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Credal Valuation Networks for Machine Reasoning

Under Uncertainty
Branko Ristic, Alessio Benavoli, Sanjeev Arulampalam

Abstract

Contemporary undertakings provide limitless opportunities for widespread application of machine reasoning

and artificial intelligence in situations characterised by uncertainty, hostility and sheer volume of data. The paper

develops a valuation network as a graphical system for higher-level fusion and reasoning under uncertainty in

support of the human operators. Valuations, which are mathematical representation of (uncertain) knowledge and

collected data, are expressed as credal sets, defined as coherent interval probabilities in the framework of imprecise

probability theory. The basic operations with such credal sets, combination and marginalisation, are defined to satisfy

the axioms of a valuation algebra. A practical implementation of the credal valuation network is discussed and its

utility demonstrated on a small scale example.

Index Terms

Expert systems; Higher-level fusion; Graphical models; Valuation algebra; Imprecise probabilities

I. INTRODUCTION

As the volume of information (domain knowledge and data) exceeds, in most practical situations, the ability of

human operators to process and comprehend it in a timely manner, we increasingly rely on machine intelligence

for reasoning and forming inferences. Information can appear in different forms, for example, as the numerical

measurements from physical sensors, in the form of natural language statements (written or spoken) or as the con-

textual prior information in the form of maps or images. All types of information, however, have one characteristic

in common: they are affected by a certain degree of uncertainty. Two types of uncertainty are typically distinguished

[1]: aleatoric uncertainty, which is due to stochastic variability, and epistemic uncertainty, caused by the lack of

knowledge.

Probability theory was developed for quantitative modeling and statistical inference in the presence of aleatoric

uncertainty. In the probabilistic framework, stochastic variability is modelled using probability functions. In appli-

cations where such probabilistic models are only partially known, for example, due to the scarcity of training data,

epistemic uncertainty must also be taken into account. This fact gave rise to alternatives to classical probability

for quantitative modeling of uncertainty. They are collectively referred to as non-additive probabilities [2], [3],

because they do not satisfy sigma-additivity. They include for example, coherent lower (or upper) previsions, used

in imprecise probability theory [4], [5], belief functions, used in Dempster-Shafer (a.k.a. belief function) theory
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[6], [7], and possibility functions, used in possibility theory [8], A review and comparison of aforementioned

non-additive probability frameworks is presented in [9].

Historically, the first machines for reasoning captured the knowledge of human experts by a complex system of

”if-then” rules [10, Ch.9]. Their main drawback was the lack of a means in handling uncertainty. The invention of

Bayesian networks (BN) [11] in the mid 1980s, for knowledge representation and probabilistic inference, represented

an important step in the development of expert systems capable of reasoning under uncertainty. In the BN context,

several architectures [12] have been proposed for exact computation of marginals of multivariate discrete probability

distributions. One of the pioneering architectures for computing marginals was proposed by Pearl [11] for multiply

connected Bayesian networks. In 1988, Lauritzen and Spiegelhalter [13] proposed an alternative architecture for

computing marginals of the multidimensional probability density by so-called ”local computation” in join trees. This

architecture has been generalized by Lauritzen and Jensen [14] so that it applies more generally to other uncertainty

representation frameworks, including the Dempster-Shafer’s belief function theory [6]. Inspired by the work of Pearl,

Shenoy and Shafer [15] first adapted and generalized Pearl’s architecture to the case of finding marginals of joint

Dempster-Shafer belief functions in join trees. Later, motivated by the work of Lauritzen and Spiegelhalter [13] for

the case of probabilistic reasoning, Shenoy and Shafer proposed the valuation based system (VBS) for computing

marginals in join trees and established the set of axioms that combination and marginalisation (focusing) operations

need to satisfy in order to make the local computation concept applicable [16]. Reasoning networks based on the

Shenoy-Shafer architecture are referred to as valuation networks. A slightly modified version of the Shenoy-Shafer

axiomatic formulation was developed by Kohlas [17] with the resulting mathematical structure referred to as the

valuation algebra. The central component of a valuation algebra is a valuation: a quantified representation of

uncertain piece of information in the adopted framework of uncertainty modeling. The axioms of valuation algebra

are satisfied in the framework of probability theory, possibility theory and Dempster-Shafer theory [17], leading to

development and application of the corresponding valuation networks [18]–[21].

This paper develops a valuation network for reasoning under uncertainty where valuations are expressed as a

special case of coherent lower (upper) previsions, that is, as credal sets defined by the coherent probability intervals

on singletons [22]. This representation of uncertain information is convenient because it requires only twice the

number of values required to represent a standard probability function (as opposed to belief functions or generic

coherent lower previsions, where this number grows exponentially). Probability intervals have been used for example

in Bayesian networks with imprecise probabilities [23], and for classification with imprecise probabilities [24]. The

basic operations with coherent probability intervals, i.e. the combination rule and marginalisation, will be defined in

the paper as a generalisation of the standard probabilistic approach. The set of coherent probability intervals, with

such basic operations, will be shown to satisfy the axioms of valuation algebra. Subsequently the resulting valuation

network, referred to as the credal valuation network, will be implemented using the Shenoy-Shafer architecture and

its performance demonstrated and compared to the evidential network [21] on a small scale example taken from

[19]. Our work is somewhat related to [25] and [26]. While both references define valuation algebras of coherent

lower previsions and credal sets, respectively, valuations and basic operations are different from those presented

here.

II. VALUATION ALGEBRA

This section reviews the fundamental concepts of valuation algebra, following [17], [27].
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A. Valuations and basic operations

Realistic applications of systems for reasoning under uncertainty typically involve many interacting variables,

connected in a network which codifies the relationships between them. Let V be the set of all variables1 in

this network. A valuation ϕ represents a piece of information (available knowledge or measurements) about the

relationship among a subset of variables d(ϕ) ⊆ V, where d(ϕ) is referred to as the domain of ϕ. Let Φ denote

the set of all valuations in a network. Then, d : Φ → 2V, where 2V is the power set of V, is referred to as the

labeling operation.

The relationship among the variables in the set D = d(ϕ) is specified by assigning values (corresponding to

beliefs) to the elements of a set of possible configurations of D, referred to as the state space or the frame of D.

Suppose the frame of variable X ∈ D is ΘX . Then, the frame of D is defined as ΘD
4
= ×{ΘX : X ∈ D}, where

× denotes the Cartesian product.

Let us next introduce an example of a valuation network [19], which will be solved in Sec. IV-B.

Example (Arrival delay). The problem is to estimate the arrival delay of a ship carrying a valuable cargo. The

following pieces of (prior) information are expressed by valuations:

ϕ1: Arrival delay (A) is due to departure delay (D) and the travel delay (T );

ϕ2: Departure delay (D) is caused by unexpected difficulties in loading (L) the cargo, or by the engine service (S);

ϕ3: Travel delay (T ) is due to bad weather (W ) or unplanned repairs (R) on the sea;

ϕ4: A repair on sea (R) is related to the service (S).

Before the departure, the following additional (uncertain) information becomes available:

ϕ5 : Rumours about the loading delay D;

ϕ6 : Captain’s decision on the type of service S (e.g. comprehensive, basic or nil);

ϕ7 : Weather W forecast for the entire trip. �

The set of valuations in this example is Φ = {ϕ1, ϕ2, · · · , ϕ7}; the set of variables is V = {A, D, T, L, S, W, R}.
A graphical representation of the valuation network corresponding to this example is shown in Fig. 1. Variables

are represented by circles, whereas valuations by diamonds. Each valuation is connected by edges to the subset of

variables which define its domain. For example, the domain of valuation ϕ1 is d(ϕ1) = {A,D, T}. Because we

are interested in the arrival delay, variable A is referred to as the decision (or inference) variable.

There are two basic operations with valuations.

• Combination is a binary operation ⊗ : Φ × Φ → Φ. If ϕ1, ϕ2 ∈ Φ are two valuations, then the combined

valuation ϕ1 ⊗ ϕ2 represents the aggregated knowledge from ϕ1 and ϕ2.

• Marginalization is a binary operation ↓: Φ× 2V → Φ which is focusing the knowledge to a smaller domain.

For example, if ϕ ∈ Φ and C ⊆ d(ϕ), then the marginalized valuation ϕ↓C represents the knowledge obtained

by focusing ϕ from d(ϕ) to C.

Instead of marginalization, we can use another basic operation called variable elimination, defined as: ϕ−X
4
=

ϕ↓d(ϕ)\{X}, where X ∈ V and symbol \ denotes the set difference. Note that X /∈ d(ϕ) implies ϕ−X = ϕ.

B. Axioms of valuation algebra

Given a finite collection Φ = {ϕ1, . . . , ϕr} of valuations, inference refers to marginalization of the joint valuation

⊗Φ = ϕ1 ⊗ · · · ⊗ ϕr to a subset of variables Do ⊆ V called decision variables. In the”Arrival delay” example,

1Sets of variables are denoted with capital boldface letters.
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Fig. 1. A graphical representation of the valuation network corresponding to the ”Arrival delay” example.

Do = {A}.
The straightforward approach to inference would be to compute the joint valuation first and then to marginalize

it to Do. Unfortunately, this would be cumbersome in practice even for a small scale valuation network because

the domain size increases with each combination, whereas the complexity grows exponentially with the domain

size. For instance, if there are n variables and each variable can assume m different values (configurations), then

there are mn configurations in the joint domain of all variables.

By imposing certain axioms for the operations of labeling, combination, and marginalization [16], [28], [29], it

is possible to compute the marginal (⊗Φ)↓D
o

on local domains, without the need to explicitly compute the joint

valuation. The list of axioms is as follows [17]:

(A1) (Φ,⊗) is a commutative monoid, i.e. it is closed, associative and commutative under combination ⊗.

Furthermore, for a set ΦD which represents the set of all valuations with domain D ⊆ V, exists an

identity valuation eD ∈ ΦD such that eD ⊗ ϕ = ϕ⊗ eD = ϕ for all ϕ ∈ ΦD.

(A2) Labeling: if ϕ1, ϕ2 ∈ Φ , then d(ϕ1 ⊗ ϕ2) = d(ϕ1) ∪ d(ϕ2).

(A3) Marginalization: If ϕ ∈ Φ and C ⊆ d(ϕ), then d(ϕ↓C) = C.

(A4) Transitivity of marginalization: If ϕ ∈ Φ and D1 ⊆ D2 ⊆ d(ϕ), then ϕ↓D1 = (ϕ↓D2)↓D1 .

(A5) Distributivity of marginalization over combination: If ϕ1, ϕ2 ∈ Φ, with domains D1 = d(ϕ1) and D2 =

d(ϕ), then (ϕ1 ⊗ ϕ2)↓D1 = ϕ1 ⊗ ϕ↓D1∩D2

2 .

(A6) Identity: For D1,D2 ⊆ V, we have eD1
⊗ eD2

= eD1∪D2
.

A system {V,Φ, d,⊗, ↓} is called Valuation Algebra (VA) if the operations of labeling d, combination ⊗, and

marginalization ↓ satisfy the above axioms [17].

We can replace the operation of marginalisation with the variable elimination. Then axioms (A4) and (A5) will

be replaced with:

(A4’) Commutativity of elimination: if ϕ ∈ Φ and X,Y ∈ V, then (φ−X)−Y = (φ−Y )−X .

(A5’) Distributivity of elimination over combination: If ϕ1, ϕ2 ∈ Φ with X /∈ d(ϕ1), then (ϕ1 ⊗ ϕ2)−X =

ϕ1 ⊗ ϕ−X2 .

Because of (A4’), it possible to write ϕ−D for the elimination of several variables D ⊂ V, since the result is

independent of the order of elimination. As a consequence, marginalization can be expressed in terms of variable
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eliminations by ϕ−D = ϕ↓d(ϕ)\D. Therefore, operations of marginalization and variable elimination together with

their respective systems of axioms are equivalent.

The concept of VA is very general and has a wide range of instantiations, such as the VA of probability mass

functions, VA of systems of linear equations, VA of linear inequalities, VA of Dempster-Shafer belief functions, VA

of Spohns disbelief functions, VA of possibility functions, and others [17]. The VA of probability mass functions

(PMFs) is briefly reviewed next.

C. Valuation algebra of probability mass functions

Consider D ⊆ V and its frame ΘD. Let the probability of an event A ⊆ ΘD be denoted P (A). The probability

mass function (PMF) p : ΘD → [0, 1], corresponding to the probability measure P is introduced via the relationship

P (A) =
∑

x∈A p(x). The PMF p assigns to each configuration x ∈ ΘD the probability p(x) that x is the true

value.

Suppose two valuations are expressed by two PMFs on ΘD, and denoted p1 and p2. Assuming that they specify

the beliefs from two independent sources, the combination operator is given by [27], [30]:

(p1 � p2)(x) =
p1(x)p2(x)∑

y∈ΘD

p1(y)p2(y)
(1)

for any configuration x ∈ ΘD, providing that the denominator
∑

y∈ΘD
p1(y)p2(y) > 0. If this condition is not

satisfied, than p1 and p2 are in a total conflict and cannot be combined.

The concept of marginal distribution is well known in probability theory, and so is the marginalisation operator.

Let pD denote a PMF defined on domain D. Then its marginalisation to the domain C ⊂ D is defined as [27]

pD↓C =
∑
y:y↓x

pD(y), (2)

where the summation is over all configurations y ∈ ΘD such that y reduces to configuration x ∈ ΘC by elimination

of variables D \C.

A set of PMFs with operations of combination and marginalisation satisfies axioms (A1)-(A6) and hence is

a valuation algebra [17]. For example, the combination operator (1) can be easily shown to be associative and

commutative, because these two laws hold for multiplication and summation of numbers. The neutral element is

the uniform PMF on ΘD.

III. VALUATION ALGEBRA OF CREDAL SETS

Imprecise probabilities provide a general framework for modelling uncertain knowledge. Within this framework,

different formalisms for modelling with imprecise probabilities have been proposed: a coherent set of desirable

gambles, coherent lower previsions, and credal sets [5]. All three formalisms are mathematically equivalent.

A. The set of valuations

We adopt as valuations a special class of credal sets, defined by probability intervals on singletons [22], [31].

A credal set is a closed convex set of PMFs of a discrete variable X . We start from a premise that the valuation

algebra of credal sets should represent a generalisation of the valuation algebra of PMFs, discussed briefly in Sec.
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II-C. In the case the credal set contains only one element (a single PMF), then the two valuation algebras should

be identical.

A credal set can be geometrically represented as a convex polytope on the probability simplex2. Any convex

polytope can be specified either as (i) the intersection of half-spaces (expressed by a system of linear inequalities),

or (ii) as the convex hull of its vertices or extreme points. We will elaborate this later by an example.

Consider a random variable X ∈ V of a valuation network; its frame is ΘX . The totally uninformative credal

set on ΘX , referred to as the vacuous credal set, contains all PMFs on ΘX and is defined as:

PX = {p : p(x) ≥ 0,∀x ∈ ΘX , and
∑
x∈ΘX

p(x) = 1}. (3)

Any other (more informative) credal set over ΘX is defined by imposing additional constraints to PX . The most

informative credal set is the one that contains a single (precise) PMF. The case where all valuations in the network

are precise is treated as the valuation algebra of PMFs, discussed in Sec. II-C.

Example 1. Consider a random variable X defined on a three-dimensional frame ΘX = {x1, x2, x3}. Let the

credal set be defined as:

LX = {p ∈ PX : p(x1) + p(x2) ≤ p(x3)}. (4)

First we show how credal set LX can be expressed as the intersection of half-spaces. Note that half-spaces which

define PX on ΘX = {x1, x2, x3} can be represented with the following system of linear inequalities:

−p(x1) ≤ 0

−p(x2) ≤ 0

−p(x3) ≤ 0

+p(x1) +p(x2) +p(x3) ≤ 1

−p(x1) −p(x2) −p(x3) ≤ −1

(5)

The first three inequalities in (5) follow from the first condition in (3), that is p(xi) ≥ 0, for i = 1, 2, 3. The last

two inequalities in (5) simply express the normalisation condition, i.e. p(x1) + p(x2) + p(x3) = 1. Finally, the last

condition which defines LX in (4) can be represented with inequality:

p(x1) +p(x2) −p(x3) ≤ 0. (6)

The specification of any credal set as the intersection of half-spaces can always be expressed compactly in a matrix

form as Ap ≤ b. For LX of (4), according to (5) and (6), we have

A =



−1 0 0

0 −1 0

0 0 −1

1 1 1

−1 −1 −1

1 1 −1


, p =


p(x1)

p(x2)

p(x3)

 , b =



0

0

0

1

−1

0


. (7)

A credal set can also be specified by its extreme points. For LX of (4), there are three such points, given by vectors:

p′ = [0, 0, 1]T , p′′ = [0, 0.5, 0.5]T and p′′′ = [0.5, 0, 0.5]T . Fig. 2 provides a graphical representation of credal

set LX of (4) and its corresponding vacuous credal set PX . �

2A polytope is a geometric object with “flat” sides. For example, a two-dimensional polytope is a polygon. A probability simplex is the

space in which each point represents a probability distribution.
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Fig. 2. Geometrical representation of (a) the vacuous credal set PX over ΘX = {x1, x2, x3}; (b) credal set LX , specified by (4).

We will adopt as valuations a special class of credal sets which are defined as probability intervals on singletons,

i.e.

KX = {p ∈ PX : p
x
≤ p(x) ≤ px,∀x ∈ ΘX}. (8)

Note that the credal set LX of (4) in Example 1 can be specified in form of (8) as follows:

LX =
{
p ∈ PX : p(x1) ∈ [0, 0.5] , p(x2) ∈ [0, 0.5] , p(x3) ∈ [0.5, 1]

}
. (9)

For the vacuous credal set, p
x

= 0 and px = 1, for all x ∈ ΘX . In general, however, the space of credal sets

defined by the intersection of half-spaces subsumes the set defined by (8).

The choice of probability intervals on singletons in (8) is not arbitrary. First, in order to avoid that KX defined

by (8) is empty, we have the following condition [22] (see Appendix A):∑
x∈ΘD

p
x
≤ 1 ≤

∑
x∈ΘD

px. (10)

Furthermore, probability intervals should also satisfy the conditions of reachability [22]. Let the credal set be

defined with probability intervals [p
i
, pi], for i = 1, . . . , |ΘX |. Then the following must hold∑

j 6=i

p
j

+ pi ≤ 1, and
∑
j 6=i

pj + p
i
≥ 1, (11)

for i = 1, . . . , |ΘX |. Condition on the left of (11) is equivalent to stating that for each i = 1, . . . , |ΘX | there exist

a PMF pi ∈ KX which reaches the upper probability pi, i.e. pi(xi) = pi. Analogously, condition on the right of

(11) is equivalent to stating that for each i = 1, . . . , |ΘX | there exist a PMF qi ∈ KX which reaches the lower

probability p
i
, i.e. qi(xi) = p

i
(see Appendix A). According to Walley [4, Sec.2.7], probability intervals which

satisfy (10) and (11) are coherent. We will only consider credal sets defined by (8), with probability intervals that

satisfy (10) and (11). It is easy to verify that LX , considered in Example 1, is such a credal set.
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B. Basic operations

The set of valuations Φ was specified in Sec. III-A as the set of credal sets defined by coherent probability

intervals on singletons. We will refer to this class of valuations, in short, as credal sets. They represent an

epistemic generalisation of the valuations specified as PMFs in Sec. II-C and next we define the combination

and marginalisation operators for them.

1) Combination operator: Suppose two beliefs from independent sources are expressed on domain D as credal

sets KD
1 ∈ ΦD and KD

2 ∈ ΦD. The credal set of the combined (fused) belief on D, i.e.

KD
12 = KD

1 ⊗KD
2 , (12)

can be expressed in the from (8):

KD
12 = {p ∈ PD : p

i
≤ p(xi) ≤ pi(xi), for i = 1, . . . , |ΘD|}, (13)

where the lower probability of configuration xi ∈ ΘD is defined as:

p
i

= min
p1∈KD

1 ; p2∈KD
2

s.t.
∑

xj∈ΘD
p1(xj)p2(xj)>0

p1(xi)� p2(xi) (14)

= min
p1∈KD

1 ; p2∈KD
2

s.t.
∑

xj∈ΘD
p1(xj)p2(xj)>0

p1(xi)p2(xi)∑
xj∈ΘD

p1(xj)p2(xj)
. (15)

Similarly, the upper probability of xi ∈ ΘD is:

pi = max
p1∈KD

1 ; p2∈KD
2

s.t.
∑

xj∈ΘD
p1(xj)p2(xj)>0

p1(xi)� p2(xi) (16)

= max
p1∈KD

1 ; p2∈KD
2

s.t.
∑

xj∈ΘD
p1(xj)p2(xj)>0

p1(xi)p2(xi)∑
xj∈ΘD

p1(xj)p2(xj)
(17)

= 1− min
p1∈KD

1 ; p2∈KD
2

s.t.
∑

xj∈ΘD
p1(xj)p2(xj)>0

∑
x`∈ΘD\{xi}

p1(x`)p2(x`)∑
xj∈ΘD

p1(xj)p2(xj)
. (18)

Eq. (15) minimises the probability defined by (1) over all p1 ∈ KD
1 and p2 ∈ KD

2 , such that p1 and p2 are

not in total conflict. Eq. (17) performs maximisation of probability (1) with the same condition on p1 and p2.

Eq. (18) follows from (17) using two identities: first, any p(x) is equivalent to 1 −
∑

y∈ΘD\{x} p(y), and second,

max(1− g) = 1−min g.

A few remarks are in order here. First, it is easy to verify that if credal sets K1 and K2 are singletons (i.e. two

PMFs), then both (15) and (17) reduce to (1). Second, note that by construction, the lower and upper probabilities

of the combined credal set are reachable and hence will satisfy coherence, i.e. conditions (10) and (11). Finally, we

explain why we dismiss the conjunctive and disjunctive combination operators, proposed in [22]: (i) the conjunctive

operator does not always exist, (ii) the result of the disjunctive operator is not necessarily an element of ΦD, and

(iii) both operators are incompatible with the combination rule (1).

Next we explain how to combine two valuations on different domains. Let KD1

1 ∈ ΦD1
and KD2

2 ∈ ΦD2
, and

D1 6= D2. Before we apply the combination operator (12), we must extend both valuations KD1

1 and KD2

2 to the

joint domain D1 ∪D2 in such a way that they express the same information before and after this extension. This
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operation, referred to as the vacuous extension, is denoted by ↑. It spreads uniformly the probability mass pC(x)

assigned to x ∈ ΘC to all configurations y ∈ ΘD obtained from x ∈ ΘC by adding variables D \ C. Thus, the

vacuous extension of a credal set KC ∈ ΦC, to domain D ⊇ C, is defined as:

KC↑D = {pD : pD(y) = pC(x)
|ΘC|
|ΘD|

; ∀pC ∈ KC}. (19)

Note that C ⊆ D implies |ΘC| ≤ |ΘD. Assuming the credal set KC is specified with probability intervals [pC
x
, pCx ]

for every x ∈ ΘC, the vacuous extension KC↑D will also be expressed with probability intervals, [pC↑D, pC↑D]

for every y ∈ ΘD, where the lower and upper limits are given by

pC↑D
y

= pC
x

|ΘC|
|ΘD|

, and pC↑Dy = pCx
|ΘC|
|ΘD|

, (20)

respectively.

2) Marginalisation operator: Let KD ∈ ΦD be defined with probability intervals [pD
y
, pDy ], for all configurations

y ∈ ΘD. Its marginalisation to domain C ⊆ D is defined as:

KD↓C = {pD↓C : pD↓C(x) =
∑
y:y↓x

pD(y); ∀x ∈ ΘC} (21)

where the summation in (21) is over all y ∈ ΘD such that configurations y reduce to configurations x ∈ ΘC

by elimination of variables D \ C. The resulting valuation KD↓C can be expressed with probability intervals[
pD↓C
x

, pD↓Cx

]
, for all x ∈ ΘC, where the lower and upper limits are given by [22]

pD↓C
x

= max

∑
y:y↓x

pD
y
, 1−

∑
y:y↓ΘC\{x}

pDy

 , (22)

pD↓Cx = min

∑
y:y↓x

pDy , 1−
∑

y:y↓ΘC\{x}

pD
y

 , (23)

respectively. Marginalisation is the inverse operation of the vacuous extension, that is, (KC↑D)↓C = KC. However,

in general, the vacuous extension is not the inverse of marginalisation.

3) Axioms: Assuming the set of valuations ΦD consist of credal sets defined by coherent probability intervals

on singletons, we want to verify that the axioms of a valuation algebra hold. Staring with (A1), we verify that

(ΦD,⊗), is a commutative monoid. First, the set ΦD is closed under combination (12), because of (13). Next, it

is straightforward to verify that both commutativity

KD
1 ⊗KD

2 = KD
2 ⊗KD

1

and associativity

KD
1 ⊗ (KD

2 ⊗KD
3 ) = (KD

1 ⊗KD
2 )⊗KD

3

hold because multiplication, addition, min and max operations, which feature in (15) and (17) are commutative

and associative. Next we find the identity valuation KD
e ∈ ΦD, such that KD

e ⊗KD = KD for all KD ∈ ΦD. It

turns out that KD
e contains only one PMF: the uniform PMF on ΘD, the same identity element as in the valuation

algebra of PMFs. It is interesting to note that the vacuous credal set PD is the absorbing element of ΦD, that is

KD⊗PD = PD for every KD ∈ ΦD. The axiom of labeling (A2) follows from the way we combine valuations on

different domain via vacuous extension. Marginalization axiom (A3) follows directly from its definitions. Axioms
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(A4) and (A5) follow from the definitions of the combination and marginalisation as convex sets of PMFs. Axiom

(A6) follows directly from the definition of identity element and the definition of combination over different domains.

Next we discuss a practical implementation of a credal valuation network using local computation.

IV. CREDAL VALUATION NETWORK

Valuation network computes the marginal (⊗Φ)↓Do on local domains, that is, without explicitly computing the

joint valuation on the full domain V. This computation is carried out using the fusion algorithm, which eliminates

sequentially all variables X ∈ V\Do which are of no interest to the inference problem [20], [21], [28]. The fusion

algorithm is applied over a structure called the binary joint tree (BJT), where all combinations are carried on pairs of

valuations, that is on a binary basis (two-by-two). Finally, marginals are computed by means of a message-passing

scheme among the nodes of the BJT. Full details of software implementation of a generic valuation network can

be found in [20], [21], [28], and therefore will not be repeated here. Instead, we will focus on the computation of

combination operator (8). Implementation of the vacuous extension and marginalisation is rather straightforward.

A. Implementation of the combination operator

The combination operator of (12) results in the credal set specified with interval probabilities on singletons, given

by (13). The key is to compute the lower and upper probabilities of these intervals, given by (15) and (18). We

can reformulate the optimisation problem in (15) by introducing a scalar variable ν as follows [9]:

p
i

= max ν, s.t. min
p1∈KD

1

p2∈KD
2

∑
x∈ΘD

(
1{xi}(x)− ν

)
p1(x)p2(x) ≥ 0, (24)

where 1{xi}(x) is the indicator function (it equals 1 if x = xi and zero otherwise). Note that (24) involves two

optimisation problems, a minimisation and a maximisation.

The minimisation problem in (24) can be written in a vector from. First, recall that both KD
1 and KD

2 are

specified in the form of probability intervals, cf. (8). Let us denote the lower probability envelope of KD
m , for

m = 1, 2 with p
mi

, for i = 1, . . . , n, where n is the cardinality of ΘD. Accordingly, the upper probability envelope

of KD
m , for m = 1, 2, is specified with pmi, for i = 1, . . . , n. Minimisation in (24) can be written as

min
p1,p2

pT
1 diag[ci]p2 (25)

subject to Ap1 ≤ b1, Ap2 ≤ b2,

p1 ≥ 0, and p2 ≥ 0,

where pm, for m = 1, 2, is the probability vector given by pm = [pm(x1), pm(x2), . . . , pm(xn)]T . Notation diag[ci]

denotes an n× n diagonal matrix with vector ci along the diagonal. The ith element of vector ci is 1− ν, while
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all other elements are equal to −ν. Dimension of matrix A is (2n+ 2)× n and is given by

A =



−1 0 0 · · · 0

1 0 0 · · · 0

0 −1 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 . . . −1

0 0 0 . . . 1

1 1 1 . . . 1

−1 −1 −1 . . . −1



(26)

Finally vector bm for m = 1, 2 of dimension 2n+ 2 includes the input probability limits of KD
m , and is given by:

bm =
[
−p

m1
pm1 −p

m2
pm2 · · · −p

mn
pmn 1 −1

]T
. (27)

Given ν, the minimisation problem in (25) is bilinear in the unknowns p1 and p2. If for example p1 is precise,

then the minimisation problem becomes linear in the unknown p2 (and vice versa) and can efficiently be solved by

linear programming. Maximisation over ν in (24) can be solved by a bisection method.

The solution for upper probability (18), following the same approach, can be reformulated as follows:

pi = 1−max ν, s.t. min
p1∈KD

1

p2∈KD
2

∑
x∈ΘD

(1− 1{xi}(x)− ν)p1(x)p2(x) ≥ 0. (28)

Minimisation in (28) can also be written in the vector form (25). The only difference is in the specification of

vector ci: its ith element is now −ν, while all other elements are equal to 1−ν. The bilinear optimisation problem

(25) is solved using the Gurobi software for optimisation [32]. Further details are given in Appendix B.

B. Demonstration and comparison

In this section we solve the “Arrival delay” problem introduced in Sec. II-A using a credal valuation network

(CVN) developed for this problem, based on the theoretical foundations described above. Subsequently we compare

its solution to the solution obtained using the corresponding evidential network (EN), described in [21], [27]. For

comparison of the two reasoning solutions we adopt the framework for assessment proposed in [33]. The main

premise of this framework is that the system under investigation (in our case, the arrival delay) is uncertain only due

to stochastic variability (that is, all probabilistic models in reality are precise). However, these precise probabilistic

models are only partially known by the the systems for reasoning, the CVN and the EN. The solutions obtained

using the CVN and the EN are therefore evaluated against the true solution, obtained using the valuation network

of (precise) PMFs.

The list of variables and their frames for the “Arrival delay” valuation network (shown in Fig. 1) is summarised

in Table I. Each frame represents a set of the integers corresponding to the number of days. For example, delays due

to loading, service, weather or repair, can be at most 1 day. The valuations, expressing the relationships between

the variables, are specified in Table II. The first row of Table II states that the arrival delay A is a superposition

of D and T (with equal weights), expressed as A = D + T, and this relationship is true with probability 1.0.

The reasoning systems, however, can only assume that this relationship is true with a probability in the interval
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TABLE I

Variables of the valuation network in Fig. 1

Variable Name Frame (in days)

A Arrival delay ΘA = {0, 1, . . . , 4}
D Departure delay ΘD = {0, 1, 2}
T Travel delay ΘT = {0, 1, 2}
L Loading delay ΘL = {0, 1}
S Service delay ΘS = {0, 1}
W Weather delay ΘW = {0, 1}
R Repair on sea ΘR = {0, 1}

[0.96, 1.00], and therefore need to deal with additional epistemic uncertainty. According to row 2 of Table II, the

relationship D = L + S is in reality true with probability 0.91 (i.e. other causes can be involved). The reasoning

systems, on the other hand, can only have confidence in this relationship in the interval [0.90, 0.92]. Valuation ϕ4

is specified by an implication rule, which is true with probability 0.89. Both CVN and EN only know that this

probability is in the interval [0.88, 0.91]. Note that ϕ5, ϕ6 and ϕ7 are expressions of uncertain information about

a single variable, i.e. about L, S and W, respectively. Valuations ϕ1, ϕ2, ϕ3 and ϕ4 can be considered as domain

knowledge, while ϕ5, ϕ6 and ϕ7 are the pieces of information received possibly a few days before the departure

of the ship.

TABLE II

Valuations of the network in Fig. 1

Valuation Domain Knowledge True probability Interval probability

ϕ1 {A,D,T} A = D + T 1.0 [0.96, 1.00]

ϕ2 {D,L,S} D = L + S 0.91 [0.90, 0.92]

ϕ3 {T,R,W} T = R + W 0.94 [0.92, 0.95]

ϕ4 {S,R} If S = 1 then R = 0 0.89 [0.88, 0.91]

ϕ5 {L} L = 1 0.82 [0.80, 0.83]

ϕ6 {S} S = 0 0.73 [0.71, 0.74]

ϕ7 {W} W = 1 0.64 [0.62, 0.65]

The output of a valuation network in this example is the joint valuation ϕ1⊗· · ·⊗ϕ7, marginalised to variable A.

This marginal probability distribution is presented in Table III, for three valuation networks. The valuation network

of PMFs (VN-PMF), see Sec. II-C, uses the true precise probabilities (column 4 in Table II) assigned to available

knowledge for inference (column 3 in Table II). Its output (the second column in Table III) is the precise marginal

distribution of variable A, and is considered the “ground truth” in this example. The results obtained using the

CVN and the EN are presented in rows 3 and 4, respectively, of Table III. The same results are displayed as two

bar graphs in Fig. 3. We point out that in this example we were able to use an exact method for transforming the

interval probabilities (given in the fifth column of Table II) to belief functions3 meaning that the input for both the

3Note that the conditions of Proposition 14 of [22] are satisfied in our example. Then, the belief function corresponds to lower probabilities

of the entire power set, using formulae in Sec. 4.4 of [5].
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CVN and the EN is identically uncertain information. The output of the EN is the belief-plausibility pair on the

elements of ΘA.

TABLE III

Marginal probability distribution of variable A

A (days) VN-PMF CVN EN

0 0.034 [0.015, 0.099] [0.000, 0.129]

1 0.210 [0.101, 0.428] [0.012, 0.485]

2 0.415 [0.221, 0.711] [0.076, 0.823]

3 0.301 [0.151, 0.549] [0.105, 0.603]

4 0.040 [0.016, 0.111] [0.011, 0.121]

(a) (b)

Fig. 3. A bar graph representation of numerical results in Table III: the marginal probability distribution of variable A , using (a) the CVN

and (b) the EN. The height of the orange bar equals the “ground thruth”.

Note from Table III and Fig. 3 that both the CVN and the EN express the marginal probability of variable A

with probability intervals. Importantly, these intervals always contain the “ground truth” probability, obtained using

the VN-PMF. For example, according to row 1 of Table III, the probability that arrival delay is 0 days is 0.034,

and this value is contained in both interval [0.015, 0.099] for CVN and [0.000, 0.129] for EN. However, observe

that the intervals are much tighter, and therefore, the epistemic uncertainty smaller, using the CVN, rather than

the EN, for inference. In order to quantify performance, we can apply the evaluation method proposed in [33] to

quantify the accuracy of the CVN and EN. This method computes the distance between the “ground truth” PMF

[p1, . . . , pn] and the credal set, expressed with the lower probability envelope [p
1
, . . . , p

n
] and the upper probability

envelope [p1, . . . , pn], as follows:

D =

[
1 + exp

{
− 1

n

n∑
i=1

log
(pi − pi)

Pr{pi ∈ [pi]}

}]−1

. (29)

The distance D takes values from interval [0, 1], with smaller values indicating a smaller distance. The values of

distance D for the output of the CVN and the output of the EN (according to Table III), are computed as 0.18 and

0.23, respectively. Hence, we conclude that in terms of the accuracy of reasoning, the CVN outperforms the EN.
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All three aforementioned valuation networks were implemented in MATLAB (Gurobi optimisation software can

be called from MATLAB) and applied using the same sequence of elimination variables. The measured computation

time of the VN-PMF, the CVN and the EN on this example is 0.08, 16.12 and 0.48 seconds, respectively. This

example involves a small number of focal sets in the EN and hence the EN is faster to run than the CVN.

V. CONCLUSIONS

The paper presented the theoretical foundations and discussed a practical implementation of a valuation network

for reasoning, where uncertain pieces of collected information and domain knowledge are expressed as credal

sets defined by the coherent probability intervals. This framework was adopted as a generalisation of a valuation

network of probability mass functions, for situations where both the aleatory and epistemic uncertainties are present

in the knowledge-base and observations. The developed credal valuation network was demonstrated on a small scale

example and compared to the corresponding evidential network (which represents valuations using the Demspter-

Shafer belief functions). The result of reasoning using the CVN is less uncertain and therefore more desirable

than the result obtained using the evidential network. The future work will focus on improving the computational

efficiency of the CVN and its application to realistic problems in military surveillance.

APPENDIX

A. Conditions of coherence for upper and lower probabilities
Condition (10) is simple to verify. Consider a PMF p ∈ KX , where KX is a credal set specified by interval

probabilities as in (8). Then we can write: p
i
≤ p(xi) ≤ pi, for i = 1, . . . , |ΘX |. If we perform summation over

index i, then we have:
∑

i pi ≤
∑

i p(xi) ≤
∑

i pi. Since p is a PMF, then the middle term
∑

i p(xi) = 1 and

condition (10) immediately follows.

Next we show that condition ∑
j 6=i

p
j

+ pi ≤ 1 (30)

is obtained from the statement that there exist a PMF pi ∈ KX such that it reaches the upper probability pi, that

is pi(xi) = pi. From the definition of credal set KX (8), for every j = 1, . . . , |ΘX | we have p
j
≤ pi(xj). If we

perform summation of both sides of this inequality over index j, such that j 6= i, we obtain:∑
j 6=i

p
j
≤
∑
j 6=i

pi(xj) (31)

Adding the term pi to both sides of (31), we have∑
j 6=i

p
j

+ pi ≤
∑
j 6=i

pi(xj) + pi. (32)

Since pi = pi(xi) and pi is a PMF, the sum on the right hand side of (32) equals 1, which proves (30).



PREPARED FOR ARXIV 15

B. Solving bilinear optimisation using Gurobi
In order to apply Gurobi [32], we need to express the optimisation problem (25) in the form:

min
x

gT x (33)

subject to A∗x ≤ b∗,

and xTQx + xTq ≤ r.

The first constraint above is linear, while the second is quadratic. Note that we can rewrite the objective of

optimisation in (25), that is, min pT
1 diag[ci]p2, as follows:

min a s.t. pT
1 diag[ci]p2 ≤ a. (34)

The constraint in (34) will be expressed as a quadratic constraint in (33). Minimisation (25) can now be written in

the form of (33) with the following definitions:

x =
[
a pT

1 pT
2

]T
g =

[
1 0 · · · 0

]T
A∗ =

[
02(n+1)×1 A 02(n+1)×n

02(n+1)×1 02(n+1)×n A

]

b∗ =
[
0 bT

1 bT
2

]T
Q =

 0(2n+1)×(n+1)

01×n

diag[ci]

0n×n


q = −g

r = 0,

where 0a×b is a zero matrix of dimension a× b. Optimisation is non-convex.
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