
1

A Transistor Operations Model for Deep Learning

Energy Consumption Scaling Law
Chen Li, Antonios Tsourdos and Weisi Guo, Senior Member, IEEE

Abstract—Deep Neural Networks (DNN) has transformed the
automation of a wide range of industries and finds increasing
ubiquity in society. The high complexity of DNN models and
its widespread adoption has led to global energy consumption
doubling every 3-4 months. Current energy consumption mea-
sures largely monitor system wide consumption or make linear
assumptions of DNN models. The former approach captures other
unrelated energy consumption anomalies, whilst the latter does
not accurately reflect nonlinear computations. In this paper, we
are the first to develop a bottom-up Transistor Operations (TOs)
approach to expose the role of non-linear activation functions
and neural network structure. As there will be inevitable energy
measurement errors at the core level, we statistically model the
energy scaling laws as opposed to absolute consumption values.
We offer models for both feedforward DNNs and convolution
neural networks (CNNs) on a variety of data sets and hardware
configurations - achieving a 93.6% - 99.5% precision. This
outperforms existing FLOPs-based methods and our TOs method
can be further extended to other DNN models.

Impact Statement—Deep learning is one of the fastest growth
areas for computational resources (300,000x from 2012 to 2018,
doubling every 3-4 months). Data centres are predicted to
dominate over 20% of global energy consumption by 2030. Our
proposed TOs model provides developers with a theoretical model
to expose the important role of both (1) nonlinear activation
functions and (2) DNN model structure in its energy consumption.
This enables developers to trade-off between model performance
and sustainability with 93.6% - 99.5% precision. Due to the
consideration of both linear and non-linear operation in TOs,
it can to some extent replace FLOPs/MACs count as a more
accurate metric of DNN model complexity.

Index Terms—Energy Consumption; Deep Learning; Model
Architecture; Transistor Operations;

I. INTRODUCTION

RAPIDLY increased Artificial Intelligence (AI) demand

has generated a huge increase in computational resource

requirement (300,000x from 2012 to 2018) [1]. Energy con-

sumption in data centres around the world to maintain data

and learn models will account for 10% of global energy

consumption in 2025 and 20.9% in 2030 [2]. Whilst previous

attempts in green communications have reduced networking

energy consumption [3], Internet-of-Everyting will connect

intelligence and it is important to reduce energy consumption

across connectivity and autonomy [4]. The endless chasing of

higher-precision in DNN spawns ultra-large-scale models, es-

pecially in computer vision (CV), natural language processing

Chen Li, Antonios Tsourdos and Weisi Guo are with Digital Aviation Re-
search Technology Centre (DARTeC), Cranfield University, Bedford, United
Kingdom. Weisi Guo is also with the Alan Turing Institute, London, United
Kingdom. Corresponding author: weisi.guo@cranfield.ac.uk. We acknowledge
EC H2020 DAWN4IoE - Data Aware Wireless Network for Internet-of-
Everything (778305) for supporting this work. Data is open available and
details are in supplementary materials.

(NLP) [5], [6], and also communication networks [7] (see -

Fig. 1a: YOLOR-D6 for CV with 174.7 million parameters

in May 2021 [8]; openAI GPT-3 for NLP with 175 billion

parameters in May 2020 [9]). Researchers in [10] argue that

this trend is unfriendly to computational resources, energy and

the global environment. Developers should carefully analyze

the requirements (e.g., precision, robustness) and backgrounds

(e.g., computational hardware, energy supply) of DNN tasks

to make a trade-off between the performance and economy of

DNN models. The network size of large-scale DNN models

also barriers their deployment in energy-sensitive devices

(e.g., Drones and remote sensors). Developers urgently need a

theoretical method to analyze the scaling law of DNN model

energy consumption during model configuration changes to

design and select energy-efficient DNN models.

TABLE I
DEFINITION OF ABBREVIATIONS AND FREQUENTLY USED CONCEPTS

AF Activation Function IC Integrated Circuit
ALU Arithmetic Logic Units LNL Linear and Non-
BO Basic Operation Linear
BP BackPropagation MAC Multiply-Accumulate
CPU Central Processing Unit ML Machine Learning
CV Computer Vision NLP Natural Language
DNN Deep Neural Network Processing
(D)RAM (Dynamic) Random- PMC Performance

Access Memory Monitoring Counters
FLOPs FLoating-point PR Polynomial Regression

Operations RMSE Root Mean
FPGA Field-Programmable Square Error

Gate Array R̂2 Adjusted R-squared
FP Floating-Point number SIMD Single Instruction
FPU Floating-Point Unit Multiple Data
GELU Gaussian Error TO Transistor Operation

Linear Unit TPU Tensor Processing
GPU Graphical Processing Unit

Unit XOR eXclusive OR

TOs: a theoretical metric of DNN complexity and calculation tasks,
means how many transistor operations are involved in calculations
TOs method: the method to analyze DNN energy scaling with TOs
TOs model: the model we use to calculate DNN model TOs
Energy-efficiency: model performance over certain energy consumption.
(higher - better performance within certain energy consumption)
Energy consumption: real energy consumption in Joule
Energy metric: theoretical metrics to represent DNN calculation tasks,
these metrics related to DNN real energy consumption in Joule

Indeed, there are now widespread efforts to reduce the

size of neural network architectures both post-training [11],

federation to the edge [12], and more recently during training

[13]. Current theoretical DNN complexity metric FLOPs [14]

and MACs [15] only consider linear operations (e.g., multi-

plications and additions) without non-linear operations (e.g.,

root operation in activation functions). However, non-linear

operations are a non-negligible part of some DNN models [16]

h.binning
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works


h.binning
Text Box
IEEE Transactions on Artificial Intelligence, Volume 5, Issue 1, January 2024, pp. 192-204
DOI: 10.1109/TAI.2022.3229280




2

Fig. 1. The Trend of DNN Model Parameter Size Over Time and the Origin of DNN Energy Consumption

that the amount of calculation tasks and energy cost for doing

a non-linear operation is always higher than linear ones [17],

[18]. Thus, using FLOPs/MACs in analysing the scaling of

DNN model complexity and energy consumption is not precise

enough. Simultaneously, binary neural network [19], [20],

low precision arithmetic [21], low precision number [22]–[24]

and high-efficiency operators [25]–[27] they affect the DNN

energy consumption, without effect in model FLOPs/MACs.

To solve the issue above, we proposed a more accurate TOs

method to analyze DNN model calculation tasks and energy

consumption, which considers linear, non-linear operations

and floating-point format. We show the use of TOs as a metric

of DNN complexity could boost the precision of DNN energy

estimation models. Details are introduced later, frequently used

abbreviations are listed in Table I.

A. Review on Deep Neural Network Energy Model

DNN energy consumption in training, validation, and testing

can all be related to the model complexity, data size, and

hardware implementation [28]. As shown in Fig. 1a, the DNN

model architecture (incl. the activation function) determines

the resulting execution order of the equivalent arithmetic logic

units (ALU) tasks. Within this, the input data affects the DNN

model hyper-parameters which is part of the ALU tasks and

overall they all contribute to different energy consumption.

Fig. 1b (left to right) briefly demonstrates the running of

DNN model code in hardware and resulting energy consump-

tion. Once the DNN model source code (e.g. Python) is run,

learning frameworks (e.g., PyTorch, TensorFlow) will call

the relevant core functions written in lower-level languages

(e.g., C/C++). For example, the Gaussian Error Linear Unit

(GELU) [29] operation will be decomposed into a set of

ALU-supported instructions (see - Fig. 1a). Lower-level source

codes will be further compiled into object codes to guide data

reading, calculation and result storage [30]. The calculation in

ALU follows a designed process [31]. Firstly, operands will

be called from data storage (DRAM etc.) to the processor

registers through data bus. The energy for moving one unit data

varies with the memory hierarchy. Secondly, do the specific

hardware operation (specified in operator) on operands, and

generate calculation energy consumption. Thirdly, the result

will be temporarily stored in registers and then moved to

other levels of storage. As explained above, mainly energy

consumption of code running is for data movement and

calculation. We provide a review of different processors, please

refer to more details in the supplementary material file.

Based on the information above, any comprehensive analy-

sis of DNN energy model must encompass:

• Analyze the origin of hardware energy consumption at

transistor operation (TO) and data movement level

• Translate linear and non-linear DNN activation functions

into the real calculation tasks executed by ALU

• Propose a TO based energy metric that is generalised

across diverse hardware operations

• Develop a regression model to quantify the energy scaling

with model configuration

B. Deep Learning’s Energy Breakdown

Current literature shows that DNN models primarily con-

sume two types of energy: (1) calculation energy (as described

earlier), and (2) data movement and memory access energy

[6]. The latter constitutes a significant part of the energy



3

Fig. 2. (top) Normalized Energy Consumption and (bottom) Energy Break-
down of DNN Models. Data from [17], [34])

consumption, especially for large data sets [32]–[34]. In the ex-

ecution of each instruction, data calling from hierarchy storage

dominate up to 90% energy consumption while calculations in

ALU count less than 30% [35].

As shown in Fig. 2(bottom), the data to be moved depends

on operation tasks in instructions. Data movement optimiza-

tion methods like Eyeriss [35] and MONeT [36] significantly

reduce memory access energy consumption with higher data

multiplexing rate and low-cost storage usage. Network pruning

and compression methods (e.g., energy-aware pruning [37] and

Deep compression [38]) directly cut down calculation tasks to

slash overall energy consumption. This means the investigation

of DNN calculation energy cost is still beneficial in energy-

aware network light-weighting (e.g., using binary neural net-

works and doing network pruning) in energy-sensitive DNN

scenarios, optimizing neuron structure (e.g., efficient activation

functions) and designing energy-efficient application-specific

integrated circuits (e.g., TPU) for DNN. The maximum energy

efficiency of deep learning models can only be achieved

through combined optimization of both computation and data

movement energy consumption. We provide a review of DNN

energy optimization, if interested, please refer to more details

in supplementary material files.

C. Related Energy Quantification Research

There are several works investigating the energy consump-

tion quantification and estimation of machine learning energy

consumption. In [41], the authors make a survey on ma-

chine learning energy consumption estimation approaches that

use simulated hardware or performance monitoring counters

(PMC). They find processor plays the main role rather than

DRAM in the energy consumption of tree-based models with

experimentation. As an extended work, in [42], hardware

energy observation tools and state-of-the-art machine learning

energy consumption estimation approaches are reviewed and

classified according to different techniques they use. Authors

in [43] proposed a lightweight code-level energy estimation

framework for software applications with limited additional

cost in resources and energy. However, it is a general method

focused on achieving accurate energy observation of compu-

tational hardware without the perspective of learning models.

Synergy, a method proposed in [39] uses linear regression

on both the number of SIMD instructions and bus accesses

observed from hardware PMC to measure and predict the en-

ergy consumption of CNNs at a layer-level. But no theoretical

analysis of the relationship between CNN layer configuration

and energy consumption is given. NeuralPower proposed in

[40] uses sparse polynomial regression method to model the

power and run-time according to layer configuration parame-

ters (e.g., batch size, kernel size, etc.) of key CNN layers, then

applies the model to unseen layers for energy consumption

estimation. However, the layer-level analyze can not distin-

guish linear and non linear operations in layer configuration.

Theoretical analysis of the relationship between CNN layer

configuration and energy consumption is not given. Floating-

point operations (FLOPs) is used as a simple model-structure-

based DNN computational complexity measurement in [14]

without mapping to DNN energy consumption. The calculation

of FLOPs only consider linear floating-point operations (mul-

tiplication and accumulation) in full-connection/convolutional

layers without non-linear operations and other layers (e.g.,

non-linear operations in AFs and operations in pooling layers).

These ignored parts count a non-negligible part of DNN

model complexity (around 5% in convolutional layers and 15%

in feed-forward layers depends on the model configuration

measured by our theoretical TOs model). Authors in [33]

propose a theoretical DNN energy estimation method that uses

the simulation of data movements between multiple layers of

storage to quantify and normalize DNN energy consumption

with the energy for doing one MAC operation as the unit.

However, their method ignore non-linear operations and the

difference between hardware (energy for doing one MAC

operating varies in different computation hardware, the rate

of energy consumption for storage and computation varies

with different hardware combinations). No practical energy

data is given, and the memory simulation method is not open

to readers. As an extension work, they propose Eyeriss in

[35], which optimizes the data flow of CNN models using

higher data reuse rates and less data movement from expensive

storage. Authors in [44] review the parameter size, FLOPs

and performance metric of several benchmark DNN models.

They find the computation and energy efficiency of hardware

is affect by the precision of floating-point (FP) numbers (e.g.,

FP16, FP32), and propose that multiplicative factors take the

majority responsibility of DNN energy consumption. However,

the work is observation-based without study the energy scaling

law led by DNN model configurations.



4

Summary Precision
(%)

Theory
Basis

Experiment
Data

Focus
Area

Data
Movement

Energy

Calculation
Energy

Energy
Metric

Disadvantages

Experimentation of
System Level Energy
Consumption Increase

[39]

63.05-
73.7

× ✓ SIMD &
No. Data
Access

✓ No distinction
of operation

types

Joule No analysis of the
relationship between the

DNN model configuration
and energy consumption

Experimentation
Layer-based DNN

Energy Consumption
and Core Usage [40]

97.21
(avg)

× ✓ Total
Run-time

Power

✓ No distinction
of operation

types

Joule Not distinguishing linear
and non-linear operations in

layer configuration and
energy consumption, need

information about hardware
run time and power

Theoretical Analysis
of DNN Complexity

based on Only Linear
Operations [14]

92.9-
99.5

✓ × Calculation
FLOPs

× Linear
Operations

FLOPs Ignored Non-linear
Operations (e.g., activation

functions)

Theoretical &
Experimental Analysis

of DNN Energy
Consumption based on
Data Movements [33]

96.4-
96.5

✓ ✓ Data
Move-
ment &
MACs

✓ Linear
Operations

MACs Data sparsity is hard to
estimate accurately; ignored

non-linear operations

This Paper:

Proposed Transistor

Operations (TOs)

Method

93.6-
99.5

✓ ✓ Transistor
Level Op-
erations

× Linear and
non-linear
operations

TOs/Joule No data movement energy
analysis

TABLE II
COMPARISON BETWEEN STATE-OF-THE-ART AND OUR PROPOSED METHODS FOR DNN ENERGY CONSUMPTION ESTIMATION. ACRONYMS IN TABLE:
DEEP NEURAL NETWORK (DNN), SINGLE INSTRUCTION MULTIPLE DATA (SIMD), TRANSISTOR OPERATIONS (TOS), FLOATING-POINT OPERATIONS

(FLOPS), MULTIPLY–ACCUMULATE OPERATIONS (MACS).

The comparison between aforementioned DNN energy es-

timation methods and our proposed TOs method are sum-

marised in Table II, which also list the individual precision

of each method.

D. Gap Summary & Innovation

Currently, as we have seen from the above review, the

relationship between the DNN model configuration and energy

consumption is not well established. The energy consumption

of nonlinear operations in DNN is still lacking in analysis.

In this paper, we develop an innovative bottom-level Tran-

sistor Operations (TOs) method to expose the role of nonlinear

activation functions and neural network structure in energy

consumption. We translate a range of feedforward DNN and

CNN models into ALU calculation tasks (e.g., basic operations

(BOs)). Based on our TOs model, we demonstrate how the

calculation energy scales when changing the model structure

and activation functions. We also provide a verification exper-

iment that compares the energy consumption estimated with

TOs model and the practical energy consumption monitored

from general-purpose commercial processors (CPU, GPU).

Compared with energy consumption estimation methods

in [40], [42], our TOs method can individually analyze the

calculation energy consumption with DNN model structures,

and consider non-linear operations that not included in [14],

[33], [40]. We will show that our proposed TOs method can

achieve a superior 93.61% - 99.51% precision in estimating

its energy consumption.

E. Research Limitations & Applicability

The calculation tasks measured by TOs/FLOPs/MAC have

limitations in mapping DNN energy consumption when the

DNN model runs with multi-core. The processing of data

instances in DNN training follows the same way, suitable

for parallel processing [45] in modern multi-core processors.

However, plenty of additional energy costs for core commu-

nications will be generated [46]. This additional core com-

munication cost is hard to split from overall processor energy

consumption and does not influence DNN calculation tasks

and complexity metrics (e.g., TOs, FLOPs). Simultaneously,

as reported in [47], the core communication energy cost in

multi-core processors is hard to model and is an experimental

fact. Based on the aforementioned points, we only consider

single thread & CPU running in this paper. In fact, this is a

common issue for all theoretical metrics for DNN calculation

tasks. At the same time, recent TOs model does not support

piecewise-defined activation functions (e.g., Rectified Linear

Unit (ReLU)) processed with comparison operators. As TOs

is a theoretical metric that is directly analysed from DNN

structures and configurations, it is not applicable to black box

DNN models without structure and configuration information.

Ultimately, the practical energy of running the same DNN

models on different hardware varies. As such, our proposed

TOs model in this paper calculates the theoretical TOs for

each hardware operation with generic processing logic. We

will show it still outperforms FLOPs in estimating the energy

consumption of DNN models on different hardware platforms.



5

Fig. 3. Flowchart for Calculating Theoretical TOs of a Given DNN Model and DNN Energy Scaling Analysis. (a) Calculate TOs for a given model (left
to right): extract layer structure from the target DNN model; define which steps are going to be analyzed; layer-wise analyze how much BOs are needed
in forward/loss-calculation/backpropagation; translate layer-wise BOs into TOs. (b) Energy Breakdown of DNN Models (left to right): prepare a number
of different DNN models; apply TOs model to calculate theoretical TOs of each DNN model, collect their practical energy consumption from hardware
respectively; use polynomial regression (PR) to analyze the relationship between DNN model TOs and energy consumption for current hardware; input the
TOs of new target DNN models into the trained TOs-based PR model to predict their energy consumption

II. TRANSISTOR OPERATIONS (TOS) MODEL

The calculation of theoretical TOs for a given DNN model

is demonstrated as Fig. 3a (left to right). Suppose the

dataset have already been pre-processed (energy for data pre-

processing is not considered in this paper, but our TOs method

could be extended to data processing). Firstly, the layer list

will be extracted from the model structure and settings (e.g.,

2×4 full-connection layer, activation layer with Sigmoid AF).

Secondly, extract running steps according to different analysis

levels: training level involves model forward, loss calculation

and backpropagation (BP); validation level involves forward

and loss calculation; inference level only focus on model

forward. The reason is that each step has individual calcu-

lation logic and resulting in different calculation tasks and

energy consumption. Calculation tasks at different analysis

levels are calculated by summing the calculation tasks of

the relevant steps (e.g., validation level calculation tasks is

calculated by summing calculation tasks for model forward

and loss calculation). Thirdly, layer-wise analysis of how many

calculation tasks are needed for each running step based on

their calculation logic, in terms of BOs. We use addition,

subtraction, multiplication, division and root operations as the

categories of BOs, for the reason that higher-level calculations

(e.g., activation of neuron with Sigmoid as AF function - see

Function 3) are assembled by these five BOs at the software

level. Finally, we analyze how many transistor operations are

theoretically involved in each basic operation processed by

ALU calculation logic (translate BOs into TOs), and calculate

the layer-based TOs based on the layer-based BOs information

and data types (e.g., FP-16, FP-32).

Suppose we have a target DNN model to be analyzed, the

layer list extracted from q is L = {l1, l2, ..., li, ..., lo} (lo is

the output layer). C represent the basic operation calculator,

which takes a model layer as input and calculate how many

basic operations are needed in this layer. T represent the TOs

translator, which takes the number of five basic operations as

input, and calculate how many TOs are needed to process all

the input basic operations. The calculation of theoretical TOs

for DNN model q could be shown as equation 1.

Target Model TOs =
o∑

i=1

T (C(li)) (1)

The functions used in BOs and TOs calculations are intro-

duced in the following subsections, frequently used notations

are listed in Table III.

A. Layer Structure Based Basic Operations (BOs)

The BOs of a DNN model are calculated according to the

processing logic of each layer, related to Fig. 3a: Calculate

basic operations, details are shown in Alg. 1. For each layer

li ∈ L, the BOs calculator Cf(li) and Cbp(li) analyze the func-

tion of the layer li by its structure; translate the layer function

into calculation tasks (refers to Fig. 1a - ALU Calculation

Tasks); and further translate calculation tasks into the number

of five BOs needed for layer forward and backpropagation

respectively. Closs(loutput) takes only the output layer loutput

structure as input to calculate BOs for loss calculation. The

calculated BOs information by Cf/bp/loss will be stored and

return as a list (shown in equation 2). Here, n with sub-index



6

TABLE III
LIST OF NOTATIONS

L Layer list of DNN model

li, lo The ith/output layer of DNN model

Cf, Cbp, Closs BOs calculator for layer forwarding,
backpropagation and loss calculation

nadd, nsub, nmul, Number of addition, subtraction, multiplication
ndiv, nroot division and root operation

Bf, Bbp Layer-wise basic operations list of DNN model

bfk, bbpk, bloss Basic operations of ith/output layer

BOsPotential Represent the number of five basic operations
BOsActivation for potential/activation/convolution calculation
BOsConvolution in a layer

x Neuron input

w Weight

ξ Neuron potential

y Neuron output

bias Bias

cin, cout Number of input/output channel

m Convolutional layer output window width

k Convolutional kernel width

add/sub/mul/ One addition/subtraction/multiplication/
div/root division/root operation

I Number of input dimension

O Number of output dimension

T, Tadd, Tsub, Transistor operations calculator
Tmul, Tdiv, Troot (sub-index: calculator for different operations)

Df, Dbp Layer-wise transistor operations list

dfk, dbpk, dloss Layer-wise transistor operations

df total, dbp total Total transistor operations for model forwarding/
backpropagation

dtotal Total transistor operations for model forwarding,
loss calculation and backpropagation

p Data type

add, sub, mul, div and root means the number of each basic

operation (fixed order: addition, subtraction, multiplication,

division and root)).

Cf/bp/loss(l) = [nadd, nsub, nmul, ndiv, nroot] (2)

Algorithm 1 shows how to extract layer-wise BOs in-

formation from the target DNN model, the algorithm will

return: layer-wise forward BOs in Bf; layer-wise BP BOs

in Bbp; and BOs for loss calculation bloss. We provide two

examples that calculate the forward BOs for a full-connection

layer in feedforward DNN, and a convolutional layer in CNN

respectively to show how BOs is analyzed from layer structure.

The calculation of BOs for loss and model backpropagation is

similar to model forward but follows their individual calcula-

tion logic.

1) Feedforward DNN: The calculation logic for full connec-

tion layers is proposed in [48]. Suppose full-connection layer

lFull-connection have I inputs; O outputs; use Sigmoid as AF, the

calculation of output yj on input x, weight w and bias bias
could be demonstrated in equation. Here, ξ represents neuron

output before activated by AF, and S is Sigmoid function. The

BOs for forward on one data instance could be calculated by

equation 4:

Potential of j-th Neuron:ξj = biasj +
I∑

i=1

(wi,j × xi)

Sigmoid AF of j-th Neuron:yj = S(ξj) = 1/1 + e−ξj

(3)

Cf(lFull-connection) = BOsPotential +BOsActivation

BOsPotential = O × I(mul + add)

BOsActivation = O × (sub + add + div + root)

Cf(lFull-connection) = [(I + 1)O,O, IO,O,O]

(4)

Here, the counting of BOs is analyzed from the logic of

equations. For example, the calculation of ξj in equation 3

involves an accumulation of multiplication results, and an ad-

dition operation for adding bias. The multiplication operation

happens I times; addition operation by accumulation repeat

I − 1 times; add bias need one additional addition operation;

the total operations are I multiplications and (I − 1) + 1
additions. The calculation of ξ will repeat the process above

O times, so the BOs for linear operations are O × I multi-

plications and additions. In equation 4, ‘mul + add’ means 1

multiplication operation and 1 addition operation. The items in

the return list from Cf(lFull-connection) means the number of each

basic operation needed for forwarding this layer (the order is

detailed before).

2) CNN: The working process of convolutional layers could

be seen as Fig. 4. Suppose m, k, cin, cout are the output window

width, convolutional kernel size, number of input channels and

number of output channels in convolutional layer lConvolutional.

With GELU (approximate as GELU(x) = 0.5 × x × (1 +
Tanh(sqrt(2/π)× (x+0.044715× x3))) [29] in PyTorch) as

AF, the convolutional layer forward BOs on one input instance

(e.g., one image) could be calculated as Eq. 5:

Cf(lConvolutional) = BOsConvolution +BOsActivation

BOsConvolution = m2 × cout × cin × k2(mul + add)

BOsActivation = m2cout(sub + add + div + root + 2× mul)

nadd = m2cout(1 + cink
2)

nsub = m2cout

nmul = m2cout(2 + cink
2)

ndiv = m2cout

nroot = m2cout

Cf(lConvolutional) = [nadd, nsub, nmul, ndiv, nroot]
(5)

B. Basic Operations, Data Type and Theoretical TOs

The BOs information of the target DNN model will be

further decomposed into transistor level to unify the energy

metric of different BOs with TOs. As shown in Alg. 2, TOs

calculator T (b, p) takes both the BOs extracted by Alg. 1 and

the data type p used in DNN model as inputs. The reason is

that at different data precisions, different numbers of transistor

operations are required to do the same operation. T opens the

design logic of ALU, analyze the theoretical TOs for each

operation modules (e.g., 32-bit adder, 16-bit multiplier) with

their individual integrated circuit (IC) designs (the analysis

method is introduced in the following subsections). With

the information of layer BOs, T is used to translate BOs

into theoretical TOs for DNN model in different steps (e.g.,

validation). Function T could be universally applied on the



7

Fig. 4. Convolutional Layer

return lists of Cf(li), Cbp(li) and Cbp(li) due to their similar

data format (number of five basic operations with fixed order).

Suppose b is a piece of BOs information extracted from the

target DNN model by C, equation 6 demonstrate how b is

processed into TOs with T . The calculation of DNN TOs from

BOs information could be seen in Alg. 2, the algorithm will

return layer-wise model forward TOs in Df and BP TOs in

Dbp, as well as cumulative TOs for model forward df total, BP

dbp total, loss dloss, and overall TOs dtotal.

b =[nadd, nsub, nmul, ndiv, nroot]

T (b, p) =Tadd(nadd, p) + Tsub(nsub, p) + Tmul(nmul, p)

+ Tdiv(ndiv, p) + Troot(nroot, p)

(6)

Algorithm 1 Calculate layer based BOs for DNN model

Require: DNN model structure L = {l1, l2, ..., lo}
Require: Basic operation calculators: Cf, Cbp, Closs

Initialise Bf = [bf1, bf2, ..., bfo];Bbp = [bbp1, bbp2, ..., bbpo]
Initialise bloss = [0, 0, 0, 0, 0] /* number of 5 BOs */

for li ∈ [1, 2, ..., o] do

bfi = Cf(li)
bbpi = Cbp(li)

end for

bloss = Closs(lo)
return Bf, Bbp, bloss

1) BOs, Operation Units in ALU and Calculation of TOs:

In TOs calculator, the calculation of TOs from BOs depends

on the inner logic of ALU (open ALU and get number of

logic gates, and open logic gates with transistors to count

TOs). The various IC design for ALU inner logic follows

the role of making a trade-off between time complexity (the

time delay) and space complexity (number of transistors). The

achieve of lower-delay ALU needs additional hardware logic

gates which usually cost more transistors and energy [49] (e.g.,

adder: ripple-carry and carry look-ahead adder [50]; multiplier:

Wallace and Booth-Wallace multiplier [51]). The logic of IC

in ALU support different types of basic operations, however,

not all the basic operations have their independent operation

unit (e.g., adder is designed for addition, but subtraction is

processed in adder by 2’s complement). As multipliers are

always built with adder as basic units, the changing of adder

IC has a limited impact on the relationship between transistors

in adder and multiplier, similar for other operation units.

Although independent root operation units exist, they are not

Algorithm 2 Calculate theoretical TOs based on BOs

Require: Layer based BOs set Bf = [bf1, bf2, ..., bfo];Bbp =
[bbp1, bbp2, ..., bbpo]

Require: BOs for loss calculation bloss

Require: Data type p
Require: TOs calculator T

Initialise Df = [df1, df2, ..., dfo];Dbp = [dbp1, dbp2, ..., dbpo]
Initialise df total, dbp total, dloss, dtotal = 0, 0, 0, 0
for i ∈ [0, 1, ..., o] do

dfi = T (bfi, p)
dbpi = T (bbpi, p)
df total+ = T (bfi, p)
dbp total+ = T (bbpi, p)

end for

dloss = T (bloss, p)
dtotal = df total + dbp total + dloss

return Df, Dbp, df total, dbp total, dloss, dtotal

widely embedded in current PC processors. Root operation

is always simulated with the Newton-Raphson method [52]

by operation units in ALU. Our TOs model in this paper

uses the basic IC design to calculate the theoretical transistors

needed by BOs. Please note, the design of IC is not focused

in this paper, using the specific hardware IC may increase

the analysis accuracy of model energy scaling on that hard-

ware. Theoretically, transistors needed in adder follows the

linear relationship to bit-length, multiplier and divider follow

exponential relationship. Ten transistors are used for a NOR-

XNOR gates based 1-bit full-adder as proposed in [53]. And

according to the IC design in [18], transistors used for the

64-bit Booth-Wallace multiplier and SRT divider are 90k and

110k respectively.

2) Floating-point Numbers in TOs Calculation: Floating-

point numbers (FP) are the most generally used data type

in DNNs. As FP used in majority programming language

follows IEEE 754 standard, the calculation of theoretical TOs

should consider the structure and calculation logic of of binary

FP with different precision (e.g., FP-32 known as single-

precision floating-point, FP64 as double-precision floating-

point). According to IEEE 754, each FP-32 number contains

an 1-bit sign, an 8-bit exponent and a 23-bit fraction (FP-64:

1-bit sign, 11-bit exponent and 52-bit fraction). Theoretically,

adding two FP-32 numbers will need a 24-bit adder (23 full-

adder and 1 half-adder without considering bit shift in the

exponent). As shown in Fig. 5, the multiplication/division

of two FP-32 numbers will need a XOR gate (for sign), a

24-bit multiplier/divider (fraction calculation) and an 8-bit

adder (exponent calculation). It means the TOs for a FP-

32 multiplication is theoretically be calculated by the sum

of transistors for a 24-bit multiplier, a 8-bit adder and a

XOR gate. As a theoretical model, transistors redundancy in

practical hardware are not considered (e.g., multiplication of

two 24-bit number on 32-bit multiplier).



8

Fig. 5. Calculation of Theoretical TOs based on BOs (Example: Multipli-
cation Operation on Two IEEE 754 FP-32 Numbers)

C. TOs Model and Energy Scaling

Theoretical TOs for a given DNN model could be calculated

by Alg. 1 and Alg. 2. The process of mapping the scaling of

DNN model TOs to its practical energy consumption scaling

is demonstrated in sub-figure Fig. 3b. Firstly, a list of DNN

models with different configurations will be established. Sec-

ondly, calculate individual TOs of DNN models respectively

with our TOs model, and deploy them on practical hardware

for their practical energy consumption data. According to our

theory, polynomial regression (PR) with different number of

coefficients will be used to fit the relationship between the

practical energy consumption and TOs of DNN models. To

analyze the scaling of energy with a DNN design factor (e.g.,

width of hidden layers), a list of models will be generated by

gradually changing the factor (e.g., models with 4,5,6 and 7

hidden layer width). Then, calculate their TOs and estimate

their individual energy consumption by the previously fitted

PR model. We demonstrate the energy scaling of a feedforward

DNN model with different hidden layer widths and AFs in

the next section, followed by that of a CNN model with

different layer configurations. Please note that the practical

energy consumption of models depends on different choices

of hardware. If the hardware platform changes, the PR model

should be retrained on energy data collected from the new

hardware platform.

III. METHOD VERIFICATION

To verify the our TOs model, we design experiments to

analyze the training energy scaling of 1) a feedforward DNN

set by changing the AFs and width of hidden layers; 2) a

CNN set by changing the number of convolutional layers and

kernel size in each layer. The structural plausibility of DNN

models (overfitting may occur with large network size) is not

considered, as they do not affect energy consumption. The

experiment settings could be seen from Table IV, and samples

from used two datasets could be seen in Fig. 7 (data statement

please refer to the supplementary material file).

Exp. Settings Feedforward DNN CNN

Dataset Banknote [54] Drone images
Dataset Length 1372 instances 300 images
Data Structure 4 inputs & 1 output 256*256*3 (RGB)

Model Type Feed-forward Convolutional
Model Depth 3 hidden layers 2-10 C-layers
DNN Width 4-18 nodes per layer -
CNN Kernel (h&w) - layer 2-6: 3

- layer 7-10: 4,5,6,7
CNN Channels - 32
Activation Functions Sigmoid, Tanh, GELU GELU
Batch Size 64 64 (GPU: 16)
Epochs 2k (laptop CPU) 25 (laptop CPU)

5k (desktop CPU) 20 (desktop CPU)
100 (desktop GPU)

DNN Framework PyTorch PyTorch

Hardware Laptop Desktop

CPU Intel Core i9 AMD RYZEN 9
GPU - Nvidia 3080
OS macOS Monterey Windows 10

TABLE IV
EXPERIMENT SETTINGS AND HARDWARE

The practical energy consumption of DNN models is col-

lected with Intel Power-Gadget software [55] (for Intel Archi-

tecture CPU [56]), OpenHardwareMonitor (for AMD CPU)

and TechPowerUp GPU-Z (for GPU). These tools are designed

using on-chip energy sensors to collect the instantaneous

power of processor cores, DRAM, and overall CPU/GPU

package separately with timestamps [55]. The energy con-

sumption is calculated based on the integration of the instan-

taneous power consumption over time. Certain errors could

exist due to the accuracy of on-chip sensor for instantaneous

readings reported in [57]. However, as our aim is to analyze

only calculation energy cost, it is the only way for collecting

on-chip component energy data [41], [58] and reported to be

fairly accurate by NVIDIA (+-5% error rate [59]) and authors

in [60], [61]. As the problem does not influence theoretical

TOs/FLOPs, we will not discuss the accuracy of hardware en-

ergy monitoring. During the experiment, we force the program

to run with a single CPU/GPU core as the reason mentioned

in research limitations - core communications energy cost

generated by parallel running could significantly influence

the relationship between DNN calculation tasks and practical

energy consumption.

Fig. 7. Used Dataset (Samples)

A. Energy Consumption Scaling of Feedforward DNNs on

Laptop CPU

As shown in Fig. 6a, we calculate TOs for feed-forward

DNNs with 4-18 width (number of nodes in each hidden

layer) and use Sigmoid, GELU and Tanh as AFs respectively.

We did 50 experiments (cool the hardware between each run



9

Fig. 6. Method Verification (Feedforward DNNs on Laptop CPU)



10

to maintain the repeatability of experiment) on each model

setting with laptop CPU as introduced in Table IV, drop

the highest and lowest 5 data, and demonstrate the practical

energy consumption interval of each DNN. We randomly

split the collected energy data for each DNN into training

sets (60%) and validation sets (40%). They are used to

train and validate the PR models mapping the relationship

between DNN TOs/FLOPs and practical energy consumption.

We demonstrate the training of PR models based on FLOPs

(FLOPs-based PR model) and TOs (TOs-based PR model)

and with 1-3 coefficients respectively. We conduct a residual

analysis to different PR models, the result could be seen in

Fig. 6b1-b3 (we only demonstrate 1 coefficient FLOPs-based

PR in figures for higher clearness and readability, statistics

for 2/3 coefficients FLOPs-based PR are listed in on-figure

tables). In these figures, each point is one data instance col-

lected from one experiment. We could see both FLOPS-based

and TOs-based PR models perform fairly excellent - their

residuals following Gaussian distribution. To provide statistical

performance analysis of PR models, we calculate adjusted R-

square and RMSE as shown in Fig. 6c (will be explained in

Result Discussion). We further demonstrate the validation of

PR models in Fig. 6d1-d3, and list the performance metric in

Fig. 6e. We also run the DNN set on a desktop CPU, please

refer to Fig. 1 in the supplementary material file.

According to the coefficients shown in Fig. 6c and statistic

of DNN on desktop CPU (Fig. 1c in the supplementary

material file), use data of Sigmoid with 1 coefficient (n=1)

for example, the relationship between DNN model’s TOs and

the practical energy consumption E in current laptop CPU and

desktop CPU could be demonstrated by Eq.7.

DNN on laptop CPU:

E = 1.71× 103 + 3.65× 10−12 × TOs

E = 1.73× 103 + 8.42× 10−8 × FLOPs

DNN on desktop CPU:

E = 9.96× 102 + 2.47× 10−12 × TOs

E = 1.04× 103 + 5.71× 10−8 × FLOPs

(7)

B. Energy Consumption Scaling of CNN on Desktop GPU

As shown in Fig. 8a, we calculate TOs for CNN models

with different depths (number of convolutional layers) and

apply GELU as the AF for each convolutional layer. The

configuration of each CNN model could be seen from Table

IV. We did 50 experiments on each model, drop the highest

and lowest 5 data, and demonstrate the practical energy

consumption interval of each model. The energy data is split

randomly into training set and validation set with a rate of

60/40%. We demonstrate the training and validation of PR

energy models with residual analysis in Fig. 8b-c. We also

summarise the PR model performance metric (adjusted R-

square and RMSE) in Fig. 8d-e. We also run the same CNN

set on a desktop CPU and a laptop CPU separately, please

refer to Fig. 2 and Fig. 3 in the supplementary material file

for your interest.

According to the coefficients showed in Fig. 8c and statistic

of CNN on desktop CPU (Fig. 2c in the supplementary

material file), the relationship (PR models with n=1) between

CNN model’s TOs and the practical energy consumption E in

current desktop processors could be demonstrated by Eq.8.

CNN on desktop GPU:

E = 1.76× 103 + 2.61× 10−15 × TOs

E = 1.81× 103 + 3.49× 10−11 × FLOPs

CNN on desktop CPU:

E = 2.51× 103 + 4.29× 10−14 × TOs

E = 2.67× 103 + 5.73× 10−10 × FLOPs

(8)

C. Result Discussion

During the verification, each experiment with individual

settings (feedforward DNNs/CNNs on different hardware pro-

cessors) is run 50 times, to find the practical energy con-

sumption interval and analyze the robustness of energy scaling

models (see - sub-figure a in Fig. 6, 8 and Fig. 1, 2, 3 in the

supplementary material file).

We analyze and compare the performance of TOs-based

and FLOPs-based PR models in estimating DNN energy

consumption by Adjusted R-square Error (R̂2) and Root Mean

Square Error (RMSE). R̂2 represents the fraction of variance

of the actual value of the response variable captured by the

regression model, with penalty in the number of variables [62].

RMSE represents the differences between values predicted by

a model or an estimator and the values observed [63]. From

the statistic of R̂2 and RMSE (see sub-figures c, e in Fig.

6, and d, e in Fig. 8), both TOs-based and FLOPs-based PR

models could accurately fit DNN energy metric and practical

energy consumption (R̂2 for FLOPs/TOs-based PR model:

0.95-0.99/0.96-0.99), while TOs-based PR models have equal

or better performance in R̂2 and RMSE than FLOPs-based

PR models. This means, TOs is more accurate to be used

as a metric for analysing the scaling law of DNN energy

consumption. As we apply polynomial regression with 1-3

coefficients to fit the relationship between FLOPs/TOs and

practical energy consumption, according to R̂2, sometimes the

relationship shows more linear features and is more explain-

able. For example, as in function 7, 8, we can approximate

the energy cost of each TO in CNN models on the GPU

is an order of magnitude lower than that of CPU (desktop

GPU: 2.61×10−15 Joule; desktop CPU: 4.29×10−14 Joule).

Simultaneously, the performance of FLOPs-based and TOs-

based PR models for DNN energy estimation in Joule could

be summarised in Table V. Compared with FLOPs-based PR

models, TOs-based PR models achieve 0.14 − 2.56% higher

precision on DNN energy consumption estimation, and a 10%
lower average estimation error in Joule.

We also demonstrate DNN energy consumption over perfor-

mance in Mean Squared Error (MSE) with different configu-

rations (banknotes identification [54]) in Fig. 9, from where

the energy efficiency of DNN model configurations (number

of nodes and the choice of AFs) could be analyzed. From



11

Fig. 8. Method Verification (CNN on Desktop GPU)

the figure, DNNs with Tanh as AF can converge to lower

MSE loss within a certain energy cost than with GELU and

Sigmoid (e.g., Tanh/GELU/Sigmoid can achieve: 0.004, 0.008,

0.013 MSE loss in 0.2 × 1014 TOs). At the same time, with

AF fixed, the energy cost to train a DNN model to a certain

MSE loss increases with network size (e.g., DNN with 4/8/12

width need: 0.17/0.32/0.45× 1014 TOs to 0.005 MSE loss).

However, larger DNNs can converge to a lower MSE loss than

light networks, with a significantly increased energy cost.

FLOPs/MACs/TOs are theoretical metrics for DNN com-

plexity/energy consumption analysed from DNN structures

and configurations. With support to nonlinear operations, TOs

is more complex to be calculated than FLOPs/MACs. Com-

pared with methods in [39], [40], TOs method is more efficient

due to no practical experiment required, but not applicable to

black box models.

IV. CONCLUSION AND FURTHER WORKS

The energy consumption of nonlinear operations in DNNs

has not been well analyzed and modelled, resulting in an

incomplete understanding of how DNN energy consumption

scales with model complexity. In this paper, we propose



12

Fig. 9. TOs Energy Consumption and Performance of Feedforward DNNs

Desktop

DNN: AFs FLOPs TOs

Sigmoid (%) 96.93-99.99 (avg 99.05) 97.46-99.99 (avg 99.14)
Tanh (%) 96.81-99.97 (avg 99.04) 96.95-99.99 (avg 99.22)

GELU (%) 97.11-99.97 (avg 98.94) 97.52-99.99 (avg 99.26)
Sigmoid (avg/max, J) 11.16/36.05 10.19/31.29

Tanh (avg/max, J) 11.33/41.28 9.33/39.51
GELU (avg/max, J) 12.78/35.55 9.04/29.45

CNN: Processor

CPU (%) 78.41-99.92 (avg 94.13) 80.97-99.97 (avg 94.82)
GPU (%) 91.50-99.92 (avg 97.15) 92.61-99.98 (avg 97.36)

CPU (avg/max, J) 383.39/797.24 341.46/747.77
GPU (avg/max, J) 101.65/364.33 95.95/362.66

Laptop

DNN: AFs FLOPs TOs

Sigmoid (%) 98.14-99.99 (avg 99.41) 98.52-99.99 (avg 99.49)
Tanh (%) 97.95-99.98 (avg 99.45) 98.44-99.99 (avg 99.50)

GELU (%) 97.99-99.99 (avg 99.46) 98.40-99.99 (avg 99.51)
Sigmoid (avg/max, J) 10.59/31.80 9.31/25.56

Tanh (avg/max, J) 9.90/35.27 9.19/26.77
GELU (avg/max, J) 9.85/34.57 9.19/30.47

CNN: Processor

CPU (%) 74.03-99.90 (avg 92.93) 76.45-99.99 (avg 93.61)
CPU (avg/max, J) 501.09/1134.58 453.25/1029.06

TABLE V
PERFORMANCE OF FLOPS-BASED AND TOS-BASED PR MODELS

(PRECISION, AVERAGE ERROR AND MAX ERROR)

a bottom-up theoretical TOs method to expose the role of

nonlinear activation functions and neural network structure in

DNN energy consumption. We show that 1) with single core

running, theoretical TOs of DNN shows a strong empirical

polynomial relationship with its practical energy, and could

be used for analysing the energy scaling of DNN models;

2) the proposed method (average precision 93.61-99.51%)

outperforms FLOPs-based method with 0.14 − 2.56% higher

precision on DNN energy consumption estimation, and lower

10% of the average estimation error; and 3) our scaling rela-

tionships are less prone to measurement errors than absolute

energy consumption estimates.

The impact of our proposed TOs-based approach is that de-

velopers can analyze the energy scaling of different operations

in DNNs, thus developing more energy-efficient DNN struc-

tures and configurations. We believe TOs could be extended

to all DNNs through more comprehensive research in different

algorithm logic (e.g., automatic differentiation in PyTorch

[64]) and processing mechanism of bottom-level operations,

e.g., comparison operators.

In future work, if we combine our proposed TOs-based and

the data movement-based [33] energy estimation methods, we

can build a more holistic and accurate DNN energy consump-

tion framework. Furthermore, by combining our proposed TOs

with state-of-the-art multi-core energy consumption modelling

approaches, we can map the scaling law of DNN energy

consumption in multi-core environments. We intent to apply

this to machine learning techniques used in widespread com-

munication [7] and IoT architectures [3] to have a significant

impact.

REFERENCES

[1] D. Amodei, D. Hernandez, G. Sastry, J. Clark, G. Brockman, and
I. Sutskever, “Ai and compute,” Heruntergeladen von https://blog. ope-

nai. com/aiand-compute, 2018.

[2] N. Jones, “The information factories,” Nature, vol. 561, 2018.

[3] W. Guo, S. Zhou, Y. Chen, S. Wang, X. Chu, and Z. Niu, “Simulta-
neous information and energy flow for iot relay systems with crowd
harvesting,” IEEE Communications Magazine, vol. 54, 2016.

[4] J. Wu, S. Guo, J. Li, and D. Zeng, “Big data meet green challenges:
Greening big data,” IEEE Systems Journal, vol. 10, 2016.

[5] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in nlp,” Annual Meeting of the ACL, 2019.

[6] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Compute
and energy consumption trends in deep learning inference,” arXiv

preprint arXiv:2109.05472, 2021.

[7] Z. Du, Y. Deng, W. Guo, A. Nallanathan, and Q. Wu, “Green deep
reinforcement learning for radio resource management: Architecture,
algorithm compression, and challenges,” IEEE Vehicular Technology

Magazine, vol. 16, no. 1, pp. 29–39, 2021.

[8] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You only learn one
representation: Unified network for multiple tasks,” arXiv preprint

arXiv:2105.04206, 2021.

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing

systems, vol. 33, pp. 1877–1901, 2020.

[10] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[11] E. Strickland, “Andrew Ng, AI Minimalist: The Machine-Learning
Pioneer Says Small is the New Big,” IEEE Spectrum, vol. 59, 2022.

[12] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, 2020.



13

[13] B. Li, P. Chen, H. Liu, W. Guo, X. Cao, J. Du, C. Zhao, and J. Zhang,
“Random sketch learning for deep neural networks in edge computing,”
Nature Computational Science, vol. 1, no. 3, pp. 221–228, 2021.

[14] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” arXiv

preprint arXiv:1611.06440, 2016.

[15] V. Camus, C. Enz, and M. Verhelst, “Survey of precision-scalable
multiply-accumulate units for neural-network processing,” in IEEE Int.

Conf. on Artificial Intelligence Circuits and Systems, 2019.

[16] J. Yu, J. Park, S. Park, M. Kim, S. Lee, D. H. Lee, and J. Choi, “Nn-lut:
neural approximation of non-linear operations for efficient transformer
inference,” in ACM/IEEE Design Automation Conference, 2022.

[17] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in IEEE International Solid-State Circuits Conference Digest

of Technical Papers, 2014.

[18] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi,
“Design of high speed mos multiplier and divider using redundant binary
representation,” in IEEE Symposium on Computer Arithmetic, 1987.

[19] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural
networks: A survey,” Pattern Recognition, vol. 105, p. 107281, 2020.

[20] Q. H. Vo, N. L. Le, F. Asim, L.-W. Kim, and C. S. Hong, “A deep
learning accelerator based on a streaming architecture for binary neural
networks,” IEEE Access, vol. 10, pp. 21 141–21 159, 2022.

[21] M. Christ, F. de Dinechin, and F. Pétrot, “Low-precision logarithmic
arithmetic for neural network accelerators,” in IEEE Int. Conf. on

Application-specific Systems, Architectures and Processors, 2022.

[22] A. Sabbagh Molahosseini, L. Sousa, A. A. Emrani Zarandi, and
H. Vandierendonck, “Low-precision floating-point formats: From
general-purpose to application-specific,” Approximate Computing, 2022.

[23] N. Wang, J. Nie, J. Li, K. Wang, and S. Ling, “A compression strategy
to accelerate lstm meta-learning on fpga,” ICT Express, 2022.

[24] S. M. Mishra, A. Tiwari, H. S. Shekhawat, P. Guha, G. Trivedi,
P. Jan, and Z. Nemec, “Comparison of floating-point representations for
the efficient implementation of machine learning algorithms,” in IEEE

International Conference Radioelektronika, 2022.

[25] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz
et al., “Discovering faster matrix multiplication algorithms with rein-
forcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

[26] P. Pennestrı̀, Y. Huang, and N. Alachiotis, “A novel approximation
scheme for floating-point square root and inverse square root for
fpgas,” in International Conference on Modern Circuits and Systems

Technologies, 2022.

[27] N. Campos, E. Edirisinghe, S. Fatima, S. Chesnokov, and A. Lluis, “Fpga
implementation of a custom floating-point library,” in SAI Intelligent

Systems Conference, 2023.

[28] Y. LeCun, “1.1 deep learning hardware: Past, present, and future,” in
IEEE International Solid-State Circuits Conference, 2019.

[29] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv

preprint arXiv:1606.08415, 2016.

[30] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,

techniques, & tools. Pearson Education India, 2007.

[31] D. G. A. Godse, Digital Logic Design. Technical Publications, 2009.

[32] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[33] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the
energy consumption of deep neural networks,” in Asilomar conference

on signals, systems, and computers, 2017.

[34] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolu-
tional neural networks using energy-aware pruning,” in IEEE conference

on computer vision and pattern recognition, 2017.

[35] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of solid-state circuits, vol. 52, 2016.

[36] A. Shah, C.-Y. Wu, J. Mohan, V. Chidambaram, and P. Krähenbühl,
“Memory optimization for deep networks,” arXiv preprint

arXiv:2010.14501, 2020.

[37] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolu-
tional neural networks using energy-aware pruning,” in IEEE conference

on computer vision and pattern recognition, 2017.

[38] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[39] C. F. Rodrigues, G. Riley, and M. Luján, “Synergy: An energy mea-
surement and prediction framework for convolutional neural networks

on jetson tx1,” in Int. Conference on Parallel and Distributed Processing

Techniques and Applications, 2018.
[40] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “Neuralpower:

Predict and deploy energy-efficient convolutional neural networks,” in
Asian Conference on Machine Learning. PMLR, 2017, pp. 622–637.

[41] E. Garcı́a-Martı́n, N. Lavesson, H. Grahn, E. Casalicchio, and V. Boeva,
“How to measure energy consumption in machine learning algorithms,”
in Joint European Conference on Machine Learning and Knowledge

Discovery in Databases. Springer, 2018, pp. 243–255.
[42] E. Garcı́a-Martı́n, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation

of energy consumption in machine learning,” Journal of Parallel and

Distributed Computing, vol. 134, pp. 75–88, 2019.
[43] R. W. Ahmad, A. Naveed, J. J. Rodrigues, A. Gani, S. A. Madani,

J. Shuja, T. Maqsood, and S. Saeed, “Enhancement and assessment
of a code-analysis-based energy estimation framework,” IEEE Systems

Journal, vol. 13, no. 1, pp. 1052–1059, 2018.
[44] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Compute

and energy consumption trends in deep learning inference,” arXiv

preprint arXiv:2109.05472, 2021.
[45] J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia,

C. L. Zhang, Y. Wan, Z. Li et al., “Bigdl: A distributed deep learning
framework for big data,” in ACM Symposium on Cloud Computing, 2019.

[46] M. J. Quinn, “Parallel programming,” TMH CSE, vol. 526, p. 105, 2003.
[47] A. Lastovetsky and R. R. Manumachu, “New model-based methods and

algorithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters,” IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, 2016.
[48] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer

feed-forward neural networks,” Chemometrics and intelligent laboratory

systems, vol. 39, no. 1, pp. 43–62, 1997.
[49] Z. Abid, H. El-Razouk, and D. A. El-Dib, “Low power multipliers based

on new hybrid full adders,” Microelectronics Journal, vol. 39, 2008.
[50] J. Saini, S. Agarwal, and A. Kansal, “Performance, analysis and com-

parison of digital adders,” in IEEE Int. Conference on Advances in

Computer Engineering and Applications, 2015.
[51] S. Asif and Y. Kong, “Performance analysis of wallace and radix-4

booth-wallace multipliers,” in IEEE Electronic System Level Synthesis

Conference, 2015.
[52] M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein, “Correctness

proofs outline for newton-raphson based floating-point divide and square
root algorithms,” in IEEE Symposium on Computer Arithmetic, 1999.

[53] H. T. Bui, Y. Wang, and Y. Jiang, “Design and analysis of low-power 10-
transistor full adders using novel xor-xnor gates,” IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, vol. 49,
no. 1, pp. 25–30, 2002.

[54] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[55] S.-W. Kim, J. J.-S. Lee, V. Dugar, and J. De Vega, “Intel® power
gadget,” Intel Corporation, vol. 7, 2014.

[56] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem, “Introduction to
intel core duo processor architecture.” Intel Technology Journal, 2006.

[57] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A
comparative study of methods for measurement of energy of computing,”
Energies, vol. 12, no. 11, p. 2204, 2019.

[58] E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, “Thunderx2
performance and energy-efficiency for hpc workloads,” Computation,
vol. 8, no. 1, p. 20, 2020.

[59] N. Coporation, “Nvml api pages-for gpu utilization,” 2017.
[60] S. Desrochers, C. Paradis, and V. M. Weaver, “A validation of dram

rapl power measurements,” in Proceedings of the Second International

Symposium on Memory Systems, 2016, pp. 455–470.
[61] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.

Snoeren, and R. K. Gupta, “Evaluating the effectiveness of model-based
power characterization,” in USENIX Annual Technical Conf, 2011.

[62] J. Miles, “R-squared, adjusted r-squared,” Encyclopedia of statistics in

behavioral science, 2005.
[63] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean

absolute error (mae)?–arguments against avoiding rmse in the literature,”
Geoscientific model development, vol. 7, 2014.

[64] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-12-14

A transistor operations model for deep

learning energy consumption scaling law

Li, Chen

IEEE

Li C, Tsourdos A, Guo W. (2024) A transistor operations model for deep learning energy

consumption scaling law. IEEE Transactions on Artificial Intelligence, Volume 5, Issue 1,

January 2024, pp. 192-204

https://doi.org/10.1109/TAI.2022.3229280

Downloaded from Cranfield Library Services E-Repository


