
Generation of Conformance Test Suites for Compositions of Web Services
Using Model Checking

José García-Fanjul, Claudio de la Riva, Javier Tuya
Computer Science Department, University of Oviedo

Campus de Viesques s/n, Gijón, SPAIN
jgfanjul@uniovi.es, claudio@uniovi.es, tuya@uniovi.es

Abstract

Testing compositions of web services is complex,
due to their distributed nature and asynchronous
behaviour. However, research in this field is scarce.
We propose a new testing method for compositions of
web services. A formal verification tool (the SPIN
model checker) will be used to automatically generate
test suites for compositions specified in an industry
standard language: BPEL. Adequacy criteria will be
employed to define a systematic procedure to select the
test cases. Preliminary results have been obtained
using a transition coverage criterion.

1. Introduction

Web services are becoming the default choice when
implementing distributed software. They are
asynchronous, low-coupled and platform-independent.
The composition of web services (specified with
languages such as BPEL [18]) enables the
implementation of interoperable business processes.
Furthermore, it has encouraged an increasing
investment in this kind of software worldwide, which
doubled from 2003 to 2004, reaching $2.3 billion. That
figure is expected to continue to grow and become $15
billion by 2009, according to IDC research studies
[19]. This high acceptance by industry has led to
concerns regarding the testing processes of web
services software. Canfora and Di Penta [5] and Zhang
and Zhang [24] have identified a number of unresolved
challenges in the application of traditional software
testing technologies to web services such as:

1. The need to remotely test web services, with its
associated cost.

2. The impact that the limited information exposed
about a web service has on the design of test cases.

3. The ability to dynamically search and invoke web
services.

Bearing in mind the above mentioned challenges, in
this research abstract we will propose a new testing
method for compositions of web services. Related
work will be reviewed in Section 2. Then, in Section 3,
the proposal is specified. The abstract ends with the
expected contributions of this research, in Section 4.

2. Related work

Research in verification and validation applied to
compositions of web services may be basically
classified in two categories: papers describing formal
verification approaches and others that use testing
techniques.

Most of the research in this field has been directed
towards formal verification. However, recent results
show the limited feasibility of automated verification
applied to compositions of web services [4] [11]. The
goal of formal verification approaches is to decide
whether it may be said that certain properties hold in
the composition under study. Fu et al [12] use the
SPIN model checker to formally verify compositions
of web services specified in BPEL. Their approach
thus shares with ours the use of SPIN and the need to
build a model for the business process, as it will be
explained in Section 3. They do not generate test cases,
as they use the model checker to verify certain
(selected by hand) properties. In the same line of work,
Foster et al [10] use Finite State Processes (FSP) to
model compositions of web services and describe the
use of the LTSA tool [9] to formally verify BPEL
specifications. They propose specifying the desired
properties in terms of Message Sequence Charts, a
technique included in the Unified Modelling Language
(UML). Using a different model and verification
paradigm, Narayanan and McIlraith [20] propose
annotating web services with semantic descriptions
(DAML-S) of their capabilities, to subsequently
encode these in a Petri Net.

tuya
Cuadro de texto
Copyright © 2006 IEEE. Reprinted from: 2006 Testing: Academic and Industrial Conference - Practice and Research Techniques.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Oviedo's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Regarding testing approaches, Chun and Offutt [6]
and Offutt and Xu [21] describe the application of
mutation analysis and data perturbation in the testing
of web services. Their processes are defined at the unit
level, so the targets are the individual web services and
not their composition. Bertolino and Polini [3] propose
a framework for dynamic testing of web services
interoperability. They introduce a testing stage called
“audition” before the services are published on a UDDI
registry. In combination with verification techniques,
Huang et al [17] describe a method to test composite
web services. They explicitly specify the web services
behavior (using OWL-S) and define the desired
properties by hand. Then, they use model checking to
ascertain whether the properties hold.

In summary, many of the above mentioned works
(such as [12], [17] or [20]) rely on the explicit
annotation of web services behaviour. Thus, further
research is needed on testing compositions of web
services with no added knowledge but the specification
of the composition itself. Furthermore, the selection of
test cases is done manually in most of the papers we
have found on testing compositions of web services.
New research should spot the adoption of automatic
algorithms for test case selection on this field.

3. Conformance testing of web services
compositions

Our research hypothesis is that a new method for
generating test suites for compositions of web services
is needed, with the following characteristics:

• It will be static, so there will be no need to execute
the software for obtaining the test cases. Thus, we
avoid the cost of remotely executing the web
services and undertake the first of the challenges
listed in the introduction.

• The only required input will be a specification of
the composition in BPEL. The obtained test cases
will be independent from the particular
implementation and we adhere to industrial
standards. This decision is meant to tackle the
third challenge listed in the introduction.

To build such a new method, we will rely on an
existing technique called model checking [7]. It is a
formal verification technique that enables the
automatic detection of whether certain properties hold
in a model. It has a number of well documented
applications, ranging from the verification of protocols
[23] to fault detecting in software systems [15]. SPIN
is one of the most commonly used model-checking
tools [16]. Using SPIN, properties can be specified by
assertions in the model or shaped as Linear Temporal

Logic (LTL) formulae. The tool searches all the
possible states within the model and checks whether
the properties hold. If not, it gives a trace of the steps
illustrating the violation of the property, which is
called a counterexample.

Model checking is commonly used for systems
verification, but it can be applied to generate test cases
[1] [14]. In order to obtain a test case for a certain
requirement C, the model checker is fed with a model
for the software and a LTL formula stating that C
never holds. The output obtained from the tool is hence
a counterexample in which the software fulfils C. That
counterexample can be transformed into a test case, as
it describes an execution of the software in which the
desired test requirement holds.

The above technique can be adapted to generate test
case specifications for conformance testing of BPEL
compositions (here we use the term “conformance
testing” as defined in [2]). Our method, which is
depicted in Figure 1, comprises four steps: Step 1:
Transforming BPEL to PROMELA (the input language
of SPIN), Step 2: Applying an adequacy criterion, Step
3: executing the model checker (and obtaining a
counterexample) and finally Step 4: Test case
specification.

First of all, the business process must be
transformed into PROMELA. We will also need to
model the external behaviour of the different web
services (called partners in BPEL) that participate in
the business process. The BPEL specification does not
directly include information about their behaviour.
Thus, a mock model will be constructed for each
partner based upon its interface with the business
process.

Secondly, in order to produce test cases, test
requirements must be identified. As it has been said
before, this is commonly done by hand. Yet, we will
describe systematic procedures to obtain test
requirements from different adequacy criteria. These
criteria will guide the instrumentation of the
PROMELA code, in order to discern if an execution of
the model meets the test requirements. In addition,
LTL properties will be properly constructed expressing
the negation of the identified requirements.

The third step is the execution of the model checker.
The counterexample obtained from a SPIN run is a
sample execution of the BPEL process in which the
test requirements included in the LTL are exercised.

Lastly, to specify the test case, we will analyse how
to get relevant information from the counterexample
generated with SPIN. The test case specification will
include the inputs and the desired output, both of them
expressed in terms of the information exchanged
between the business process and the partners.

BPEL

Transforming
BPEL to

PROMELA

Applying
adequacy

criteria

Test case
specification

Model
checker

Model Property

Counterexample

Figure 1. Overview of the proposed method.

Regarding the evaluation of the method, its

application to real-life compositions of web services
must be taken into account. However, as there are not
many publicly available compositions [8], synthetic
ones may need to be constructed. To validate our
results, we will use fault-injection techniques with
different implementations of the same composition. If
our method is sound, the execution of the obtained test
suite will enable us to discriminate the correct
composition from the faulty ones. We also plan to
contrast the faults detected using our method to the
ones obtained applying other techniques. Controlled
experiments will also be tried to further validate our
approach.

In our preliminary work [13], we use a transition
coverage criterion (taken from [22]) to select the test
cases. Specifically, the criterion states that the resulting
test suite must include test cases that cause every
transition in the BPEL specification to be taken. To do
so, on the second step of our method, transitions are
identified in the BPEL specification and mapped to
PROMELA. Also, a LTL property is constructed for
each transition to find a counterexample for that given
transition (a run in which the transition is exercised).
To build a test suite that meets the above defined
transition coverage criterion, the model checker should
be executed as many times as transitions are identified
in the BPEL. To reduce the number of test cases, all

the transitions covered with each counterexample are
taken into account. In our first case study, using the
well-known “loan approval” sample composition, the
number of test cases obtained is the minimum required
to give transition coverage for the specification.

4. Expected contributions

The main contribution of our research will be the
definition of a new method to obtain conformance test
suites for compositions of web services. The method
will rely on a model checking tool (SPIN) for
obtaining test cases specifications from a model of the
business process.

Our research will address how to transform a BPEL
specification to a PROMELA model. Test cases will be
automatically selected to fulfil certain adequacy
criteria. Thus, we will describe procedures to:

• instrument PROMELA code, considering those
criteria;

• construct LTL properties for the counterexamples
to show sample executions of the model that meet
the criteria;

• automatically obtain a test suite specification from
the counterexamples that SPIN provides.

After the preliminary case studies, immediate lines
of work are the application of different adequacy
criteria, such as those described by Offutt et al in [22]
and its automation. Research will also be directed to
fully determine the scalability of the method.

5. Acknowledgements

This work is supported by the Ministry of Science
and Education (Spain) under the National Program for
Research, Development and Innovation, projects
IN2TEST (TIN2004-06689-C03-02) and REPRIS
(TIN2005-24792-E).

6. References

[1] P. Ammann, P.E. Black and W. Majurski, Using Model
Checking to Generate Tests from Specifications, Second
IEEE International Conference on Formal Engineering
Methods, Brisbane (Australia), 1998, pp 46-.

[2] A. Bertolino and E. Marchetti, A Brief Essay on Software
Testing, Chapter of Software Engineering. Volume 1:
Development process, Third Edition, IEEE Computer
Society/Wiley Interscience, 2005, pp. 393-411.

[3] A. Bertolino and A. Polini, The Audition Framework for
Testing Web Services Interoperability, 31st EUROMICRO

Conference on Software Engineering and Advanced
Applications, Porto (Portugal), 2005, pp. 134-142.

[4] T. Bultan, X. Fu and J. Su, Analyzing Conversations of
Web Services, IEEE Internet Computing, 10(1), IEEE, 2006,
pp. 18-25.

[5] G. Canfora and M. Di Penta, Testing services and
service-centric systems: Challenges and opportunities, IT
Professional, 8(2), IEEE, 2006, pp.10–17.

[6] S. Chun, and J. Offutt, Generating Test Cases for XML-
based Web Component Interactions Using Mutation
Analysis, 12th IEEE International Symposium on Software
Reliability Engineering, Hong Kong (PRC), 2001, pp. 200-
209.

[7] E.M. Clarke, O. Grumberg and D.A. Peled, Model
Checking, The MIT Press, 2000.

[8] J. Fan and S. Kambhampati, A Snapshot of Public Web
Services, SIGMOD Record, 34 (1), ACM, 2005, pp. 24-32.

[9] H. Foster, S. Uchitel, J. Magee and J. Kramer, Tool
Support for Model-Based Engineering of Web Service
Compositions, IEEE International Conference on Web
Services, Orlando (USA), 2005, pp. 95-102.

[10] H. Foster, S. Uchitel, J. Magee and J. Kramer, Model-
based Verification of Web Service Compositions, 18th IEEE
International Conference on Automated Software
Engineering, Montreal (Canada), 2003, pp 152-163.

[11] X. Fu, T. Bultan and J. Su, Synchronizability of
Conversations among Web Services, IEEE Transactions on
Software Engineering, 31(12), IEEE, 2005, pp. 1042-1055.

[12] X. Fu, T. Bultan and J. Su, Analysis of Interacting
BPEL Web Services, Thirteenth International World Wide
Web Conference (WWW 2004), New York (USA), 2004,
pp. 621-630.

[13] J. García-Fanjul, J. Tuya and C. de la Riva, Generating
test cases specifications for BPEL compositions of web
services using SPIN, International Workshop on Web
Services - Modeling and Testing, Palermo (Italy), 2006, pp.
83-94.

[14] E.L. Gunter and D. Peled, Model checking, testing and
verification working together, Formal Aspects of Computing,
17(2), Springer, 2005, pp. 201-221.

[15] K. Havelund, M.R. Lowry and J. Penix, Formal
Analysis of a Space-Craft Controller Using SPIN, IEEE
Transactions on Software Engineering, 27(8), IEEE, 2001,
pp. 1000-9999.

[16] G.J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley Professional, 2003.

[17] H. Huang, W. Tsai, R. Paul and Y. Chen, Automated
Model Checking and Testing for Composite Web Services,
Eighth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, Seattle (USA), 2005, pp.
300-307.

[18] IBM, Business Process Execution Language for Web
Services version 1.1, URL: http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

[19] IDC, Research Reports, URL: http://www.idc.com/.

[20] S. Narayanan and S.A. McIlraith, Analysis and
simulation of Web services, Computer Networks, 42(5),
Elsevier, 2003, pp. 675-693.

[21] J. Offutt, and W. Xu, Generating Test Cases for Web
Services Using Data Perturbation, ACM SIGSOFT Software
Engineering Notes, 29(5), ACM, 2004, pp. 1-10.

[22] J. Offutt, S. Liu, A. Abdurazik and P. Ammann,
Generating Test Data From State-based Specifications, The
Journal of Software Testing, Verification and Reliability,
13(1), Wiley, 2003, pp. 25-53.

[23] A.W. Roscoe and P.J. Broadfoot, Proving Security
Protocols with Model Checkers by Data Independence
Techniques, Journal of Computer Security 7(2-3), IOS Press,
1999, pp. 147-190.

[24] J. Zhang and L.J. Zhang, “Web Services Quality
Testing”, International Journal of Web Services Research,
2(2), Idea Group, 2005, pp. 1-4.

