
1

PrivMVMF: Privacy-Preserving Multi-View Matrix
Factorization for Recommender Systems

Peihua Mai, Member, IEEE, Yan Pang, Member, IEEE,

Abstract—With an increasing focus on data privacy, there
have been pilot studies on recommender systems in a federated
learning (FL) framework, where multiple parties collaboratively
train a model without sharing their data. Most of these studies
assume that the conventional FL framework can fully protect
user privacy. However, there are serious privacy risks in matrix
factorization in federated recommender systems based on our
study. This paper first provides a rigorous theoretical analysis of
the server reconstruction attack in four scenarios in federated
recommender systems, followed by comprehensive experiments.
The empirical results demonstrate that the FL server could infer
users’ information with accuracy > 80% based on the uploaded
gradients from FL nodes. The robustness analysis suggests that
our reconstruction attack analysis outperforms the random guess
by > 30% under Laplace noises with b ≤ 0.5 for all scenarios.
Then, the paper proposes a new privacy-preserving framework
based on homomorphic encryption, Privacy-Preserving Multi-
View Matrix Factorization (PrivMVMF), to enhance user data
privacy protection in federated recommender systems. The
proposed PrivMVMF is successfully implemented and tested
thoroughly with the MovieLens dataset.

Impact Statement—The recommender system is one of the
most successful and popular AI applications in the industry.
Multi-View Matrix Factorization (MVMF) has been proposed
as an effective framework for the cold-start recommendation,
where side information is incorporated into matrix factorization.
MVMF requires users to upload their personal data to a
centralized recommender, which raises serious privacy concerns.
A solution to address the privacy problem is federated learning.
However, the conventional federated MVMF allows the exchange
of plaintext gradients, which is susceptible to information leakage.
There is a lack of thorough study of the privacy risk in
conventional federated MVMF in previous research works. To
fill this gap, this paper provides rigorous theoretical analysis
and comprehensive experiments on the privacy threat in the
traditional federated MVMF. The analysis and experiments
demonstrate that the server could reconstruct users’ original
information even when small amounts of noise are added to the
gradients. Then we propose a PrivMVMF framework to address
the information leakage problem successfully.

Index Terms—Data privacy, federated learning, recommender
system, homomorphic encryption

I. INTRODUCTION

THE recommendation system relies on collecting users’
personal information, such as purchase history, explicit

feedback, social relationship, and so on. Recently, some laws
and regulations have been enacted to protect user privacy,

This paragraph of the first footnote will contain the date on which you
submitted your paper for review.

Yan Pang and Peihua Mai are with the Department of Analytics and
Operations, National University of Singapore, 119077 Singapore (e-mail:
jamespang@nus.edu.sg; peihua.m@u.nus.edu).

which places constraints on the collection and exchange of
users’ personal data.

To protect user privacy, one way is to develop a recom-
mendation system in federated learning (FL) framework that
enables the clients to jointly train a model without sharing
their data. In the FL setting, each client computes the updated
gradient locally and sends the model update instead of the
original data to a central server. The server then aggregates
the gradients and updates the global model [1].

Collaborative filtering (CF) is one of the most effective
approaches in recommendation systems [2], and matrix fac-
torization (MF) is a popular technique in CF algorithms. MF
decomposes a user-item interaction matrix into two low-rank
matrices: user latent factors and item latent factors, which are
used to generate the preference prediction [3]. One disadvan-
tage of MF-based recommendation is the cold-start problem:
if an item or user has no rating information, the model cannot
generate a latent factor representation for it and thus suffers
difficulty in performing MF recommendation. A solution to the
cold-start issue is to incorporate side information, i.e., user and
item attributes, into matrix factorization.

Various approaches have been proposed for centralized
recommender systems [4], [5], [6], [7]. However, few studies
have researched the topic in the federated setting. To the best
of our knowledge, Flanagan et al. [8] is the first to propose
a federated multi-view matrix factorization (MVMF) to ad-
dress this problem. However, this method assumed that the
conventional FL framework could fully protect user privacy.
However, severe privacy risks exist in the federated MVMF
recommender system, which is susceptible to server recon-
struction attacks, i.e., the attack to recover users’ sensitive
information.

To fill this gap, this paper first provides a theoretical analysis
of the privacy threat of the federated MVMF method. In
theoretical analysis, we develop server reconstruction attacks
in four scenarios based on different treatments on unob-
served ratings and methods to update user latent factors. The
empirical study results indicate that the original federated
MVMF method could leak users’ personal information. Then,
we design a privacy-preserving federated MVMF framework
using homomorphic encryption (HE) to enhance the user data
privacy protection in federated recommender systems.

The main contributions of this paper are twofold:
(1) To the best of our knowledge, we are the first to

provide a rigorous theoretical analysis of server reconstruction
attacks in the federated MVMF recommender system. We also
conducted comprehensive experiments, which show that the
server could infer users’ sensitive information with accuracy

ar
X

iv
:2

21
0.

07
77

5v
1 

 [
cs

.I
R

] 
 2

9 
Se

p 
20

22



2

> 80% using such attacks, and the attack is effective under a
small amount of noise.

(2) To overcome the information leakage problem, we
propose PrivMVMF, a privacy-preserving federated MVMF
framework enhanced with HE. The proposed framework has
two advantages: a) To balance the tradeoff between efficiency
and privacy protection, it adopts a strategy in which some
unrated items are randomly sampled and assigned a weight
on their gradients. b) To reduce complexity, it allocates some
decrypting clients to decrypt and transmit the aggregated gra-
dients to the server. A prototype of PrivMVMF is implemented
and tested on the movielens dataset.

II. LITERATURE REVIEW

Federated Matrix Factorization: Federated recommender
systems enable parties to collaboratively train the model with-
out putting all data on a centralized server. Several federation
methods for recommender systems have been introduced in
recent works. Ammad-ud-din et al. [9] proposed a federated
matrix factorization method for implicit feedback. Each client
updates the user latent factor locally and sends back item
latent factor gradient to the server for aggregation and update.
Duriakova et al. [10] presented a decentralized approach to
matrix factorization without a central server, where each user
exchanges the gradients with their neighbors. Lin et al. [11]
provided a matrix factorization framework based on federated
meta learning by generating private item embedding and rating
prediction model. The above works haven’t considered cold-
start recommendation. To address the problem, Flanagan et al.
[8] devised a federated multi-view matrix factorization based
on the implicit feedback (e.g., clicks), where three matrices
are factorized simultaneously with sharing latent factors.

Cryptographic Techniques in Federated Recommender
System: Some studies used encryption schemes to develop
privacy-preserving recommendation systems. Chai et al. [12]
introduced FedMF, a secure federated matrix factorization
framework. To increase security, each client can encrypt the
gradient uploaded to the server with HE. Shmueli et al. [13]
proposed multi-party protocols for item-based collaborative
filtering of vertical distribution settings. In the online phase,
the parties communicate only with a mediator that performs
computation on encrypted data, which reduces communication
costs and allows each party to make recommendations inde-
pendent of other parties. Although both [12] and our paper
adopt HE to enhance the security, our work extends the method
by introducing decrypting clients and sampling of unrated
items. The decrypting clients improve the efficiency to perform
parameters updates, and the unrated items sampling strikes a
balance between efficiency and privacy protection.

To the best of our knowledge, Flanagan et al. [8] is the first
to devise a federated multi-view matrix factorization to address
the cold-start problem, where the users directly upload the
plaintext gradients to the server, and no work has considered
the information leakage from the gradients. This paper first
demonstrates the feasibility of server reconstruction attack, and
then proposes a framework to enhance privacy protection. The
study is conducted based on the assumption of honest clients
and an honest-but-curious server [14].

III. FEDERATED MVMF

The federated MVMF proposed by Flanagan et al. [8] is
based on implicit feedback. In this section, we extend the
framework to explicit feedback.

A. Notations

Table I lists the notations and their descriptions used
throughout this paper.

B. Multi-view Matrix Factorization

Multi-view matrix factorization is performed on the three
data sources: the rating matrix Rn×m, the user attribute matrix
Xn×lx , and the item content matrix Ym×ly , for n users with
lx features, and m items with ly features. The decomposition
of the three matrices is given as:

R ≈ PQT , X ≈ PUT , Y ≈ QV T (1)

where P = Pn×K , Q = Qm×K , U = U lx×K , V = V ly×K
with K representing the number of latent factors. For P and
Q, each row represents the latent factors for each user and
item respectively. For U and V , each row represents the latent
factors for each feature of user and item respectively. The
predicted rating of user u on item i is given as:

r̂u,i = pTu qi (2)

The latent factor representation is learned by minimizing
the following cost function:

J =
∑
i

∑
j

ci,j(ri,j − piqTj )2

+λ1(
∑
i

∑
du

(xi,du − piuTdu)2 +
∑
j

∑
dy

(yj,dy − qjvTdy )2)

+λ2(
∑
i

||pi||2 +
∑
j

||qj ||2 +
∑
du

||udu ||2 +
∑
dy

||vdy ||2)

(3)
where λ1 is used to adjust how much information the model
should learn from side data, and λ2 is a regularization term to
prevent overfitting. ri,j = 0 if the rating is unobserved, and
ri,j > 0 otherwise. ci,j could be treated as a weight on the
error term for each rating record. This paper considers two
definitions of ci,j :
• ObsOnly: ci,j = 1 if ri,j > 0, and ci,j = 0 if ri,j = 0.

Then the loss function only minimize the square error on
the observed ratings.

• InclUnc: ci,j = 1 if ri,j > 0, and ci,j = α if ri,j = 0,
where 0 < α < 1 is an uncertainty coefficient on the
unobserved ratings. This case assigns a lower weight on
the loss for unobserved ratings.

The matrix factorization for explicit feedback typically em-
ploys the first definition to reduce the bias of unobserved
interaction and improve efficiency. However, employing the
second definition reveals less information to the FL server.
Furthermore, as is shown in section IV and VI, adopting the
second definition would present a challenge for the server
attack. Therefore, we will consider both cases when designing
the server attack.



3

TABLE I: Notations Used in the Paper

Notation Description Notation Description
n The number of users V, vdy Item feature latent factor
m The number of items c Uncertainty coefficient
lx Dimension of user attributes K Dimension of latent factor
ly Dimension of item attributes λ Regularization coefficient

R, ri,j , r̂i,j Rating matrix Oi Set of rated items for user i
X, xi,du User feature Y, yj,dy Item feature
U, udu User feature latent factor γ Learning rate
P, pi User latent factor β1, β2 Exponential decay rate
Q, qj Item latent factor ε Small number

C. Federated Implementation

The federated setting consists of three parties: clients, FL
server, and item server. Each client holds their ratings and
attributes locally and performs local update of P . FL server
receives the gradients from clients and item server, and updates
U and Q. Item server is introduced to facilitate the training
process. It stores the item features and conducts update of V .
The following explains the details in the updates of each latent
factor matrix.

User feature latent factor U is updated on the FL server
with the formula as:

utdu = ut−1du
− γ ∂J

∂udu
(4)

where:
∂J

∂udu
= −2

∑
i

f(i, du) + 2λ2udu (5)

where f(i, du) =
(
xi,du − piuTdu

)
pi is computed on each user

locally.
Item latent factor Q is updated on the FL server with the

formula as:
qtj = qt−1j − γ ∂J

∂qj
(6)

where:
∂J

∂qj
= −2

∑
i

f(i, j)− 2λ1
∑
dy

f(j, dy) + 2λ2qj (7)

where f(j, dy) = (yj,dy − vdyqTj )vdy is computed on the item
server, and f(i, j) = cij(ri,j − piqTj )pi is computed on each
user locally. Noted that for ObsOnly, if cij = 0, the user only
computes and sends the gradients of items with cij > 0, i.e.,
the rated items. For InclUnc, the gradients for all items will
be sent to the server.

Both user latent factor P and item feature latent factor V
adopt two updating methods:
• Semi-Alternating Least Squares (SemiALS): Optimal P

and V are computed using closed form formula under
fixed U and Q. Other parameters are updated using
gradient descent method.

• Stochastic Gradient Descent (SGD): All of the parameters
are updated using gradient descent method.

The time complexity for SemiALS is O(mK2 + K3) per
iteration, higher than that of SGD. However, SGD requires
more iterations to achieve the optimum. [15]

User latent factor P is updated on each client locally. For
SemiALS, it’s updated with the formula as:

p∗i = (riC
(i)Q+λ1xiU)(QTC(i)Q+λ1U

TU +λ2I)−1 (8)

where C(i) is a m×m diagnal matrix with C(i)
jj = ci,j .

For SGD, it’s updated with the formula as:

pti = pt−1i − γ ∂J
∂pi

(9)

where:
∂J

∂pi
= −2

∑
i

cij(ri,j − piqTj )qj

−2λ1
∑
du

(xi,du − piuTdu)udu + 2λ2pi
(10)

Item feature latent factor V is updated on the item server.
For SemiALS, it’s updated with the formula as:

v∗dy = (ydyQ)(QTQ+
λ2
λ1
I)−1 (11)

For SGD, it’s updated with the formula as:

vtdy = vt−1dy
− γ ∂J

∂vdy
(12)

where:
∂J

∂vdy
= −2

∑
i

(yi,dv − qjvTdv )qj + 2λ2vdv (13)

Algorithm 1 outlines the federated implementation of
MVMF (FedMVMF). The gradient descent of U and Q are
performed using Adaptive Moment Estimation (Adam) method
to stabilize the convergence.

D. Cold-start recommendation

The recommendation for new users and items is discussed
as followed.

Cold-start user recommendation: for any new user i, the
system first generates the user latent factor pi based on the
user’s attribute xi and the user feature latent factor matrix U .
Then the predicted rating of user i on item j is given by the
inner product of pi and qi. pi is calculated by minimizing the
loss function:

J = λ1
∑
du

(xi,du − piuTdu)2 + λ2
∑
du

||udu ||2 (14)



4

Algorithm 1 FedMVMF

FL Server:
Initialize U and Q.
for t = 1 to T do

Receive and aggregate f(i, j) and f(i, du) from user i
for i ∈ [1, n].
Receive f(j, dv) from item server.
Update U using equation (4).
Update Q using equation (6).

end for

Item Server:
while True do

Receive Q from FL server.
Compute local V using equation (11).
Compute item latent factor gradients f(j, dv).
Transmit gradients to server.

end while

Client:
while True do

Receive U and Q from server.
Compute local pi using equation (8).
Compute U gradients f(i, du) for du ∈ [1, lx].
Compute Q gradients f(i, j) for j ∈ [1,m].
Transmit gradients to server.

end while

The optimal solution of pi is defined as:

p∗i = xiU(UTU +
λ2
λ1
I)−1 (15)

Cold-start item recommendation: given a new item j, the
system first generates the user latent factor qj based on the
item’s feature yj and the item feature latent factor matrix V .
The estimated qi is then used to compute the predicted rating.
qj is calculated by minimizing the loss function:

J = λ1
∑
dy

(yj,dy − qjvTdy )2 + λ2
∑
dy

||vdy ||2 (16)

The optimal solution of qj is defined as:

q∗j = yjV (V TV +
λ2
λ1
I)−1 (17)

IV. SEVER RECONSTRUCTION ATTACK ANALYSIS

In FedMVMF, the FL server could reconstruct the user
ratings and attributes based on the gradients they received.
In this section, we consider the attacks for both SemiALS
and SGD updates on user latent factor. Within each case, the
attacks are slightly different between ObsOnly and InclUnc.
The analysis is based on the assumption of honest clients and
an honest-but-curious server.

A. Reconstruction Attack for SemiALS Update

For SemiALS the FL server is able to recover the user
information within only one epoch given that the server has
access to U and Q.

Attack for ObsOnly: In this case, the clients only upload
the gradients for items with observed ratings. Therefore, for
any user i, the gradients which the FL server receives is given
by:

f(i, j) = (ri,j − piqTj )pi, j ∈ Oi
f(i, du) = (xi,du − piuTdu)pi, du ∈ [1, lx]

(18)

where f(i, j) and f(i, du) denote the vector of gradient with
length K, Oi denotes the collection of items rated by user i,
and lx denote the number of user attributes.

In SemiALS, pi is updated by equation (8). Given that ci,j =
0 when ri,j = 0, the formula could be reduced to:

pi = (riQi + λ1xiU)(QTi Qi + λ1U
TU + λ2I)−1 (19)

where ri is the vector of observed ratings, and Qi = Q|Oi|×K
is the latent factors for items rated by user i.

Let Ai = Qi(Q
T
i Qi + λ1U

TU + λ2I)−1, and Bi =
λ1U(QTi Qi + λ1U

TU + λ2I)−1, both of which could be
computed on the FL server. Then pi could be written as
pi = riAi + xiBi. Plugging into equation (18), we have:

fQi = rTi riAi + rTi xiBi −Qi(ATi RrAi
+ATi RxBi +BTi XrAi +BTi XxBi)

fUi = xTi riAi + xTi xiBi − U(ATi RrAi

+ATi RxBi +BTi XrAi +BTi XxBi)

(20)

where fQi = fQi |Oi|×K with jth row being f(i, j), fUi =

fUi lx×K with dthu row being f(i, du), and:

Rr = rTi ri, Rx = rTi xi,

Xr = xTi ri, Xx = xTi xi
(21)

Then the FL server obtain a second order non-linear system
with (lx + |Oi|) × K equations, consisting of (lx + |Oi|)
variables, ri and xi. Therefore, it’s plausible to find the
solution of user ratings ri and user attributes xi using methods
such as Newton-Raphson algorithm. To reconcile the num-
ber of equations and variables, we choose a random factor
n ∈ [1,K], and solve the equation systems under the fixed n.

Attack for InclUnc: In this case the client sends gradients
of all items to the FL server, multiplied by a uncertainty
coefficient ci,j . For any user i, the gradients the FL server
is given by:

f(i, j) = ci,j(ri,j − piqTj )pi, j ∈ [1,m]

f(i, du) = (xi,du − piuTdu)pi, du ∈ [1, lx]
(22)

Let A′i = C(i)Q(QTC(i)Q+ λ1U
TU + λ2I)−1, and B′i =

λ1U(QTC(i)Q + λ1U
TU + λ2I)−1. Then pi can be written

as:
pi = riA

′
i + xiB

′
i (23)

Plugging into equation (22), we can obtain the final equation
system:

fQi = C(i)
(
rTi riA

′
i + rTi xiBi −Q((A′i)

TRrA
′
i

+(A′i)
TRxB

′
i + (B′i)

TXrA
′
i + (B′i)

TXxB
′
i)
)

fUi = xTi riA
′
i + xTi xiB

′
i − U((A′i)

TRrA
′
i

+(A′i)
TRxB

′
i + (B′i)

TXrDi + (B′i)
TXxB

′
i)

(24)



5

where ri is user i’s ratings for all items, and
A′i = C(i)Q(QTC(i)Q + λ1U

TU + λ2I)−1 and
B′i = λ1U(QTC(i)Q + λ1U

TU + λ2I)−1 are dependent on
ri.

Since C(i) is a function of ri, the system consists of lx+m
variables and (lx+m)×K equations. Therefore, it’s possible to
recover the user information by solving the equation system.
Similarly, a random factor n ∈ [1,K] is fixed to align the
number of equations and variables.

B. Reconstruction Attack for SGD Update

For SGD, the FL server is able to recover the user informa-
tion within only two epochs given that the server has access
to U and Q.

Attack for ObsOnly: After two epochs, the gradients FL
server receives from users i is given by:

f t(i, j) = (ri,j − pti(qtj)
′
)pti, j ∈ Oi

f t−1(i, j) = (ri,j − pt−1i (qt−1j )
′
)pt−1i , j ∈ Oi

f t(i, du) = (xi,du − pti(utdu)
′
)pti, du ∈ [1, lx]

f t−1(i, du) = (xi,du − pt−1i (ut−1du
)
′
)pt−1i , du ∈ [1, lx]

(25)

In pure SGD, the user latent factor is updated using equation
(9) and (10). Plugging into the first gradient of equation (25),
we have:

f tn(i, j) =
(
rij − (pt−1i − γ ∂J

∂pt−1i

)(qt−1j + ∆qtj)
′)

×(pt−1in − γ
∂J

∂pt−1in

)

(26)

where ∆qtj = qtj − q
t−1
j , f tn(i, j) denote the nth element of

f t(i, j), and pt−1in denote the nth element of pt−1i .
Equation (26) is a multiplication of two terms. By looking

at the first term, we have:

rij − (pt−1i − γ ∂J

∂pt−1i

)(qt−1j + ∆qtj)
′ = rij

−pt−1i (qt−1j )
′ − pt−1i (∆qtj)

′ + γ
∂J

∂pt−1in

(qtj)
′

=
Gn(j)

pt−1in

+ pt−1i g

(27)

where:

Gn(j) = f t−1n (i, j)− 2γ(
∑
k∈Oi

f t−1n (i, k)qt−1k

+λ1
∑
du

f t−1n (i, du)ut−1du
)(qtj)

′

g = 2γλ2(qtj)
′ − (∆qtj)

′

(28)

Then we look at the second term of equation (26), which is
given by:

pt−1in − γ
∂J

∂pt−1in

= pt−1in (1− 2γλ2) +
2γ

pt−1in

×[
∑
k∈Oi

f t−1n (i, k)qt−1kn + λ1
∑
du

f t−1n (i, du)ut−1dn
]

= pt−1in (1− 2γλ2) +
Fn

pt−1in

(29)

where:
Fn = 2γ[

∑
k∈Oi

f t−1n (i, k)qt−1kn +

λ1
∑
du

f t−1n (i, du)ut−1dun
]

(30)

Then equation (26) can be written as:

f tn (i, j) =
(Gn(j)

pt−1in

+ pt−1i g
)(
pt−1in (1− 2γλ2) +

Fn

pt−1in

)
(31)

For n ∈ [1,K], j ∈ Oi, where pt−1i is the variable to solve.
Noted that Gn(j), g, and Fn could be computed on the FL
server.

Since there are K variables and K × |Oi| equations, there
should exist a solution pt−1i satisfy the system (31). To
reconcile the number of equations and variables, we choose
a random item j ∈ Oi, and solve the equation systems under
the fixed j.

After obtaining pt−1i , the server could compute ri,j and
xi,du as followed:

rij =
f t−1n (i, j)

pt−1in

+ pt−1i (qt−1j )
′

xidu =
f t−1n (i, du)

pt−1in

+ pt−1i (ut−1du
)
′

(32)

Attack for InclUnc: Similarly, the FL server first obtain
the equation system for pt−1i given by:

fn(i, j) =
(f t−1n (i, j)

pt−1in

+
ci,jG

′
n(j)

pt−1in

+ ci,jp
t−1
i g′

)
( F ′n
pt−1in

+ pt−1in (1− 2γλ2)
)
, n ∈ [1,K], j ∈ [1,m]

(33)

where:

G′n(j) = −2γ(
∑
k

f t−1n (i, k)qt−1k

+λ1
∑
du

f t−1n (i, du)ut−1du
)(qtj)

′

F ′n = 2γ(
∑
k

f t−1n (i, k)qt−1kn + λ1
∑
du

f t−1n (i, du)ut−1du,n

g′ = 2λ2γp
t−1
j −∆ptj

(34)

For detail derivation of equation (33) refer to appendix A.
Noted that ci,j is a function of ri,j , which is dependent on
pt−1i based on equation (35). Therefore, ci,j is linked with
pt−1i .

Given K variables and K ×m equations, the server should
be able to find a solution pt−1i for the system. Similarly, a
random item j ∈ [1,m] is fixed when solving the equation
system.

Then the rating and user attributes could be computed as:

ri,j =
f t−1n (i, j)pti(q

t
j)
′ptin − f tn(i, j)pt−1i (qt−1j )′pt−1in

f t−1n (i, j)ptin − f tn(i, j)pt−1in

xi,du =
f t−1n (i, du)

pt−1in

+ pt−1i (ut−1du
)
′

(35)

where ptin and pti can be obtained from formula (9) and (10).



6

V. PRIVACY-PRESERVING MVMF (PRIMVMF)

To prevent information leakage, we develop PrivMVMF,
a privacy-preserving federated MVMF framework enhanced
with homomorphic encryption (HE). In this framework, the
client encrypts the gradients before sending them to the server,
and the server can perform computation on the encoded
gradients. The above attacks are based on access to individual
gradients, while in HE, these gradients are sent to the server
in encrypted form, rendering the reconstruction attacks infea-
sible.

A. Paillier Cryptosystem

This study utilized a partially HE scheme - Paillier cryp-
tosystem [16], which consists of three parts: key generation,
encryption, and decryption.
• Key generation: Based on the keysize, (sk, pk) =

Gen(keysize) returns the public key pk shared among
all participants, and secret key sk distributed only among
the clients. Before the training process, one of the users
generates a key pair.

• Encryption: c = Enc(m, pk) encrypts message m to
cyphertext c using public key pk.

• Decryption: m = Dec(c, sk) reverses cyphertext c to
message m using secret key sk.

Given two plaintexts m1 and m2, Paillier cryptosystem E has
the following properties:
• Addition: E(m1) · E(m2) = E(m1 +m2).
• Multiplication: E(m1)

m2 = E(m1 ·m2)

Number Encoding Scheme: Paillier encryption is only
defined for non-negative integer, but the recommendation
system contains float and negative numbers. The study follows
Chai et al.’s method to convert floating points and negative
numbers into unsigned integer [12].

Sampling of Unrated Item: For the treatment of unrated
item, this framework strikes a balance between efficiency and
privacy protection. The ObsOnly method is efficient while it
reveals what items has been rated by the user. The InclUnc
method leaks no information but is computation intensive. To
reconcile the two objectives, we design a strategy to randomly
sample a portion of unrated items. Then the ci,j is given as
followed:

ci,j =

 1, ri,j > 0
α, ri,j = 0 and sampi,j = 1
0, ri,j = 0 and sampi,j = 0

(36)

where 0 < α < 1, sampi,j = 1 if item j appears in the
sampled unrated items for user i, and sampi,j = 0 otherwise.
Users only send the gradients with ci,j > 0.

For each user, we determine the number of sampled unrated
items as a multiple of his rated items, denoted by ρ. Then
the upper-bound probability that the FL server could correctly
infer whether a given item is rated by the user is given by
1
ρ+1 .

Decrypting Clients: It’s time-consuming to perform the up-
date using the encrypted gradients. To reduce complexity, the
server sends the aggregated gradient to some decrypting users

for decryption, and uses the plaintext aggregated gradients to
update the parameters.

Algorithms: The detailed steps of PrivMVM are shown in
Algorithm 2. Noted that for the update of user latent factor
P and item feature latent factor V , we adopt the SemiALS
strategy for the following reason: although SemiALS has higher
time complexity per iteration, it requires fewer iterations to
achieve the optimum and thus fewer encryption and decryption
operations, the bottleneck of the HE scheme.

Privacy Analysis: The privacy of the algorithm is analyzed
in terms of information leakage, which is characterized into
two forms: i) original information, the observed user data , and
ii) latent information, properties of user data [17]. We assume
an honest-but-curious server for the analysis, i.e., the server
will not deviate from the defined protocol but attempt to learn
information from legitimately received messages. During the
training of PrivMVMF, the individual gradients are sent to the
server in the encrypted form, and only the plaintext aggregated
gradients are available to the server. The following shows
that given the aggregated gradients, it leaks trivial original
information about user data to the server.

Let f(j), f(du) be the aggregated gradients for item j and
user feature du, given by:

f(j) =
∑
i

f(i, j) =
∑
i:j∈O′i

ci,j(rij − piqTj )pi, j ∈ [1,m]

f(du) =
∑
i

f(i, du) =
∑
i

(xi,du − piuTdu)pi, du ∈ [1, lx]

(37)
where O′i denotes the set of items rated by or appeared in the
sampled unrated items for user i.

In PrivMVMF, pi is updated by:

pi = (riC
(i)Q′i + λ1xiU)((Q′i)

TC(i)Q′i + λ1U
TU + λ2I)−1

(38)
where Q′i = Q|O′i×K| is the latent factors for items in O′i.

Let A′i = C(i)Q′i((Q
′
i)
TC(i)Q′i + λ1U

TU + λ2I)−1, and
B′i = λ1U((Qi)

′TC(i)Q′i + λ1U
TU + λ2I)−1. Then pi can

be written as:
pi = riA

′
i + xiB

′
i (39)

Plugging into equation (38), we can obtain the equation
system as followed:

f(j) =
∑
i

ci,j(rijriA
′
i + rijxiB

′
i − qj((A′i)TRrA′i

+(A′i)
TRxB

′
i + (B′i)

TXrA
′
i + (B′i)

TXxB
′
i)), j ∈ [1,m]

f(du) =
∑
i

(xi,duriA
′
i + xi,duxiB

′
i − udu((A′i)

TRrA
′
i

+(A′i)
TRxB

′
i + (B′i)

TXrA
′
i + (B′i)

TXxB
′
i)), du ∈ [1, lx]

(40)
where:

Rr = rTi ri, Rx = rTi xi, Xr = xTi ri, Xx = xTi xi (41)

The non-linear system consists of (m+ lx)×K equations and∑
iO
′
i+nlx variables. When

∑
iO
′
i+nlx >> (m+ lx)×K,

i.e., the user size is large enough, it’s hard for the server to
derive the original information of users.



7

Algorithm 2 PrivMVM

Ramdomly select some clients as decrypters
FL Server:
Initialize U and Q.
for t = 1 to T do

Receive and aggregate encrypted f(i, j) and f(i, du)
from user i for i ∈ [1, n].
Send encrypted

∑
i f(i, j) and

∑
i f(i, du) to decrypters.

Receive decrypted
∑
i f(i, j) and

∑
i f(i, du) from de-

crypters.
Receive f(j, dv) from item server.
Update U using equation (4).
Update Q using equation (6).

end for

Item Server:
while True do

Receive Q from FL server.
Compute local V using equation (11).
Compute item latent factor gradients f(j, dv).
Transmit gradients to server.

end while

Client:
while True do

Receive U and Q from server.
Compute local pi using equation (8).
Compute U gradients f(i, du) for du ∈ [1, lx].
Compute Q gradients f(i, j) for j ∈ [1,m].
Transmit gradients to server.

end while

Decrypter:
while True do

Receive encoded
∑
i f(i, j) and

∑
i f(i, du) from FL

server.
Decrypt and transmit

∑
i f(i, j) and

∑
i f(i, du) to FL

server.
end while

VI. EXPERIMENTS

A. Dataset and Experimental Setup

The experiment is performed on MovieLens-1M dataset1.
The dataset contains 914676 ratings from 6040 users on 3952
movies, with each user submitting at least 20 ratings. The
experiment is implemented on Ubuntu Linux 20.04 server
with 32-core CPU and 128GB RAM, where the programming
language is Python.

We construct the rating matrix based on the explicit ratings,
where the missing values are set to zero. The following
user attributes are considered: Age, Gender, Occupation and
Zipcode. Age is discretized into seven groups with equal
interval, and Zipcode is linked to the US region. The movie

1https://grouplens.org/datasets/movielens/1m/

features are described by the tag genome dataset containing
1, 128 tags for 9, 734 movies. To reduce dimensionality, we
take the first 20 principal components for the tags features.

We use Bayesian optimization [18] approach based on four-
fold cross validation to optimize the hyperparameters. Table
II summarizes the hyperparameters for the experiment.

TABLE II: Hyperparameter for MVMF on Movielens Dataset

Hyperparameter K β1 β2 ε γ α

Value 6 0.5 0.99 1e− 8 0.05 0.1

Hyperparameter λ1 λ2 ρ |iter| |epo| lp
Value 1 10 1 10 20 1024

|iter| and |epo| denote the number of iterations and epochs. ρ is the
proportion of sampled items based on rated items. lp denote the length of
public key.

B. Server Attack

Solving Nonlinear System: To perform a server reconstruc-
tion attack, we first developed the equation systems described
in section IV. To solve the non-linear systems, we experiment
with the four methods[19], [20], [21], [22]: modified Powell’s
hybrid method, Broyden’s bad method, Scalar Jacobian ap-
proximation, and Anderson mixing, and select the best method
within each scenario using a sample of 100 users. Refer to
table VI for the selected method within each scenario.

Smoothing ci,j as a Function of ri,j for InclUnc: In
InclUnc, ci,j = f(ri,j) is not a continuous function, while
Jacobian matrix is needed for most of the iterative methods.
To smooth f , we design the following function:

ci,j =

 1, ri,j > 1
ri,j , 1 ≥ ri,j > 0
0, 0 ≥ ri,j

(42)

Evaluation metrics: We employ accuracy to measure the
performance of server inference, with steps as follows. After
obtaining the estimation of r̂(i) and x̂i for each user i, we
clipped r̂(i) within [0, Rmax] and x̂i within [0, 1] (xi are all
dummy variables), and then rounded the estimations to the
nearest integers. The accuracy for user ratings and attributes
is computed as follows:

Accuracy for Rating =
1

|usr|
∑
i

|r̂i = ri|
|ri|

Accuracy for Attribute =
1

|usr|
∑
i

|x̂i = xi|
|xi|

(43)

where usr denotes the set of all users, and r̂i and x̂i denote
the transformed estimation of ri and xi.

Result and Analysis: Table III reports the accuracy of
server reconstruction attack in four scenarios, from which we
can make the following observations: (1) In all cases, the
server is able to recover the user’s private information with
accuracy > 80%, which is a non-negligible privacy concern.
(2) For both SemiALS and SGD, including an uncertainty
coefficient deteriorates the performance of server attack. One
explanation is that ci,j is not a differentiable function of ri,j ,
posing a challenge to obtaining the Jacobian matrix of the



8

Fig. 1: Accuracy for ratings under four cases after adding
Laplace noises from 0 to 2.

system. (3) Using SGD method to update P makes it harder
for the server to infer user information given by the reduced
accuracy.

TABLE III: Accuracy of Server Reconstruction Attack

SemiALS SGD
ObsOnly InclUnc ObsOnly InclUnc

Rating 0.9911 0.8785 0.8223 0.8182
Attribute 0.9991 0.8898 0.9230 0.8474

Robustness Check: We consider the case when a small
amount of noise is added to the gradients. With perturbed
gradients, the equation systems are solved using the following
steps:
• For SemiALS (SGD with ObsOnly / SGD with InclUnc),

compute the set of solutions for each n ∈ [1,K] (j ∈ Oi
/ j from a randomly chosen set of items).

• Clip the solutions to the correct domain.
• Take the average of the solutions and round the estima-

tions to integers.
We conduct the experiment under the four scenarios, where

Laplace noises are added to the gradients with scale b ranging
from 0 to 2. The performance is given by fig. 1 and fig. 2.
Baseline refers to the theoretical accuracy under the random
guessing strategy.

For both SemiALS and SGD, the reconstruction accuracy
are stable and above the baseline by more than 50% under the
InclUnc scenario. Refer to fig. 3 in appendix for the accuracy
with noise scale up to 104. For ObsOnly, the rating accuracy
approaches the baseline under both SemiALS and SGD when
the noise scale increases to 2, and the user attribute accuracy
is below the baseline under SemiALS when the noise scale
exceeds 1. In all scenarios, the attack accuracy is more than
30% above the random guessing baseline for noise scale less
than 0.5.

The results reveal the following: (1) The reconstruction
attack is effective under small amount of noises (b ≤ 0.5). (2)
Although including an uncertainty coefficient hides the unrated
ratings, it makes the attack more resilient to random noises.

Fig. 2: Accuracy for user attributes under four cases after
adding Laplace noises from 0 to 2.

C. PrivMVMF

Evaluation metrics: The study adopted the following four
evaluation metrics: Normalized Discounted Cumulative Gain
at 10 (NDCG@10), Precision, Recall, and F1. The accurate
prediction is defined as an item recommended rated above a
threshold by the given user[23]. Refer to appendix B for the
details of evaluation metrics.

Scenarios of Testing: Both approaches can provide recom-
mendations for new users and items. Table IV presents the
performance of the three scenarios: Existing User and Item,
Cold-start Item, and Cold-start User. For Existing User and
Item, the items of each user are randomly divided into 80%
training set and 20% testing set. The items and users in the
testing set are supposed to have a rating history. For Cold-
start Item, the items are randomly divided into 90% training
set and 10% testing set. The testing items are treated as new
items without a rating history. For Cold-start User, a random
subset of 10% users is held out as new users for testing.

TABLE IV: Test Accuracy of FedMVMF and PrivMVMF

FedMVMF PrivMVMF Diff%
Existing User and Item

NDCG@10 0.8304 ±0.0008 0.8313 ±0.0003 0.11
Precision 0.2677 ±0.0034 0.2931 ±0.0047 8.69
Recall 0.2092 ±0.0048 0.2208 ±0.0034 5.24
F1 0.2348 ±0.0043 0.2519 ±0.0040 6.76

Cold-start User
NDCG@10 0.7060 ±0.0042 0.7090 ±0.0092 0.42
Precision 0.2668 ±0.0076 0.2728 ±0.0081 2.18
Recall 0.0404 ±0.0010 0.0423 ±0.0015 4.66
F1 0.0701 ±0.0017 0.0733 ±0.0024 4.33

Cold-start Item
NDCG@10 0.8208 ±0.0028 0.8193 ±0.0069 0.18
Precision 0.1781 ±0.0077 0.1735 ±0.0082 2.60
Recall 0.2497 ±0.0114 0.2563 ±0.0289 2.56
F1 0.2075 ±0.0021 0.2064 ±0.0127 0.55

The values denote the mean±standard deviation of the performance.

Accuracy: Table IV compares the testing accuracy between
FedMVMF and PrivMVMF, with each approach running for 5
rounds. Noted that the FedMVMF adopts the same sampling
strategy as PrivMVMF for consistency, slightly different from
that in section III. It can be observed that the difference in



9

testing accuracy is trivial in all scenarios, suggesting that the
proposed framework is lossless.

Efficiency: The model training in each stage can be divided
into four phases: local update, aggregation, decryption, and
server update. The study evaluates the time consumption in
these four phases respectively.
• Local update: Clients compute the gradients and encryp-

tion them with the public key.
• Aggregation: Server receives and aggregates the en-

crypted gradients from clients.
• Decryption: Decrypting clients decrypts the aggregated

gradients.
• Server update: Server updates the latent factor matrix

using decrypted aggregated gradients.
Table V presents the computation time in each epoch. It can
be observed that the aggregation and decryption process take
up most of the time. It can improve efficiency if the decryption
workload is distributed to several clients instead of only one
user. More work can be done to reduce the complexity of the
operation of the encrypted gradient as well.

TABLE V: Time Consumption in Each Phase (seconds)

FedMVMF PrivMVMF
Local Update 0.0195±0.0003 3.0787±0.0302

Aggregation 3.2878±0.2563 239.2998±4.7052

Decryption / 97.5748±0.9483

Server Update 0.1912±0.0672 0.3334±0.0333

It assumes that there are one decrypter for PrivMVMF. Local Update
represents the time spent in the phase per user. The FedMVMF doesn’t have
Decryption phase, so the value is “/”.

VII. CONCLUSIONS AND FUTURE WORK

To understand the privacy risks in federated MVMF rec-
ommender systems, this paper provides a theoretical analysis
of the server reconstruction attack in four scenarios. It also
proposes PrivMVMF, a privacy-preserving federated MVMF
framework enhanced with HE, to overcome the information
leakage problem. Empirical studies on MovieLens-1M dataset
show that: (1) In FedMVMF, the FL server could infer users’
rating and attribute with accuracy > 80% using plaintext
gradients. (2) For OnbOnly, the reconstruction attack is ef-
fective under Laplace noise with b ≤ 0.5; for InclUnc, it is
effective with noise b ≤ 10. (3) PrivMVMF can protect user
privacy well compared wth FedMVMF. (4) Aggregation and
decryption process occupy most of the time in PrivMVMF.

Future work involves the following directions. Firstly, com-
munication time could be investigated in PrivMVMF frame-
work. Secondly, it’s interesting to improve the efficiency of
HE since it’s time-consuming to perform the operation on the
encrypted gradients.

REFERENCES

[1] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[2] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, 2009.

[3] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[4] D. Cortes, “Cold-start recommendations in collective matrix factoriza-
tion,” arXiv preprint arXiv:1809.00366, 2018.

[5] A. P. Singh and G. J. Gordon, “Relational learning via collective matrix
factorization,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2008, pp. 650–
658.

[6] Y. Seroussi, F. Bohnert, and I. Zukerman, “Personalised rating prediction
for new users using latent factor models,” in Proceedings of the 22nd
ACM conference on Hypertext and hypermedia, 2011, pp. 47–56.

[7] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-
Thieme, “Learning attribute-to-feature mappings for cold-start recom-
mendations,” in 2010 IEEE International Conference on Data Mining.
IEEE, 2010, pp. 176–185.

[8] A. Flanagan, W. Oyomno, A. Grigorievskiy, K. E. Tan, S. A. Khan,
and M. Ammad-Ud-Din, “Federated multi-view matrix factorization for
personalized recommendations,” arXiv preprint arXiv:2004.04256, 2020.

[9] M. Ammad-Ud-Din, E. Ivannikova, S. A. Khan, W. Oyomno, Q. Fu,
K. E. Tan, and A. Flanagan, “Federated collaborative filtering
for privacy-preserving personalized recommendation system,” arXiv
preprint arXiv:1901.09888, 2019.

[10] E. Duriakova, E. Z. Tragos, B. Smyth, N. Hurley, F. J. Peña, P. Syme-
onidis, J. Geraci, and A. Lawlor, “Pdmfrec: a decentralised matrix
factorisation with tunable user-centric privacy,” in Proceedings of the
13th ACM Conference on Recommender Systems, 2019, pp. 457–461.

[11] Y. Lin, P. Ren, Z. Chen, Z. Ren, D. Yu, J. Ma, M. d. Rijke, and
X. Cheng, “Meta matrix factorization for federated rating predictions,”
in Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2020, pp. 981–
990.

[12] D. Chai, L. Wang, K. Chen, and Q. Yang, “Secure federated matrix
factorization,” IEEE Intelligent Systems, 2020.

[13] E. Shmueli and T. Tassa, “Secure multi-party protocols for item-based
collaborative filtering,” in Proceedings of the eleventh ACM conference
on recommender systems, 2017, pp. 89–97.

[14] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[15] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, “Parallel matrix factor-
ization for recommender systems,” Knowledge and Information Systems,
vol. 41, no. 3, pp. 793–819, 2014.

[16] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223–238.

[17] F. Mo, A. Borovykh, M. Malekzadeh, H. Haddadi, and S. Demetriou,
“Quantifying information leakage from gradients,” arXiv e-prints, pp.
arXiv–2105, 2021.

[18] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

[19] J. J. More, B. S. Garbow, and K. E. Hillstrom, “User guide for minpack-
1.” 1980.

[20] C. G. Broyden, “A class of methods for solving nonlinear simultaneous
equations,” Mathematics of computation, vol. 19, no. 92, pp. 577–593,
1965.

[21] W. La Cruz, J. Martı́nez, and M. Raydan, “Spectral residual method
without gradient information for solving large-scale nonlinear systems
of equations,” Mathematics of Computation, vol. 75, no. 255, pp. 1429–
1448, 2006.

[22] D. G. Anderson, “Iterative procedures for nonlinear integral equations,”
Journal of the ACM (JACM), vol. 12, no. 4, pp. 547–560, 1965.

[23] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender
systems survey,” Knowledge-based systems, vol. 46, pp. 109–132, 2013.



10

APPENDIX

A. Attack for SGD-InclUnc

After two epochs, the gradients FL server receives from user
i is given by:

f t(i, j) = ci,j(ri,j − pti(qtj)
′
)pti, j ∈ [1,m]

f t−1(i, j) = ci,j(ri,j − pt−1i (qt−1j )
′
)pt−1i , j ∈ [1,m]

f t(i, du) = (xi,du − pti(utdu)
′
)pti, du ∈ [1, lx]

f t−1(i, du) = (xi,du − pt−1i (ut−1du
)
′
)pt−1i , du ∈ [1, lx]

(44)

In SGD, the user latent factor is updated using equation (9)
and (10). Plugging into the first gradient of equation (44), we
have:

f tn(i, j) = ci,j
(
rij − (pt−1i − γ ∂J

∂pt−1i

)(qt−1j + ∆qtj)
′)

×(pt−1in − γ
∂J

∂pt−1in

)

(45)

Equation (45) is a multiplication of two terms. By looking
at the first term, we have:

ci,j
(
rij − (pt−1i − γ ∂J

∂pt−1i

)(qt−1j + ∆qtj)
′)

=
(f t−1n (i, j)

pt−1in

+
ci,jG

′
n(j)

pt−1in

+ ci,jp
t−1
i g′

) (46)

where:
G′n(j) = −2γ(

∑
k

f t−1n (i, k)qt−1k

+λ1
∑
du

f t−1n (i, du)ut−1du
)(qtj)

′

g′ = 2λ2γp
t−1
j −∆ptj

(47)

The second term of equation (45) is given by:

pt−1in − γ
∂J

∂pt−1in

=
F ′n
pt−1in

+ pt−1in (1− 2γλ2) (48)

where:

F ′n = 2γ(
∑
k

f t−1n (i, k)qt−1kn + λ1
∑
du

f t−1n (i, du)ut−1du,n (49)

Then the multiplication gives equation system (33).

B. Evaluation Metrics for PrivMVMF

The study sets the rating threshold to be 4, and the number
of items recommended to be 10 per user. The metrics are
defined as:

NDCG@10 =
DCG@10

iDCG@10
(50)

Precision =
1

|usr|
∑
i

tip
tup + f ip

(51)

Recall =
1

|usr|
∑
i

tip
tip + f in

(52)

F1 =
2× Precision×Recall
Precision+Recall

(53)

where tip denotes the true positive for user i, f ip denotes the
false positive for user i, f in denotes the false negative for
user i, iDCG@10 is the maximum possible DCG@10, and
DCG@10 is given by:

DCG@10 =

5∑
i=1

2xi−1

log2(i+ 1)
(54)

where i is the item with the ith highest predicted rating, and
xi is the actual rating for the item received by a given user.

C. Table and Figures

TABLE VI: Accuracy for attack with four methods

SemiALS SGD
ObsOnly InclUnc ObsOnly InclUnc

Hybr
Rating 0.91 / 0.60 0.82

Attribute 0.99 / 0.86 0.84

Broyden
Rating 0.91 0.53 0.73 0.71

Attribute 0.94 0.60 0.85 0.73

Scalar
Rating 0.01 0.89 0.66 0.24

Attribute 0.35 0.89 0.74 0.42

Anderson
Rating 0.55 0.49 0.77 0.57

Attribute 0.78 0.46 0.88 0.62

Hybr, Broyden, Scalar, and Anderson denote modified Powell’s hybrid
method, Broyden’s bad method, Scalar Jacobian approximation and Anderson
mixing respectively. For SemiALS update with InclUnc, Hybr doesn’t return
the solution so the value is ”/”. The selected method for each scenario is
marked with bold face.

(a) ratting

(b) user attributes

Fig. 3: Accuracy two InclUnc cases after adding Laplace
noises from 1 to 10000.


	I Introduction
	II Literature Review
	III Federated MVMF
	III-A Notations
	III-B Multi-view Matrix Factorization
	III-C Federated Implementation
	III-D Cold-start recommendation

	IV Sever Reconstruction Attack Analysis
	IV-A Reconstruction Attack for SemiALS Update
	IV-B Reconstruction Attack for SGD Update

	V Privacy-Preserving MVMF (PriMVMF)
	V-A Paillier Cryptosystem

	VI Experiments
	VI-A Dataset and Experimental Setup
	VI-B Server Attack
	VI-C PrivMVMF

	VII Conclusions and future work
	References
	Appendix
	A Attack for SGD-InclUnc
	B Evaluation Metrics for PrivMVMF
	C Table and Figures


