons. Firstly,
the search space of HUEM is quite huge than that of SPM and
HUSPM, while HUEM lacks of effective pruning strategy to
prune the search space. Secondly, the user-specified maximum
time duration (MTD) may easily resulting in pattern explosion. In
general, the number of determined patterns will increase dramati-
cally when MTD increases. Ignoring the complex event sequence,
the applicability of utility mining may be limited. Therefore, it is
really a critical and challenging issue for discovering high-utility
episodes in complex event sequences. For utility-oriented episode
mining, the pioneer work [19] formulates this task as a problem of
high-utility episode mining (HUEM) and proposes the projection-
based UP-Span algorithm [19]. The goal of HUEM aims at
discovering high-utility episodes which satisfy the maximum time
duration (MTD) constraint while their overall utilities are no less
than a user-specified minimum utility threshold (minUtil). Later,
TSpan [20] makes use of the lexicographic sequence tree to model
the HUEM task and improves the mining efficiency with two
pruning strategies. However, both UP-Span [19] and TSpan [20]
fail to successfully solve the HUEM problem and lead to the
incorrect and incomplete mining results. Moreover, both of them
may easily encounter the mining efficiency problem and cause
a lot of memory consumption. In particular, due to the intrinsic
property of utility and complexity in complex event sequence data,
high-utility episode mining algorithms should be fast and precise.

To this end, we propose an efficient utility-driven episode
mining approach namely UMEpi: Utility Mining of high-utility
Episodes from complex event sequence. To the best of our knowl-
edge, UMEpi not only extracts the correct high-utility episodes,
but also achieves an acceptable efficiency. An interesting flexibility
of UMEpi is that it can easily focus the discovering task on several
real-life types of event sequences, including serial episode, simul-
taneous episode, or complex episode having both simultaneous
episode and serial episode. To summarize, this paper has several
contributions as follows.

• We first introduce and define the concept of the remaining
utility of episode in event sequence. We then formulate
an alternative definition of Episode-Weighted Utilization
(EWU), which is able to provide an accurate formulate of
upper bound. UMEpi adapts the utility and sequence-order
among event types as the key criterion for evaluating high-
utility episodes (HUEs).

• Flexibility of UMEpi. There is no need to make assump-
tions about the process event sequence is simultaneous,
serial or complex. UMEpi can fast discover HUEs from
any type of event sequence.

• Two optimized EWU-based pruning strategies are devel-
oped in the UMEpi algorithm for efficiently mining high-
utility episodes in depth-first way, without scanning the
original sequence many times. UMEpi is able to early
prune the unpromising episodes that cannot be high-utility,
and does not need to perform the projection operation
which costs memory and is time-consuming.

• Experiments on four real-world datasets have shown the
effectiveness and high efficiency of the proposed UMEpi
algorithm with two user-specified parameters: MTD and
minUtil.

The rest of this paper is organized as follows. Some related
works are briefly reviewed in Section 2. The preliminaries and
problem statement of high-utility episode mining are given in
Section 3. Details of the proposed UMEpi algorithm are described
in Section 4. The evaluation of effectiveness and efficiency of
UMEpi are provided in Section 5. Finally, some conclusions are
given in Section 6.

2 RelatedWork

To summarize, this paper is highly related to existing works
in support-based episode mining, utility-based itemset/sequence
mining, and utility-based episode mining.

2.1 Support-based Episode Mining

Discovering interesting patterns from various types of data is the
key problem in the field of Knowledge Discovery from Data [1]. In
the past decades, a large amount of algorithms has been developed
for mining interesting patterns from various types of data, such as
[4], [5]. Most of these studies, however, mainly use support [2] and
confidence [21] to discover interesting patterns, such as frequent
itemsets [2], [3], [21], frequent sequential patterns [6], frequent
episodes [7], [22]. From itemsets that have been found frequent
(or otherwise interesting), association rule [2] which consists of
frequent itemsets has a high confidence. For an interesting pattern
in association-rule mining, the occurrence of one set is regarded
as a good predictor of another. A first exploration into mining
frequent patterns in sequential data still presumed a transaction
data [23]. It assumes the sequences as transactions instead of sets.
Note that the data format of sequential nature is similar but not
the same to that of typical frequent itemset mining (FIM) [3],
[23]. The support-based sequential pattern mining (SPM) [6] is
often different from FIM. In general, the search space of an SPM
algorithm is potentially huge due to the combinatorial explosion
of sequence data. Therefore, SPM is more challenging than FIM.
Later, Mannila et al. [7] first introduced an interesting framework
for mining frequent episodes in single, long sequences [7], where
events occur at certain time points. This pioneer work leads to a
new research topic named frequent episode mining (FEM) [7].

The objective of FEM is to discover episodes whose occur-
rences exceed a minimum support threshold, with window or time
maximum duration (MTD) constraint. As formulated, episode is
an interesting way for representing partial order relationships be-
tween events. The uniqueness of an episode in an event sequence
is determined by the containing events. According to the existing
studies, many frequency measures have been proposed for FEM,
such as the (fixed-width) windows [7], minimal occurrences [7],
head frequency [24], total frequency [25], and non-overlapped
occurrences [22]. Ao et al. [18] addressed the new problem of
mining precise positioning episode rules. In literature, most of the
FEM algorithms use the minimal occurrence [26] to measure the
frequencies of interesting episodes. Despite of the vast amounts of
research efforts in support-based episode mining, fewer studies of
FEM consider the utility factor into account. For example, when
performing a market basket analysis on retail data, many frequent
but not profitable episodes may be found. In the risk perdition
task, the rare or frequent episodes cannot successfully capture the
high risk events.

3

2.2 Utility-based Itemset/Sequence Mining

To address the early mentioned problems, utility-oriented pattern
mining (also called utility mining) [12], [27], [28] is proposed as a
new data mining framework. Utility mining aims at identifying the
high-utility patterns but not the frequent ones. The occur quantity
and unit utility of objects/items, as well as other implicit factor
are taken into account. Up to now, the problem of utility mining
has been extensively studied, and leads to many related research
subfields, including high-utility itemset mining (HUIM) [10], [29],
high-utility sequential pattern mining (HUSPM) [16], and high-
utility rule mining (HURM) [30].

For the task of HUIM from itemset-based data, many algo-
rithms have been developed, such as Two-Phase [10], IHUP [11],
UP-growth [31], UP-growth+ [12], and HUI-Miner [13]. To be
more specific, these existing HUIM algorithms can be mainly
classified into the following categories: Apriori-like, tree-based,
utility-list-based, and hybrid approaches, as reviewed in [8]. The
Two-Phase [10] algorithm is the early Apriori-like approach for
HUIM, and it first introduced the transaction-weighted utilization
(TWU) concept [10]. Later, some tree-based HUIM algorithms,
e.g., IHUP [11], HUP-tree [32], UP-growth [31], UP-growth+

[12], are developed and all outperform the Apriori-like ones. Liu
et al. [13] then introduced the utility-list structure that utilizes a
concept namely remaining utility. Towards a better mining effi-
ciency, several more efficient approaches have been developed for
discovering high-utility itemsets, such as FHM [33], HUP-Miner
[34], and EFIM [35]. In addition to efficiency, the effectiveness
issue of utility mining has been extensively studied, for example,
several interesting works are reported in [28], [29], [36], [37],
[38]. An up-to-date overview of the current development of utility
mining can be referred to [8].

For the task of HUSPM [14], [15], [16] from sequence-based
data, it uses some special data structures and upper bound on
utility of sequence. The early Apriori-like approach for HUSPM
is the US [39] and UL [39] algorithms which utilize the Sequence-
Weighted Utilization (SWU) model [16], [39]. Yin et al. [16]
presented a generic definition of the HUSP mining framework
and proposed a new mining algorithm named USpan. Alkan
et al. proposed HuspExt [14] with a Cumulate Rest of Match
(CRoM) based pruning technique. The HUS-Span algorithm [15]
introduces a data structure namely utility-chain and utilizes prefix
extension utility (PEU) as an upper bound. However, HUS-
Span is not efficient enough since the generate-and-test approach
creates an overflow of candidate sequences. Recently, two more
efficient algorithm, such as ProUM [40] and HUSP-ULL [41],
were developed to fast identify high-utility sequential patterns.
ProUM utilizes the utility-array structure and PEU [40] upper
bound, and HUSP-ULL utilizes the utility-linked list [41] structure
and two powerful pruning strategies. More current development of
HUSPM can be referred to in literature reviews [8], [42].

2.3 Utility-based Episode Mining

Support constraint has been a popular measure for extracting
episodes. Although there are many studies on frequent episode
mining and high-utility itemset/sequence mining, utility-driven
episode mining has been studied less. In order to discovering
high-utility episodes rather than those frequent ones, Wu et al.
[19] first proposed an interesting concept called Episode-Weighted
Utilization (EWU) and introduced the problem statement of high-
utility episode mining (HUEM). To find interesting episodes

TABLE 1: External unit utility value

Event A B C D E
Utility ($) 1 5 2 3 7

whose utilities exceed the expected utility value, the UP-Span
algorithm [19] and two pruning strategies were further presented
as the pioneer work. The Episode-Weighted Utilization (EWU)
in HUEM is equivalent to the Sequence-Weighted Utilization
(SWU) in HUSPM. However, the HUEM problem is different
from HUSPM problem, since the former is considered more
complicated and challenging than the later. Most of the developed
techniques for FEM, HUIM, and HUSPM cannot directly be
applied to HUEM. As an enhanced algorithm of UP-Span, TSpan
[20] was proposed to discover high-utility episodes (HUEs) using
two tighter upper bounds, which can reduce the search space over
the prefix tree. Consider the rule generation, Lin et al. [43] studied
the problem of utility-based episode rule mining in complex event
sequences. However, both UP-Span and TSpan suffer from several
performance drawbacks: 1) The concept of EWU and pruning
strategies are only based on an approximate upper bound. 2)
Their results contain several errors, e.g., incorrect and incomplete.
3) Their mining efficiency in terms of running time, memory
consumption and scalability might not efficient enough to deal
with a long event sequence. Therefore, we should develop the fast
and precise algorithms for discovering high-utility episodes.

3 Preliminaries and Problem Formulation
Based on the previous studies [7], [19], [22], some concepts and
principles of high-utility episode mining are introduced firstly.

3.1 Preliminaries of Utility Mining on Event Sequence

An event is defined as a pair (e,Ti) where e is the event type
and Ti ∈ N+ is the occur time when this event happens. A
partial ordered collection of events is called an episode. An event
sequence is defined as an ordered sequence of simultaneous event
sets, such that S = <{(s1,T1), (s2,T2), . . . , (sn,Tn)}> where each
simultaneous event set si ∈ S consists of several simultaneous
or serial events. Each simultaneous event set is associated with
a unique time point Ti (Ti < T j), for all 1 ≤ i < j ≤ n. Let e
be a distinct event of E = {e1, e2, . . . , em}. Each event e ∈ E in
event sequence S is associated with a unique positive value pr(e)
namely its unit utility (also called external utility). For each event
e in Ti, a positive number q(e,Ti) is called its occur quantity (also
called internal utility). An l-episode means that the length of this
episode is l.

T1 T2 T3 T4 T5 T6 ……. Tn

A (4)
C (3)
D (1)

B (2)
C (2)

A (3)
D (2)
E (1)

D (1)
E (2)

A (2)
B (2)
D (4)B (2)

Fig. 1: A complex event sequence with occur quantity.

Definition 1 (Complex episode with simultaneous and serial con-
catenations). Let α = <(E1), (E2), . . ., (Ex)> and β = <(E′1),
(E′2), . . ., (E′y)> be two different episodes. The simultaneous

4

concatenation of α and β is defined as Simult-Concatenate(α,
β) = <(E1), (E2), . . ., (Ex t E′1), (E′2), . . ., (E′y)>. The serial
concatenation of α and β is defined as Serial-Concatenate(α,
β) = <(E1), (E2), . . ., (Ex), (E′1), (E′2), . . ., (E′y)>. Then the
simultaneous episodes are related to simultaneous concatena-
tion, and the serial episodes are related to serial concatenation.
In general, a complex episode always has both simultaneous
episode and serial episode.

For example, Fig. 1 shows a complex event sequence S = <({A
(4), C (3)}, T1), ({B (2), C (2)}, T2), ({A (3), D (2), E (1)}, T3), ({D
(1), E (2)}, T4), ({B (2)}, T5), ({A (2), D (4)}, T6)>. Among this
sequence, <A (4)> and <C (3)> are the simultaneous episodes in
T1, while <A (4) → C (2)> are the serial episodes. Note that the
simultaneous episode does not consider the sequence-order inside
itself, e.g., <{A (4), C (3)}> and <{C (3), A (4)}> are the same
episode. However, <A → C> and <C → A> are two different
serial episodes since their sequence-orders are not the same.

Definition 2 (Occurrence). Given an episode α = <(E1), (E2), . . .,
(Ek)>, the time point interval [Ts,Te] is called an occurrence
of α iff: (1) α occurs in [Ts,Te], and (2) the first simultaneous
event set in α occurs at Ts (called start time) and the last
simultaneous event set Ek of α occurs at Te (called end time).
The set of all occurrences of α in S is denoted as occS et(α).

In this paper, note that a complex episode may have either
simultaneous/serial episode or two types of episode. Checking
whether an episode occurs in an event sequence is an NP-complete
problem [44]. For example, the set of all the occurrences of the
episode <{A,D} → B> in Fig. 1 is occS et(<{A,D} → B>) =

{[T1,T2], [T1,T5], [T1,T6], [T3,T5], [T3,T6]}. Up to now, several
measures of occurrences (e.g., minimal occurrence [7], non-
overlapped occurrence [45]) have been introduced for frequent
episode mining.

Definition 3 (Minimal occurrence). Given two time point in-
tervals [Ts,Te] and [T ′s,T

′
e] of occurrences of an episode α,

[T ′s,T
′
e] is called the time point sub-interval of [Ts,Te] if

Ts ≤ T ′s and T ′e ≤ Te. [Ts,Te] is called a minimal occurrence
of episode α if the following conditions are satisfied: (1)
[Ts,Te] is an occurrence of α, and (2) there is none occurrence
[T ′s,T

′
e] of α such that [T ′s,T

′
e] is a sub-interval of [Ts,Te].

To summarize, minimal occurrence is a kind of occurrence of
episode which cannot contain any other occurrence of same
episode. Thus, for an episode, there is only one precise min-
imal occurrence with respect to each occurrence. Let mo(α)
denote the minimal occurrences of α w.r.t. [Ts,Te], then the
complete set of minimal occurrences of α in S is moS et(α).

For example, in Fig. 1, the time point interval [T1,T2]
is a minimal occurrence of the episode <{A,D} → B>, and
moS et(<{A,D} → B>) = {[T1,T2], [T3,T5]}. Thus, we can see that
the minimal occurrence is the shortest time interval that contains
a particular episode.

Definition 4 (Maximum time duration). The maximum time dura-
tion is a user-specified constraint for the discovered episodes.
An episode α satisfies the maximum time duration constraint
iff (Te − Ts) ≤ MT D1. In this paper, we assume that mo(α)
should always satisfy the maximum time duration constraint.

1. Note that both UP-Span and TSpan use (Te − Ts + 1) ≤ MT D, but we use
(Te − Ts) ≤ MT D for easier understanding and more precise.

Definition 5 (Sub-episode and super-episode). Given two
episodes α = <E1, E2, . . . , En> and β = <E′1, E

′
2, . . . , E

′
m>

where m ≤ n, the episode β is called a sub-episode of α iff
there exists m integers 1 ≤ i1 < i2 < . . . < im ≤ n such that
E′k ∈ E for 1 ≤ k ≤ m ≤ n. In this case, conversely, episode α
is called the super-episode of β.

For example, the episode <{A,D} → B> is called a super-
episode of <A>, <{A,D}>, <A→ B>, and <D→ B>.
Definition 6 (Utility of a simultaneous event set w.r.t. time point).

The utility of a simultaneous event set E ⊆ S in a time point
Ti is u(E,Ti) =

∑
e∈E u(e,Ti), in which u(e,Ti) is the utility of

an event e ∈ E in this time point Ti, such as u(e,Ti) = pr(e) ×
q(e,Ti). Hence, u(E,Ti) represents the all utilities generated
by all events e ∈ E in each time point Ti.

In Fig. 1, the utility of an event {A} in time point T3 is u(A,T3)
= 3 × $1 = $3, and the utility of event set {A,D, E} in T3 is
u({A,D, E},T3) = u(A,T3) + u(D,T3) + u(E,T3) = 3 × $1 + 2 ×
$3 + 1 × $7 = $16.
Definition 7 (Total utility of an event sequence). Given a complex

event sequence S , the total utility of all events in a time point
Ti, denoted as tu(Ti), is defined as tu(Ti) =

∑
e j∈Ti

u(e j,Ti),
where e j is the j-th event in Ti. Then the total utility of S ,
denoted as TU, is defined as: TU =

∑
Ti∈S tu(Ti).

Consider the first time point in Fig. 1, tu(T1) = u(A,T1) +

u(C,T1) + u(D,T1) = $4 + $6 + $3 = $13. Then the utilities of
T1 to T6 can be calculated as tu(T1) = $13, tu(T2) = $14, tu(T3)
= $16, tu(T4) = $17, tu(T5) = $10, and tu(T6) = $24, respectively.
Thus, the total utility in S is TU = $13 + $14 + $16 + $17 + $10
+ $24 = $94. To determine the utility of an episode, we need to
firstly define how we count its occurrences. In the task of HUEM,
we use the minimal occurrence to calculate the utility, which is
defined below.
Definition 8 (Utility of an episode w.r.t. a minimal occurrence).

Let mo(α) = [Ts,Te] be the minimal occurrence of the episode
α = <(E1), (E2), . . . , (Ek)>, where each simultaneous event set
Ei ∈ α is associated with a time point Ti. Under the definition
of minimal occurrence, the utility of the episode α w.r.t. mo(α)
can be defined as u(α,mo(α)) =

∑k
i=1 u(Ei,Ti), Ei ⊆ α and

Ts ≤ Ti ≤ Te.

Referring to the previous example, assume α is <{A,D} →
B>. Due to moS et(<{A,D} → B>) = {[T1,T2], [T3,T5]}, we have
u(α,mo1(α)) = u({A,D},T1) + u(B,T2) = $7 + $10 = $17, and
u(α,mo2(α)) = u({A,D},T3) + u(B,T5) = $9 + $10 = $19.
Definition 9 (Utility of an episode w.r.t. an event sequence).

Consider the entire event sequence S , let u(α) denote
the total utility of an episode α in S and moS et(α) =

[mo1(α),mo2(α), . . . ,mon(α)] denote the complete set of min-
imal occurrences of α in S , then u(α) =

∑n
i=1 u(α,moi(α)).

Definition 10 (High-utility episode). Given a complex event
sequence S , the maximum time duration MTD, and a user-
specified minimum utility threshold minUtil, an episode is said
as a high-utility episode (abbreviated as HUE), iff its total
utility in S satisfies u(α) ≥ minUtil × TU. Otherwise, the
episode is called a low-utility episode (abbreviated as LUE).

In Fig. 1, the utility of the episode <{A,D} → B> is
u(<{A,D} → B>) = $17 + $19 = $36. If we assume MTD = 2
and minUtil = 50%, the episode <{A,D} → B> is less than 50% ×

5

TABLE 2: Final high-utility episodes in the running example (the
true utility is denoted as Utility, and the results of Utility* are
derived by UP-Span)

Episode Utility Utility*
<{B,C} → {A,D, E} → {D, E}> $47 $43

<D→ B→ {A,D}> $49 $49
<{D, E} → B→ {B,D}> $49 $49
<{D, E} → B→ {A, B,D}> $51 $51
<E → B→ {A, B,D}> $48 $48

$94 (= $47), thus it is a low-utility episode. However, the episode
<{D, E} → B → {A, B,D}>, which utility is $51, is a high-utility
episode. When MTD = 2 and minUtil = 50%, the complete set
of HUEs in Fig. 1 is shown in Table 2. Notice that the utility of
<{B,C} → {A,D, E} → {D, E}> calculated by UP-Span is equal
to $43, which is incorrect.

3.2 Problem Formulation

Typically, frequent or high-utility episode mining is carried out
from one long event sequence which consists of a large amount
of time-stamped events. Based on the above definitions, then we
have the following problem formulation.
Definition 11. Given a complex event sequence S with simulta-

neous or series events that having external and internal utility
of events, the maximum time duration (MTD) as constrain,
and a user-specified minimum utility threshold (minUtil),
the problem of high-utility episode mining (HUEM) aims at
discovering all the episodes whose utilities are no less than
minUtil × TU with the MTD constraint.

For the task of HUEM, there are two user-specified param-
eters: MTD and minUtil. Here an episode (also known as serial
episode, or complex episode [7]) refers to a totally ordered set
of events. To summarize, the addressed task of HUEM aims at
identifying all high-utility episodes which overall utilities exceed
an expected threshold (minUtil × TU) when dealing with a
complex event sequence which consists of a large set of events.
Discovering high-utility episodes is a good way to unearth utility-
driven information and knowledge in the sequence data.

4 Proposed UMEpi Algorithm
In this section, we propose an efficient UMEpi algorithm to
discover high-utility episodes that satisfy the constraints of MTD
and minUtil. UMEpi discovers HUEs by spanning the search space
w.r.t. an conceptual lexicographic sequence (LS)-tree. Moreover,
the remaining utility of episode and a tight upper bound namely
episode-weighted utilization (EWU) are developed and utilized in
the pruning strategies. Details of the downward closure property
of EWU, the pruning strategies with optimized EWU, and the main
procedures of UMEpi are described below, respectively.

4.1 Downward Closure Property

Definition 12. (I-Concatenation and S -Concatenation). For an
l-episode α, when an event is appended to the end of α,
it will construct an extended (l+1)-episode, which is a 1-
extension of episode α. This 1-extension operation is called
concatenation. To be more specific, if the duration time of the
new extended episode is the same as that of α, this operation is
an I-Concatenation. However, if the time duration of the new

extended episode is that of α increased by 1, this operation is
called an S -Concatenation.

For example, consider an 2-episode <{B,C}>, the concatena-
tion of <{B,C, A}> is its I-Concatenation, while <{B,C} → {A}>
is the result of an S -Concatenation. Note that <{B,C, A, E}> and
<{B,C} → {A,D, E}> are also the extended episodes of <{B,C}>,
which are called the 2-extension and 3-extension, respectively.
Definition 13 (Lexicographic sequence tree). In the lexicographic

sequence tree [46], a) the root node2 of the prefix-based tree
is empty; b) for a parent node (also called prefix node), all
the child nodes are generated by the I-Concatenation or S -
Concatenation; and c) all the child nodes of a prefix node
are listed in a specific order (e.g., incremental order, arbitrary
order, or lexicographic order).

Given a long sequence S , the lexicographic sequence (LS)-tree
is a structure that captures all the possible episodes. Specifically,
the total number of all the possible episodes in this search space is
extremely huge [22], [44]. Obviously, the brute-force mechanism
(e.g., enumerate and then determine all the possible episodes) is
not an acceptable solution. Since many datasets always contain
enormous piles of low-utility patterns, selecting only the high-
utility ones is not easy. Most of the existing studies have been
demonstrated that the utility measure [10] are neither monotonic
nor anti-monotonic. Based on the definition of HUE, the HUE
does not hold anti-monotonicity. In other words, a HUE may
have a lower, equal or higher utility than any of its sub-episodes.
Without holding the anti-monotonicity, it is hard to efficiently
reduce the search space of the addressed problem of HUEM.

For HUEM, Episode-Weighted Utilization (EWU) [19] was
proposed as a upper bound on utility of an episode in a complex
event sequence. Although these approaches achieve a speed-up
of several orders of magnitude over the brute-force algorithm,
their common drawback is that they all use an incorrect EWU
value, and output the incorrect results. Thus, the EWU value in
existing algorithms is not true and may cause the incorrect results.
Therefore, the previous works on HUEM can not really extract the
complete HUEs.
Definition 14 (Episode-Weighted Utilization [19]). Let mo(α) =

[Ts,Te] be a minimal occurrence of the episode α = <(E1),
(E2), . . ., (Ek−1), (Ek)>, where each simultaneous event set
Ei ∈ α is associated with a time point Ti (1 ≤ i ≤ k) and
mo(α) satisfies MTD. The episode-weighted utilization of α
w.r.t. mo(α) is defined as: EWU(α, mo(α)) =

∑k−1
i=1 u(Ei,Ti) +∑Ts+MT D

i=Te
u(S Ei,Ti) in [19], or EWU(α, mo(α)) =

∑k
i=1 u(Ei,Ti)

+
∑Ts+MT D

i=Te
u(S Ei,Ti) in [20], where S Ei is the simultaneous

event set at the time point Ti in S . Thus, for α in S , we have
the accumulative EWU w.r.t. moS et(α) = [mo1(α), mo2(α), . . .,
mon(α)], such that EWU(α) =

∑n
i=1 EWU(α,moi(α)) [19].

Definition 15 (Promising episode and unpromising episode).
An episode α is called a promising episode iff EWU(α) ≥
minUtil × TU. Otherwise it is an unpromising episode.

To be more specific, for a given MTD and [Ts,Te] of α, then
the potential minimal occurrence mo(α) only occurs at interval
[Te,Ts + MTD]. For example, assume MTD = 2 in Fig. 1, the
EWU of α = <{A,D} → B> w.r.t. its minimal occurrence [T1,T2]
is calculated as EWU(<{A,D} → B>, [T1,T2]) = u({A,D}, T1) +

2. Without ambiguity, the terms episode and node will be used interchange-
ably in this paper.

6

u({B,C}, T2) + u({A,D, E}, T3) = $7 + $14 + $16 = $37. However,
with the definition in [20], the results is EWU(<{A,D} → B>,
[T1,T2]) = u({A,D}, T1) + u(B, T2) + u({B,C}, T2) + u({A,D, E},
T3) = $7 + $10 + $14 + $16 = $47.

The EWU [19] is an upper bound on utility measure by
overestimating the overall utility of an episode in entire event
sequence, but avoid missing any high-utility episodes. This is
justified by the following theorem as in [19]. However, a large
amount of low-utility episodes still may be regarded as candidates
since EWU is a loose upper-bound.

Definition 16 (High Weighted Utilization Episode [19]). Given
a event sequence S , an episode is called High Weighted
Utilization Episode (abbreviated as HWUE) in S iff its EWU
is no less than minUtil × TU.

Theorem 1 (Episode-Weighted Downward Closure property).
Let α and β be two episodes, and γ is a super-episode of
α and β, either generated by Simult-Concatenate(α, β) or
generated by Serial-Concatenate(α, β). The Episode-Weighted
Downward Closure (abbreviated as EWDC) property means
that if EWU(α) < minUtil × TU or EWU(β) < minUtil × TU,
γ is a low utility episode. It is important to note that EWU is the
upper bound of the episode as prefix when performing prefix-
spanning. In other words, the non-HWUE may still be the sub-
episode of the final HUEs (as the suffix in HUEs). Thus, we
can not remove those episodes which are not HWUEs when
prefix-spanning for discover HUEs.

Proof: Let moS et(α) = [mo1(α), mo2(α), . . ., mox(α)], and
moS et(γ) = [mo′1(γ), mo′2(γ), . . ., mo′y(γ)]. Because γ = Simult-
Concatenate(α, β) or Serial-Concatenate(α, β), the following
relationship holds: |moS et(α)| ≥ |moS et(γ)| [47]. According to
the definition of EWU, EWU(α) ≥ EWU(γ). Thus, if EWU(α) <
minUtil × TU, we have u(γ) ≤ EWU(γ) ≤ EWU(α) < minUtil ×
TU, which yields that γ is low utility.

Based on the above definitions for HUEM, we can obtain two
important observations from the existing studies.

Observation 1. Similar to the concept of TWU and SWU,
EWU serves as upper bound of an episode’s utility and maintains
the downward closure property. It is important to notice that
both TWU and SWU have the global downward closure property,
while EWU does not guarantee this. In the running example,
the episode {A, B,D} is not the HWUE since EWU({A, B,D})
= $24, but its super-episodes <{D, E} → B → {A, B,D}> and
<E → B → {A, B,D}> are the final HUEs under the above
settings, as shown in Fig. 2. Thus, the EWU upper bound only
has the local downward closure property in subtrees of LS-tree.

Observation 2. In UP-Span, the strategy namely Discarding
Global unpromising Events (DGE) [19] is applied to remove
the global unpromising 1-episodes (which EWU are less than
minUtil × TU) from the complex event sequence. As mentioned
earlier, this strategy cannot discover the complete set of HUEs and
will lead to false results. For instance, if an 1-episode is not the
HWUE, it still would be the part (sub-episode) of final HUEs. Un-
der the same parameter settings, only episode <D→ B→ {A,D}>
= $49 is returned by UP-Span as the final HUEs in Fig. 2. In the
same way, TSpan also fails to identify the complete HUEs.

4.2 Pruning Strategies for Searching HUEs

Finding all high-utility episodes without a powerful pruning strat-
egy would be infeasible due to the prohibitively large number of

candidate patterns. As described in the definition of EWU, the
computation of EWU(α) w.r.t. one minimal occurrence mo(α)
= [Ts, Te], in fact, consists of two parts, an episode α its own
utility w.r.t. mo(α), and the remaining utility of α starting from
time point Te to Ts + MTD. Let moS et(α) denote the set of the
minimal occurrences of α in S , then we can calculate EWU(α)
by accumulating all the EWU value in each minimal occurrence,
such that EWU(α) =

∑n
i=1 EWU(α,mon(α)). However, the first and

second part have some overlaps with episode α during the com-
putation. For example, in Fig. 1, EWU(<{A,D} → B>, [T1,T2])
= u({A,D}, T1) + u(B, T2) + u({B,C}, T2) + u({A,D, E}, T3) =

$7 + $10 + $14 + $16 = $47, thus the event B in T2 is overlap.
Therefore, the estimated utility upper bound is still loose. To speed
up the mining performance, we propose two optimized strategies
to reduce the upper bound namely EWU. Details are the optimized
EWU and corresponding pruning strategies are described below.
More formally, to compute the optimized EWU of the episodes,
the concept of remaining utility of episode is defined below.

Definition 17 (Remaining utility of an episode). At a specific
time point Ti, the remaining utility of an episode α in Ti is
the accumulative utilities of all events after this episode in Ti:
ru(α,Ti) =

∑
e′<α∧α≺e′ u(e′,Ti).

Basically, the remaining utility of an episode in Ti means the
sum of the utilities after this episode in Ti. For example, in T3 of
the running example, ru(A,T3) = u(D,T3) + u(E,T3) = $13, and
ru(D,T3) = u(E,T3) = $7.

Definition 18 (Optimized Episode-Weighted Utilization (opti-
mized EWU version 1.0 is denoted as EWUopt). Assume
an episode α = <(E1), (E2), . . ., (Ek−1), (Ek)> with one of
its minimal occurrences as mo(α), the optimized episode-
weighted utilization of α w.r.t. mo(α) is defined below by
removing the overlap utilities in Te: EWU(α, mo(α)) =∑k

i=1 u(Ei,Ti) +
∑Ts+MT D

i=Te
u(S Ei,Ti) - u(Ek,Ti) =

∑k−1
i=1 u(Ei,Ti)

+
∑Ts+MT D

i=Te
u(S Ei,Ti), where S Ei is the simultaneous event set

at the time point Ti in S .

Definition 19 (Optimized Episode-Weighted Utilization). The
optimized episode-weighted utilization (optimized EWU ver-
sion 2.0 is denoted as EWUopt′) of α = <(E1), (E2), . . .,
(Ek−1), (Ek)> w.r.t. mo(α) consists of three parts: 1) the
utility of α, 2) the remaining utility of α in Te, and 3)
the utility of all episodes in [Te + 1, Ts + MTD]. EWUopt′

is defined as EWU(α, mo(α)) = u(α,mo(α)) + ru(Ek,Te) +∑Ts+MT D
i=Te+1 tu(Ti) =

∑k
i=1 u(Ei,Ti) + ru(Ek,Te) +

∑Ts+MT D
i=Te+1 tu(Ti),

where time point Ti within the satisfied MTD interval [Te,Ts

+ MTD]. Thus, for α in S , we have the accumulative EWU
w.r.t. moS et(α) = [mo1,mo2, . . . ,mon], such that EWU(α) =∑n

i=1 EWU(α,mon(α)).

Consider the episode <{B} → D> with MTD = 2 in Fig. 1,
EWUopt(<B→ D>, [T2,T3]) = {u(B, T2) + u(D, T3)} + {u({A, E},
T3) + u({D, E}, T4)} = {$10} + {$3 + $6 + $7} + {$3 + $14} =

$43, while EWUopt′ (<B→ D>, [T2,T3]) = {u(B, T2) + u(D, T3)}
+ {u(E, T3) + u({D, E}, T4)} = {$10} + {$6 + $7} + {$3 + $14} =

$40. Obviously, EWUopt′ (<B→ D>, [T2,T3]) is more tighter than
EWUopt(<B → D>, [T2,T3]). In general, the larger the average
number of events in each time point Ti is, the bigger difference of
the results between EWUopt′ and EWUopt is.

7

TABLE 3: Results of each 1-episode

Episode moSet EWU Utility
A {[T1,T1], [T3,T3], [T6,T6]} $110 $47
B {[T2,T2], [T5,T5], [T6,T6]} $105 $49
C {[T1,T1], [T2,T2]} $90 $49
D {[T1,T1], [T3,T3], [T4,T4], [T6,T6]} $161 $51
E {[T3,T3], [T4,T4]} $94 $48

Specifically, the EWU3 value of α in S is always larger than or
equal to the total utility of α, as well as the total utility of any of
its extension (also called super-episodes) in the search space. The
results of each 1-episode in terms of moS et, EWU and utility are
shown in Table 3. In the conceptual LS-tree, the upper bound EWU
can ensure the local downward closure property. Based on the
above observations, we can use the following filtering strategies.
Theorem 1 gives us a way to track patterns that have potential to
be HUEs in the subtree. This guarantees to return the exact high-
utility episodes. Therefore, it is an important property that our
algorithm utilizes the upper bound EWU as the pruning strategy,
as described below.

Optimized EWU strategy. When spanning the LS-tree rooted
at an episode α as prefix, the UMEpi algorithm spans/explores
the search space in a depth-first search way. If the EWU of any
node/episode α is less than minUtil × TU, any of its child node
would not be a final HUE, they can be regarded as low-utility
episodes and pruned directly.

The conceptual LS-tree is a prefix-shared tree, and UMEpi
extends the lower-level nodes/episodes to the higher-level ones in
depth-first way. For each first layer node, they are the 1-HWUEs.
Theorem 1 establishes a theoretical basis for generating high-
utility l-episodes (l ≥ 2) from the 1-HWUEs. The basic idea
of UMEpi is generating all 1-HWUEs by calculating the EWU
values of all 1-episodes and then directly extending l-episodes
(l ≥ 2). Thus, UMEpi searches for the l-HWUEs and l-HUEs by
extending each 1-HWUE as prefix. For any l-episode node (k ≥ 2)
in the LS-tree, we can easily search for its 1-extensions using
I-Concatenation and S -Concatenation.

Specifically, Theorem 1 gives us the necessary conditions
for computing all prefix-based HWUEs and HUEs. EWU is the
upper bound on utility of any extension of a node/episode in a
subtree. Any subtree with non-HWUE episode α as the root can
be pruned since all α-prefixed episodes are not HWUEs. Pruning
strategies are applied to remove nodes with low upper bound such
as EWU(α) < minUtil × TU.

4.3 Main Procedure

To clarify our methodology, we have illustrated the conceptual
search space w.r.t. lexicographic sequence tree, the key properties
of utility w.r.t. minimum occurrence, and the optimized EWU
strategy so far. Utilizing the above concepts and technologies, the
main procedure of the designed UMEpi algorithm is described in
Algorithm 1. To summarize, given S , the UMEpi algorithm works
as follows: (1) In the Phase I, it first scans the event sequence
once to obtain the 1-length candidates namely 1-HWUEs. (2) In
the Phase II, UMEpi recursively calls the HUE-Span procedure
to discover the set of l-HWUEs and l-HUEs having α as prefix.
It uses depth-first search for the rest of the mining process.
Details are presented below. It takes four parameters as input:

3. If not otherwise specified, the term EWU is an equivalent to EWUopt′ in
the rest of this paper.

1) a complex event sequence, S ; 2) a user-specified utility-table,
ptable; 3) a maximum time duration, MTD; and 4) a minimum
utility threshold, minUtil. The UMEpi algorithm first scans the
entire event sequence once to construct the transformed S ′, and
to obtain all 1-length episodes as well as their associated minimal
occurrences moSet (Line 1). Then it calculates EWU(e) and the
utility of each 1-episode e ∈ E in S (Line 2). Besides, the total
utility of S can be calculated after these computations. If an 1-
episode satisfies u(e) ≥ minUtil × TU, adds it into the set of valid
HUEs (Lines 5-7). Here the built moSet of all 1-events can be used
to calculate the EWU value in the later processes, and to avoid
projecting the event sequence to a huge amount of sub-sequences.
Thereafter, UMEpi recursively calls the Span-SimultHUE and
Span-SerialHUE procedures, and finally outputs the complete set
of HUEs. It is important to notice that other 1-events that EWU(e)
< minUtil × TU also should be explored in the Span-SimultHUE
and Span-SerialHUE procedures. Because the non-HWUEs may
still be the sub-episodes of the final HUEs. In addition, the
processing order � of events should be kept consistently in UMEpi
after Line 3. For each node/episode, UMEpi does not have to
scan the event sequence multiple times to detect the necessary
information from the events.

Algorithm 1 The UMEpi algorithm

Input: S; ptable; MTD; minUtil.
Output: HUEs: the complete set of high-utility episodes.

1: scan original S once to construct the transformed S ′, and
to obtain all 1-length episodes as well as their associated
minimal occurrences;

2: calculate the EWU and real utility values of each 1-episode;
3: sort all 1-episodes in the total order �;
4: for each 1-episode e ∈ S ′ with order � do
5: if EWU(e) ≥ minUtil × TU then
6: if u(e) ≥ minUtil × TU then
7: HUEs← HUEs ∪ e;
8: end if
9: call Span-SimultHUE(e, S ′, MTD, minUtil);

10: call Span-SerialHUE(e, S ′, MTD, minUtil);
11: end if
12: end for
13: return HUEs

The Span-SimultHUE and Span-SerialHUE procedures are
shown in Algorithm 2 and Algorithm 3, respectively. Both of
them take as input: 1) a prefix episode α, 2) the transformed
event sequence S ′, 3) MTD, and 4) minUtil. These two procedures
are not the same. The Span-SimultHUE procedure operates as
follows. It first initializes simultEpiSet as an empty set (Line
1), then calculates all simultaneous events of α (that would be
expanded simultaneously), based on S ′ and moSet(α) (Lines 2-
3). After obtaining the set of all simultaneous events, it calls the
function Simult-Concatenate(α, e) to construct a new simultaneous
episode β, and calculates its moSet(β), as shown in Lines 4-5.
Based on S ′ and moSet(β), the overall utility and EWU of β
can be quickly calculated (Line 6). Utilizing the associated moSet
and transformed event sequence S ′, therefore, UMEpi can easily
obtain the true utility and upper bound of the new generated
episode.

After that, the designed EWU pruning strategy is used to
determine whether the extensions of β would be the HUEs and
should be explored (Line 7, using the EWU strategy). If the

8

Algorithm 2 The Span-SimultHUE procedure

Input: α, S ′, MTD, minUtil.
Output: HUEs: the set of high-utility episodes having α as prefix.

1: initialize simultEpiSet = φ;
2: for each mo(α) = [Ts,Te] ∈ moSet(α) do
3: simultEpiSet ← simultEpiSet ∪ {e | simultaneous event e

occurs at Te and e is after the last event in e};
4: end for
5: for each 1-event/episode e ∈ simultEpiS et do
6: simultaneous episode β ← Simult-Concatenate(α, e), and

calculate its moSet(β);
7: based on S ′ and moSet(β), calculate the overall utility and

EWU of β;
8: if EWU(β) ≥ minUtil × TU then
9: if u(β) ≥ minUtil × TU then

10: HUEs← HUEs ∪ β;
11: end if
12: call Span-SimultHUE(β, S ′, MTD, minUtil);
13: call Span-SerialHUE(β, S ′, MTD, minUtil);
14: end if
15: end for
16: return HUEs

Algorithm 3 The Span-SerialHUE procedure

Input: α, S ′, MTD, minUtil.
Output: HUEs: the set of high-utility episodes having α as prefix.

1: initialize serialEpiSet = φ;
2: for each mo(α) = [Ts,Te] ∈ moSet(α) do
3: for each time point t in [Te + 1, Ts + MTD] do
4: serialEpiSet ← serialEpiSet ∪ {e | serial event e occurs

at t};
5: end for
6: end for
7: for each 1-event/episode e ∈ serialEpiS et do
8: get serial episode β ← Serial-Concatenate(α, e), and

calculate its moSet(β);
9: based on S ′ and moSet(β), calculate the overall utility and

EWU of β;
10: if EWU(β) ≥ minUtil × TU then
11: if u(β) ≥ minUtil × TU then
12: HUEs← HUEs ∪ β;
13: end if
14: call Span-SimultHUE(β, S ′, MTD, minUtil);
15: call Span-SerialHUE(β, S ′, MTD, minUtil);
16: end if
17: end for
18: return HUEs

overall utility of β is no less than minUtil × TU, this episode
will be added into the set of HUEs having α as prefix (Lines 8-
9). After filtering the unpromising episode, only the promising
episodes with a high EWU upper bound would be explored for
next extension (Lines 10-11). After all the extensions rooted at
α are performed and determined recursively using the depth-first
search mechanism, it finally returns the set of HUEs that having
the common prefix α (Line 12). The Span-SerialHUE procedure
has different operations, as shown in Lines 1-6, but Lines 7-13 as
the same as that in the Span-SimultHUE procedure. The details for
constructing a super-episode (as know as simultaneous episode in

Span-SimultHUE, and serial episode in Span-SerialHUE) of α are
not the same. Due the intrinsic sequence-order and complexity, the
number of combination of episodes is quite huge. Different from
the previous works in frequent episode mining, UMEpi performs
an efficient operation for candidate generation. Besides, both I-
Concatenation and S -Concatenation share a prefix α, and they are
only allowed to differ in their last event or element.

The UP-Span algorithm utilizes the projected mechanism [6]
to generate sub-sequences by spanning prefixes, but this is a
common trick in SPM to facilitate the prefix-growth process.
Note that the projected mechanism is not utilized in our proposed
UMEpi algorithm. In UMEpi, both the episode α itself and the
minimal occurrence set moSet(α) are stored simultaneously during
the mining process. Together with the transformed event sequence
S ′, moSet(α) already provides a complete representation of all
sub-sequences w.r.t. α. Thus, moSet(α) is sufficient for computing
the EWU value and utility of α efficiently. In many situations,
it suffices to discover the candidate episodes and once the set
moS et of their minimal occurrences is known, all the required
candidates and HUEs can be easily generated. Note that UP-Span
in unnecessary to adopt the minimal occurrence to calculate the
EWU value.

5 Experimental Study

In this section, we report the performance study of the utility-
driven UMEpi algorithm on several real-world datasets. For effec-
tiveness evaluation, UMEpi is compared with the state-of-the-art
approaches, UP-Span [19] and TSpan [20]. Note that the UP-
Span [19] approach does not calculate the EWU and real utility
of episodes by using the minimal occurrence. As discussed in
Section 4, it suffers from several errors and incorrect mining
results. Besides, the TSpan algorithm [20] also fails to extract
the correct HUEs. Thus, the execution time and memory cost of
UP-Span and TSpan are not suitable to evaluate the efficiency of
the developed UMEpi algorithm. We perform the experiments to
make an assessment of UMEpi’s efficiency, in terms of: 1) How
efficient is UMEpi with a variety of datasets and parameters? 2)
How powerful are the different optimized EWU strategies? 3)
What impact would be caused by different processing order of
1-HWUEs?

To answer these questions, three variants of UMEpi are con-
ducted in our experiments: UMEpibaseline denotes the proposed
algorithm adopt the original EWU as defined in TSpan, UMEpi
adopts the optimized EWU version 1.0 (EWUopt), and UMEpi+
utilizes the most tightest upper bound EWUopt′ .

5.1 Data Description and Experimental Setup

Datasets. Our experiments are conducted on four real-world
datasets, including retail4, BMS5, foodmart6, chainstore7. For
FIM and HUIM, these datasets are the general transaction data.
For FEM and HUEM, they can be viewed as a single complex
sequence when each item is regarded as an event and each trans-
action is viewed as a simultaneous event set. The characteristics
of these four datasets are described below.

4. http://fimi.ua.ac.be/data/

5. http://fimi.ua.ac.be/data/

6. http://msdn.microsoft.com/enus/library/aa217032(v=sql.80).asp
7. http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://msdn.microsoft.com/enus/library/aa217032(v=sql.80).asp
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

9

• retail: it is collected from real-life retail data. There are
totally 88,162 transactions with 16,470 distinct items. And
an average transaction length is 10.3 items.

• BMS: this click-stream data is collected from an e-
commerce, and contains 59,601 sub-sequences with 497
distinct items. The average length of sub-sequences in
BMS is 2.42 items with a standard deviation of 3.22.

• foodmart: a dataset of customer transactions from an
anonymous chain store, provided by Microsoft SQL
Server. There are totally 21,556 transactions and 1,559
distinct items.

• chainstore: this dataset is obtained and transformed from
NU-Mine Bench. As a real-life dataset of customer trans-
actions from a retail store, chainstore contains 1,112,949
transactions with 46,086 distinct items/events. Besides, the
average transaction length ups to 7.3 items.

More details of these datasets can be referred to the SPMF
website8, and all of them are published and available to re-
searchers. Both foodmart and chainstore contain the embedding
occur quantity and unit utility of each item, while retail and
BMS only contain the information of items/events. Similar to
the previous studies [12], [13], we use a simulation method to
randomly generate the internal and external utilities in retail and
BMS: 1) generate the occur quantity (in range of 1 to 6) for each
item in every transaction; 2) set the unit utility for each item (in
range of 1 to 1000 by using a log-normal distribution).

Evaluation platform. In our experiments, all the algorithms
are written in Java language. The source C++ code of TSpan is
provided by its authors, and the implementation of UP-Span is
available at SPMF website. The experiments are conducted on a
personal ThinkPad T470p computer with an Intel(R) Core(TM)
i7-7700HQ CPU @ 2.80 GHz 2.81 GHz, 32 GB of RAM, and
with the 64-bit Microsoft Windows 10 operating system. The
Maximum JVM memory is set to 8 GB of RAM.

Parameter settings. Note that the default size of each dataset
is 1000 (the 1000 events/transactions in front are selected), and the
maximal duration time of the desired high-utility episode is fixed
set as MTD = 4 when varying minUtils. For each test dataset with a
fixed size, when minUtil is fixed set, MTD is varied set from 1 to 6.
We run each method three times and report the average results (i.e.,
execution time, memory consumption). When the runtime exceeds
100,000 seconds or the algorithm is out of memory, we assume
that there is no result of runtime and memory consumption. Then,
the result of related patterns is marked as “-”.

5.2 Effectiveness Evaluation

We first study the effectiveness of UMEpi. First, we use the
running example as a case study to evaluate the final patterns
that discovered by the pioneer UP-Span [19], the state-of-the-
art TSpan [20], and the proposed UMEpi algorithm. The mining
results from event sequence in Fig. 1 are plotted in Table 4, with a
fixed MTD = 3. Note that test1 to test6 is related to minUtil: 30%,
minUtil: 35%, minUtil: 40%, minUtil: 45%, minUtil: 50%, and
minUtil: 55%, respectively. Obviously, both UP-Span and TSpan
fail to extract the complete true high-utility episodes from event
sequence. Although the number of HUEs extracted by UP-Span is
close to the final HUEs returned by UMEpi, the utilities of some
HUEs are incorrect.

8. http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.
php

TABLE 4: Discovered HUEs by three HUEM algorithms

Dataset Algorithm
HUEs when varying minUtil with MTD = 3

test1 test2 test3 test4 test5 test6

UP-Span 863 647 385 218 113 53

Example TSpan 14 11 6 5 1 0

(Fig. 1) UMEpi 891 717 476 301 174 69

In the following experiments, both UP-Span and TSpan are
not compared since both of them fail to solve the addressed
problem for mining high-utility episodes. To further evaluate the
effectiveness of UMEpi, we plot the results of candidate episodes
and the final HUEs under various parameter settings in Table 5.
Note that #HUEs denotes the number of final HUEs discovered by
three variants of UMEpi (UMEpibaseline, UMEpi, and UMEpi+),
and the number of visited candidates/nodes of three variants is
denoted as #N1, #N2 and #N3, respectively. In Table 5, δ represents
minUtil, and its detailed value is shown in Fig. 2(a) to (d). In Table
6, the fixed minUtil of each dataset is shown in Fig. 2(e) to (h). If
we look at it in another light, the number of candidate episodes can
also be used to assess the effects of the adopted pruning strategies.

TABLE 5: # patterns under varying minUtil with fixed MTD

Dataset # Patterns
patterns under different thresholds

δ1 δ2 δ3 δ4 δ5 δ6

#N1 77,758 67,478 59,204 52,474 46,912 42,206

retail #N2 69,936 60,580 53,406 47,624 42,538 38,320

#N3 57,210 50,556 45,150 40,372 36,430 33,042

#HUEs 640 541 462 391 345 299

#N1 9,472 8,746 7,760 6,294 3,450 2,388

BMS #N2 8,556 2,464 2,432 2,408 2,364 2,338

#N3 274 256 250 240 236 226

#HUEs 0 0 0 0 0 0

#N1 - - 12,804,602 6,117,054 2,733,572 1,157,568

foodmart #N2 5,550,420 2,542,604 1,092,060 436,324 164,712 58,954

#N3 369,006 162,018 67,648 27,080 11,248 5,322

#HUEs 34,064 13,313 4,826 1,582 476 122

#N1 153,856 43,454 24,492 1,972 1,524 1,520

chainstore #N2 934 928 918 916 912 906

#N3 658 656 652 650 644 640

#HUEs 3 3 3 3 3 3

TABLE 6: # patterns under varying MTD with fixed minUtil

Dataset # Patterns
patterns under different thresholds

1 2 3 4 5 6

#N1 2,084 7,180 22,896 67,478 178,830 -

retail #N2 1,806 6,258 20,386 60,580 162,090 451,756

#N3 1,426 5,022 16,836 50,556 137,056 389,726

#HUEs 31 80 211 541 1,284 3,044

#N1 1,478 2,564 4,082 9,472 - -

BMS #N2 274 2,250 2,320 8,556 9,068 -

#N3 118 170 214 274 334 524

#HUEs 0 0 0 0 0 0

#N1 726 1,552 2,240 12,804,602 - -

foodmart #N2 724 1,528 2,176 1,092,060 - -

#N3 722 1,510 2,096 67,648 - -

#HUEs 0 0 0 4,826 - -

#N1 178 372 752 24,492 44,018 -

chainstore #N2 172 362 586 918 1,384 -

#N3 154 270 420 652 940 -

#HUEs 2 2 3 3 3 -

As shown in Table 5, it can be clearly observed that the
number of HUEs is always quite less than that of the interme-
diate candidates, and the number of candidates generated by the

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

10

designed three variants always has the following relationship:
#N1 ≥ #N2 ≥ #N3, under various MTD and minUtil thresholds.
These results are reasonable, the reason is that there are a huge
number of candidates that are determined for mining HUEs, and
three variants of UMEpi adopt different optimized EWU strategies.
To be more specific, a more tighter upper bound of EWU may
lead to a more smaller search space and more less candidates. For
example, in the foodmart dataset with minUtil: 0.88%, the number
of patterns is #N1: 12,804,602, #N2: 1,092,060, #N3: 67,648, and
#HUEs: 4,826, respectively. Consider the utility measure and MTD
constraint, we normally get the above observations also in other
datasets. Therefore, it can clearly show the effect of the optimized
EWU pruning strategies.

Specifically, both the MTD and minUtil affect the results of
visited candidates and HUEs, as shown form #N1 to #N3 and
#HUEs on each dataset. In general, the number of HUEs are
always much smaller than that of candidates. The reason is that the
actual search space of the HUEM task is huge although the number
of actual high-utility episodes is rare. For example, it may return
up to hundreds of high-utility episodes in the running example,
which only has six event sets (time points) as presented at Fig. 1.
When minUtil is fixed on one specific dataset, the larger MTD is,
the larger the number of discovered patterns is. Consider the retail
dataset, when MTD is set as 1, #N3 = 1,426, #HUEs = 31; when
MTD is changed to 6, #N3 = 389,726, #HUEs = 3,044. Therefore,
in general, the MTD parameter cannot be set too large. Otherwise,
it may easily lead to combinatorial explosion. Besides, it indicates
that we need to develop an efficient HUEM algorithm with an
acceptable mining efficiency to extract high-utility episodes from
complex event sequence.

5.3 Runtime Analysis

The runtime analysis is given in this subsection. The “runtime”
indicates the average running time of each variant of the UMEpi
algorithm, by varying minUtil or MTD. In Fig. 2, (a) to (d) are
tested with a fixed MTD (= 4) and varied minUtils; (e) to (h) are
tested with a fixed minUtil and varied MTDs (from 1 to 6). Note
that the scale of the runtime is second.

It can be seen that in each sub-figure, the total execution time
of each compared algorithm is highly related to the number of
final HUEs. Note that if the two user-specified parameters are
poorly chosen, like a large MTD or a low minUtil in Fig. 2, a
relatively large number of episodes seems to become high utility,
and thus the running time would increase dramatically. Besides,
the differences of runtime among three compared algorithms are
largely related to the number of their generated candidate episodes.
For example, in the case of BMS as shown in Fig. 2(b) and Fig.
2(f), we can obviously observe the difference of the execution
time between UMEpibaseline and UMEpi+ and its trend. When
minUtil is set to 11% on BMS dataset, the runtime of UMEpi+ is
always close to 7 seconds, while UMEpibaseline approximately has
its processing time as 3,200 seconds.

An analysis of the effects of changing minUtil (Fig. 2(a),
Fig. 2(b), Fig. 2(c), and Fig. 2(d)) shows that a poorly chosen
minUtil might result in a long-running time. Besides, the MTD
parameter gives a fine-grained control of the number of interesting
results. When setting a large MTD, the total numbers of episodes
and HUEs increase. Thus, a longer running time is required to
determine these patterns. Note that, especially for the dataset
where average transaction length is large, a low minUtil or a

large MTD can dramatically increase the running time. This is
due to a large number of (candidate) episodes being generated
and determined. From the experimental results, there seems to be
a cutoff point that separates high utility episodes from low utility
ones. Small changes around the MTD may have a noticeable effect
on the runtime.

5.4 Memory Cost Analysis

Next, we analyze the memory cost performance of the proposed
algorithm. In this set of experiments, we evaluate the effect on
memory cost of different EWU strategies in UMEpi for discover-
ing high-utility episodes. Fig. 3 shows the maximal memory cost
when we vary the minUtil or MTD with the fixed size of the target
dataset. Note that in all datasets, we use Java API to count the
maximal memory consumption for fair comparison. In Fig. 3, the
missing value means the runtime exceeds 100,000 seconds or the
algorithm is out of memory.

In foodmart dataset, all three variants have similar memory
consumption no matter varying minUtil or varying MTD. In other
datasets, UMEpi consumes a much smaller memory than that of
UMEpibaseline and UMEpi+ performs the best under all parameter
settings. Intuitively, the results of memory consumption of three
UMEpi variants are directly related to the number of candidate
patterns which are shown in Table 5. We can also obtain the
following relationship as: #N1 ≥ #N2 ≥ #N3, under various MTD
and minUtil thresholds

Note that UMEpi+ consumes a much smaller memory space
in each dataset than that of UMEpibaseline and UMEpi. Utilizing
a more tighter upper bound of EWU, the improved UMEpi+
algorithm can save the cost of candidate generation and speed
up processing when spanning the LS-tree. As shown in Table 5,
the intermediate candidates can be reduced significantly, thereby
reducing memory access and storage costs. For example, in the
case of Fig. 3(b) and Fig. 3(f), it is clear that the difference
of the maximal memory consumption of UMEpibaseline, UMEpi
and UMEpi+ is obvious. When minUtil is set to 11.8% on BMS
dataset, UMEpibaseline and UMEpi respectively consumes 1,000
MB and 990 MB, while UMEpi+ approximately consumes 676
MB, which is quite less than the other ones. This trend also can
be observed from the other datasets. Therefore, we can conclude
that the proposed new EWU upper bound plays an active role in
pruning the search space of the utility-driven UMEpi algorithm.

5.5 Processing Order of Events

In general, the processing order of a data mining algorithm may
influence the mining performance. What processing order is more
suitable for the proposed algorithm? To assess the influence
caused by different processing orders, we compare the runtime
and memory consumption of UMEpi+ using different processing
orders. Totally four types of processing orders are tested on retail
under the same parameter settings (MTD = 4 and minUtil is varied
from 1.7% to 2.2%). The UMEpiocc, UMEpilexi, UMEpiewuas, and
UMEpiewude refers to the occur order, the lexicographic order, the
EWU ascending order, and the EWU descending order, respec-
tively. As we can see from the experimental results in Fig. 4(a),
UMEpilexi requires the longest runtime, while UMEpiewuas is the
fastest among the four compared orders. Consider the memory
consumption as shown in Fig. 4(b), obviously, UMEpilexi and
UMEpiewuas have the similar performance on memory cost. The

11

1.7 1.8 1.9 2.0 2.1 2.2
400

600

800

1000

1200

1400
(a) retail (MTD: 4)

minUtil (%)

R
u

n
ti
m

e
 (

s
e

c
.)

11.0 11.2 11.4 11.6 11.8 12.0
0

1000

2000

3000

4000
(b) BMS (MTD: 4)

minUtil (%)

R
u

n
ti
m

e
 (

s
e

c
.)

0.86 0.87 0.88 0.89 0.90 0.91
0

10

20

30

40
(c) foodmart (MTD: 4)

minUtil (%)

R
u

n
ti
m

e
 (

s
e

c
.)

1 2 3 4 5 6
0

500

1000

1500

2000
(e) retail (minUtil: 1.8%)

MTD

R
u

n
ti
m

e
 (

s
e

c
.)

1 2 3 4 5 6
0

10

20

30

40
(g) foodmart (minUtil: 0.88%)

MTD

R
u

n
ti
m

e
 (

s
e

c
.)

1 2 3 4 5 6
0

0.5

1

1.5

2
x 10

4 (f) BMS (minUtil: 11%)

MTD

R
u

n
ti
m

e
 (

s
e

c
.)

UMEpi
baseline UMEpi UMEpi+

3.28 3.29 3.30 3.31 3.32 3.33
10

15

20

25

30
(d) chainstore (MTD: 4)

minUtil (%)

R
u

n
ti
m

e
 (

s
e

c
.)

1 2 3 4 5 6
0

10

20

30
(h) chainstore (minUtil: 3.3%)

MTD

R
u

n
ti
m

e
 (

s
e

c
.)

Fig. 2: Runtime under various parameters (MTD and minUtil).

1.7 1.8 1.9 2.0 2.1 2.2
0

500

1000

1500

2000
(a) retail (MTD: 4)

minUtil (%)

M
e

m
o

ry

(M
B

)

0.86 0.87 0.88 0.89 0.90 0.91
0

1000

2000

3000

(c) foodmart (MTD: 4)

minUtil (%)

M
e

m
o

ry

(M
B

)

1 2 3 4 5 6
0

500

1000

1500

2000
(e) retail (minUtil: 1.8%)

MTD

M
e

m
o

ry

(M
B

)

1 2 3 4 5 6
0

1000

2000

3000

(g) foodmart (minUtil: 0.88%)

MTD

M
e

m
o

ry

(M
B

)

3.28 3.29 3.30 3.31 3.32 3.33
0

500

1000

1500

2000
(d) chainstore (MTD: 4)

minUtil (%)

M
e

m
o

ry

(M
B

)

1 2 3 4 5 6
0

500

1000

1500

2000
(h) chainstore (minUtil: 3.3%)

MTD

M
e

m
o

ry

(M
B

)

1 2 3 4 5 6
0

500

1000

1500

2000
(f) BMS (minUtil: 11%)

MTD

M
e

m
o

ry

(M
B

)

11.0 11.2 11.4 11.6 11.8 12.0
0

500

1000

1500

2000
(b) BMS (MTD: 4)

minUtil (%)

M
e

m
o

ry

(M
B

)

UMEpi+ UMEpi UMEpi
baseline

Fig. 3: Memory cost under various parameters (MTD and minUtil).

UMEpiewude and UMEpiocc consume similar memory. To sum-
mary, UMEpiewuas always requires less memory consumption than
that of other three orders, including UMEpilexi, UMEpiewude, and
UMEpiocc. Taken together, the adopted EWU ascending order of
events (1-episodes) (UMEpiewuas) can lead to the best performance
in terms of runtime and memory usage. In addition, any processing
order in UMEpi does not have an effect on the mining results since
the number of candidates and final HUEs in three variants are the
same. Details of the number of pattens are not shown here due to
the space limit.

5.6 Scalability Test

The computational efficiency problem for HUEM might be more
likely happened in long event sequences. Results in Fig. 5 showed
the scalability of how UMEpi performs with different numbers of
events in a complex sequence. In Fig. 5, the parameter settings are

1.7 1.8 1.9 2.0 2.1 2.2
400

600

800

1000

1200

(a) retail (MTD: 4)

minUtil (%)

R
u
n
ti
m

e
 (

s
e
c
.)

1.7 1.8 1.9 2.0 2.1 2.2
0

1000

2000

3000

4000
(b) retail (MTD: 4)

minUtil (%)

M
e
m

o
ry

(M

B
)

UMEpi+
lexi

UMEpi+
ewuas

UMEpi+
ewude

UMEpi+
occ

UMEpi+
occ

UMEpi+
ewude

UMEpi+
ewuas

UMEpi+
lexi

Fig. 4: Effect of processing order.

MTD = 4, minUtil = 2%, and dataset size is changed from 4,000 to
24,000 simultaneous event sets. It shows that the execution time
is linear with respect to the number of events |K| in chainstore,
while the memory cost, the number of intermediate candidates and

12

4K 8K 12K 16K 20K 24K
0

1000

2000

3000

4000

5000
(a) chainstore

Data size

R
u
n

ti
m

e
 (

s
e
c
.)

4K 8K 12K 16K 20K 24K
0

500

1000

1500

2000

2500
(c) chainstore

Data size

#
 p

a
tt

e
rn

s

4K 8K 12K 16K 20K 24K
0

1000

2000

3000

4000
(b) chainstore

Data size

M
e
m

o
ry

(M

B
)

UMEpi

UMEpi+

UMEpi

UMEpi+

N
2

N
3

HUEs

Fig. 5: Scalability test with different data size.

final HUEs are not that. We have also noticed that execution time
of UMEpi and UMEpi+ increases rather gradually, and UMEpi+
always faster than UMEpi. With the fixed MTD and minUtil, we
refer to the candidates and final HUEs whose numbers do not
dramatically change, but more execution time is required due to
the large sequence size for discovering high-utility episodes.

6 Conclusions
In this paper, we have presented a generic utility-driven episode
mining framework named UMEpi for discovering high-utility
episodes from a complex event sequence. A generic concept
namely episode-weighted utilization (EWU) is defined and the
optimization strategies are further introduced to reduce this upper
bound on utility of episodes. To the best of our studies, UMEpi
is the first algorithm that can successfully solve the problem of
discovering high-utility episodes. Based on the optimized EWU
concept, UMEpi applied the powerful pruning strategies which
utilize the downward closure property of EWU to prune the
search space. Moreover, UMEpi can directly discover high-utility
episodes by avoiding performing costly operations of unpromis-
ing candidates. The extensive performance on several real-world
datasets demonstrates the effectiveness of UMEpi compared to
the existing approaches. Furthermore, UMEpi has good mining
performance in terms of efficiency and scalability.

Acknowledgment
We would like to thank Dr. Guangming Guo for sharing the
original C++ code of the TSpan algorithm. This research
was partially supported by the Shenzhen Technical Project un-
der Grant No. JCYJ 20170307151733005 and No. KQJSCX
20170726103424709, and a grant from CSC (China Scholarship
Council) Program.

References
[1] M. S. Chen, J. Han, and P. S. Yu, “Data mining: an overview from

a database perspective,” IEEE Transactions on Knowledge and data
Engineering, vol. 8, no. 6, pp. 866–883, 1996.

[2] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proceedings of the 20th International Conference on Very Large
Data Bases, vol. 1215, 1994, pp. 487–499.

[3] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data Mining
and Knowledge Discovery, vol. 8, no. 1, pp. 53–87, 2004.

[4] S. Samarah, A. Boukerche, and A. S. Habyalimana, “Target association
rules: A new behavioral patterns for point of coverage wireless sensor
networks,” IEEE Transactions on Computers, vol. 60, no. 6, pp. 879–
889, 2011.

[5] M. M. Rashid, I. Gondal, and J. Kamruzzaman, “Mining associated pat-
terns from wireless sensor networks,” IEEE Transactions on Computers,
vol. 64, no. 7, pp. 1998–2011, 2015.

[6] J. Pei, J. Han, and L. V. Lakshmanan, “Mining frequent itemsets
with convertible constraints,” in Proceedings of the 17th International
Conference on Data Engineering. IEEE, 2001, pp. 433–442.

[7] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent
episodes in event sequences,” Data Mining and Knowledge Discovery,
vol. 1, no. 3, pp. 259–289, 1997.

[8] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, V. S. Tseng, and
P. S. Yu, “A survey of utility-oriented pattern mining,” arXiv preprint
arXiv:1805.10511, 2018.

[9] A. Marshall, “From principles of economics,” in Readings in the Eco-
nomics of the Division of Labor: The Classical Tradition. World
Scientific, 2005, pp. 195–215.

[10] Y. Liu, W. k. Liao, and A. Choudhary, “A two-phase algorithm for fast
discovery of high utility itemsets,” in Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, 2005,
pp. 689–695.

[11] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee, “Efficient tree
structures for high utility pattern mining in incremental databases,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 12, pp.
1708–1721, 2009.

[12] V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu, “Efficient algorithms
for mining high utility itemsets from transactional databases,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 8, pp.
1772–1786, 2013.

[13] M. Liu and J. Qu, “Mining high utility itemsets without candidate
generation,” in Proceedings of the 21st ACM International Conference
on Information and Knowledge Management. ACM, 2012, pp. 55–64.

[14] O. K. Alkan and P. Karagoz, “CRoM and HuspExt: Improving efficiency
of high utility sequential pattern extraction,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 10, pp. 2645–2657, 2015.

[15] J. Z. Wang, J. L. Huang, and Y. C. Chen, “On efficiently mining high
utility sequential patterns,” Knowledge and Information Systems, vol. 49,
no. 2, pp. 597–627, 2016.

[16] J. Yin, Z. Zheng, and L. Cao, “USpan: an efficient algorithm for
mining high utility sequential patterns,” in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2012, pp. 660–668.

[17] X. Ao, P. Luo, C. Li, F. Zhuang, and Q. He, “Discovering and learning
sensational episodes of news events,” Information Systems, vol. 78, pp.
68–80, 2018.

[18] X. Ao, P. Luo, J. Wang, F. Zhuang, and Q. He, “Mining precise-
positioning episode rules from event sequences,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 3, pp. 530–543, 2017.

[19] C. W. Wu, Y. F. Lin, P. S. Yu, and V. S. Tseng, “Mining high utility
episodes in complex event sequences,” in Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2013, pp. 536–544.

[20] G. Guo, L. Zhang, Q. Liu, E. Chen, F. Zhu, and C. Guan, “High utility
episode mining made practical and fast,” in International Conference on
Advanced Data Mining and Applications. Springer, 2014, pp. 71–84.

[21] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM Sigmod Record,
vol. 22, no. 2. ACM, 1993, pp. 207–216.

[22] S. Laxman, P. Sastry, and K. Unnikrishnan, “Discovering frequent
episodes and learning hidden markov models: A formal connection,”

13

IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 11,
pp. 1505–1517, 2005.

[23] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings
of the 7th International Conference on Data Engineering. IEEE, 1995,
pp. 3–14.

[24] K. Y. Huang and C. H. Chang, “Efficient mining of frequent episodes
from complex sequences,” Information Systems, vol. 33, no. 1, pp. 96–
114, 2008.

[25] K. Iwanuma, Y. Takano, and H. Nabeshima, “On anti-monotone fre-
quency measures for extracting sequential patterns from a single very-
long data sequence,” in IEEE Conference on Cybernetics and Intelligent
Systems, vol. 1. IEEE, 2004, pp. 213–217.

[26] N. Méger and C. Rigotti, “Constraint-based mining of episode rules and
optimal window sizes,” in European Conference on Principles of Data
Mining and Knowledge Discovery. Springer, 2004, pp. 313–324.

[27] H. Yao and H. J. Hamilton, “Mining itemset utilities from transaction
databases,” Data & Knowledge Engineering, vol. 59, no. 3, pp. 603–626,
2006.

[28] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, T. P. Hong,
and H. Fujita, “A survey of incremental high-utility itemset mining,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 8, no. 2, p. e1242, 2018.

[29] U. Yun, G. Lee, and E. Yoon, “Efficient high utility pattern mining for
establishing manufacturing plans with sliding window control,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7239–7249,
2017.

[30] T. Mai, B. Vo, and L. T. Nguyen, “A lattice-based approach for mining
high utility association rules,” Information Sciences, vol. 399, pp. 81–97,
2017.

[31] V. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu, “UP-Growth: an efficient
algorithm for high utility itemset mining,” in Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2010, pp. 253–262.

[32] C. W. Lin, T. P. Hong, and W. H. Lu, “An effective tree structure for
mining high utility itemsets,” Expert Systems with Applications, vol. 38,
no. 6, pp. 7419–7424, 2011.

[33] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, “FHM: Faster
high-utility itemset mining using estimated utility co-occurrence prun-
ing,” in Proceedings of the International Symposium on Methodologies
for Intelligent Systems. Springer, 2014, pp. 83–92.

[34] S. Krishnamoorthy, “Pruning strategies for mining high utility itemsets,”
Expert Systems with Applications, vol. 42, no. 5, pp. 2371–2381, 2015.

[35] S. Zida, P. Fournier-Viger, J. C. W. Lin, C. W. Wu, and V. S. Tseng,
“EFIM: a fast and memory efficient algorithm for high-utility itemset
mining,” Knowledge and Information Systems, vol. 51, no. 2, pp. 595–
625, 2017.

[36] L. T. Nguyen, P. Nguyen, T. D. Nguyen, B. Vo, P. Fournier-Viger, and
V. S. Tseng, “Mining high-utility itemsets in dynamic profit databases,”
Knowledge-Based Systems, vol. 175, pp. 130–144, 2019.

[37] U. Yun, D. Kim, E. Yoon, and H. Fujita, “Damped window based
high average utility pattern mining over data streams,” Knowledge-Based
Systems, vol. 144, pp. 188–205, 2018.

[38] V. S. Tseng, C. W. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient
algorithms for mining top-k high utility itemsets,” IEEE Transactions
on Knowledge and Data Engineering, vol. 28, no. 1, pp. 54–67, 2016.

[39] C. F. Ahmed, S. K. Tanbeer, and B. S. Jeong, “Mining high utility
web access sequences in dynamic web log data,” in Proceedings of
11th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing. IEEE,
2010, pp. 76–81.

[40] W. Gan, J. C. W. Lin, J. Zhang, H. C. Chao, H. Fujita, and P. S.
Yu, “ProUM: Projection-based utility mining on sequence data,” in
Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics. IEEE, 2019, pp. 2001–2007.

[41] W. Gan, J. C. W. Lin, J. Zhang, P. Fournier-Viger, H. C. Chao, and
P. S. Yu, “Fast utility mining on complex sequences,” arXiv preprint
arXiv:1904.12248, 2019.

[42] W. Gan, J. C. W. Lin, H. C. Chao, S. L. Wang, and P. S. Yu, “Privacy
preserving utility mining: a survey,” in Proceedings of the IEEE Interna-
tional Conference on Big Data. IEEE, 2018, pp. 2617–2626.

[43] Y. F. Lin, C. W. Wu, C. F. Huang, and V. S. Tseng, “Discovering utility-
based episode rules in complex event sequences,” Expert Systems with
Applications, vol. 42, no. 12, pp. 5303–5314, 2015.

[44] N. Tatti and B. Cule, “Mining closed episodes with simultaneous events,”
in Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2011, pp. 1172–1180.

[45] S. Laxman, P. Sastry, and K. Unnikrishnan, “A fast algorithm for finding
frequent episodes in event streams,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2007, pp. 410–419.

[46] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining
using a bitmap representation,” in Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2002, pp. 429–435.

[47] X. Ma, H. Pang, and K. L. Tan, “Finding constrained frequent episodes
using minimal occurrences,” in Proceedings of IEEE International Con-
ference on Data Mining. IEEE, 2004, pp. 471–474.

Wensheng Gan (M’19) received the Ph.D. in
Computer Science and Technology, Harbin Insti-
tute of Technology (Shenzhen), Guangdong, China
in 2019. He received the B.S. degree in Com-
puter Science from South China Normal Univer-
sity, Guangdong, China in 2013. His research in-
terests include data mining, utility computing, and
big data analytics. He has published more than
50 research papers in peer-reviewed journals (i.e.,
ACM TKDD, ACM TDS, IEEE TKDE, IEEE TCYB,
INS, KBS) and conferences (i.e., BigData, DSAA,

DEXA, PAKDD), which have received more than 700 citations.

Jerry Chun-Wei Lin (SM’19) is an associate pro-
fessor at Western Norway University of Applied
Sciences, Bergen, Norway. He received the Ph.D.
in Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan in
2010. His research interests include data mining,
big data analytics, and social network. He has
published more than 300 research papers in peer-
reviewed international conferences and journals,
which have received more than 3600 citations. He
is the co-leader of the popular SPMF open-source

data mining library and the Editor-in-Chief (EiC) of the Data Science and
Pattern Recognition (DSPR) journal, and Associate Editor of Journal of
Internet Technology. Dr. Lin is a Senior Member of ACM and IEEE, and
a fellow of IET.

Han-Chieh Chao (SM’04) has been the president
of National Dong Hwa University since February
2016. He received M.S. and Ph.D. degrees in
Electrical Engineering from Purdue University in
1989 and 1993, respectively. His research interests
include high-speed networks, wireless networks,
IPv6-based networks, and artificial intelligence. He
has published nearly 500 peer-reviewed profes-
sional research papers. He is the Editor-in-Chief
(EiC) of IET Networks and Journal of Internet Tech-
nology. Dr. Chao has served as a guest editor for

ACM MONET, IEEE JSAC, IEEE Communications Magazine, IEEE Systems
Journal, Computer Communications, IEEE Proceedings Communications,
Wireless Personal Communications, and Wireless Communications & Mo-
bile Computing. Dr. Chao is an IEEE Senior Member and a fellow of IET.

Philip S. Yu (F’93) received the B.S. degree in
electrical engineering from National Taiwan Univer-
sity, M.S. and Ph.D. degrees in electrical engineer-
ing from Stanford University, and an MBA from New
York University. He is a distinguished professor of
computer science with the University of Illinois at
Chicago (UIC) and also holds the Wexler Chair in
Information Technology at UIC. Before joining UIC,
he was with IBM, where he was manager of the
Software Tools and Techniques Department at the
Thomas J. Watson Research Center. His research

interests include data mining, data streams, databases, and privacy. He has
published more than 1,300 papers in peer-reviewed journals (i.e., TKDE,
TKDD, VLDBJ, ACM TIST) and conferences (KDD, ICDE, WWW, AAAI,
SIGIR, ICML, etc). He holds or has applied for more than 300 U.S. patents.
Dr. Yu was the Editor-in-Chief of ACM Transactions on Knowledge Discovery
from Data. He received the ACM SIGKDD 2016 Innovation Award, and the
IEEE Computer Society 2013 Technical Achievement Award. Dr. Yu is a
fellow of the ACM and the IEEE.

	1 Introduction
	2 Related Work
	2.1 Support-based Episode Mining
	2.2 Utility-based Itemset/Sequence Mining
	2.3 Utility-based Episode Mining

	3 Preliminaries and Problem Formulation
	3.1 Preliminaries of Utility Mining on Event Sequence
	3.2 Problem Formulation

	4 Proposed UMEpi Algorithm
	4.1 Downward Closure Property
	4.2 Pruning Strategies for Searching HUEs
	4.3 Main Procedure

	5 Experimental Study
	5.1 Data Description and Experimental Setup
	5.2 Effectiveness Evaluation
	5.3 Runtime Analysis
	5.4 Memory Cost Analysis
	5.5 Processing Order of Events
	5.6 Scalability Test

	6 Conclusions
	References
	Biographies
	Wensheng Gan (M'19)
	Jerry Chun-Wei Lin (SM'19)
	Han-Chieh Chao (SM'04)
	Philip S. Yu (F'93)

