

Enhancing Teaching Methods on Embedded Systems
with Project-Based Learning

Filippo Sanfilippo
Dept. of Engineering Cybernetics

Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology (NTNU)

7491 Trondheim, Norway
Dept. of Science and Industry Systems

Faculty of Technology, Natural Sciences and Maritime Sciences,
University of Southeast Norway (USN)

Post box 235, 3603 Kongsberg, Norway
filippo.sanfilippo@usn.no

Kolbjørn Austreng
Dept. of Engineering Cybernetics

Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology (NTNU)

7491 Trondheim, Norway

Abstract—Automation engineering departments must
continuously develop their laboratories and pedagogical tools to
provide their students with effective study plans. While acquiring
state-of-the-art equipment can be financially demanding, an
effort is made at the Norwegian University of Science and
Technology (NTNU) in Trondheim to provide the students with a
hands-on sustainable experience. A strategy that consists of
adopting low-cost commercial off-the-shelf (COTS) components
for learning purposes is selected. This combines both industry-
standard automation controllers, such as Programmable Logic
Controller (PLC) technology, as well as novel microcontrollers
designed for use in embedded systems education. Specifically, the
micro:bit microcontroller based on the nRF51822 system-on-chip
(SoC) and designed by the British Broadcasting Corporation
(BBC) is adopted. This choice is supported by an agreement
between NTNU and the Norwegian company Nordic
Semiconductor, which produces the nRF51822 SoC. This paper
proposes a novel organisation of the embedded systems module
for the engineering cybernetics education curriculum. Students
are engaged in both a series of theoretical lectures as well as
practical and highly-involving laboratory group projects. The
course organisation and main topics as well as result analysis of
student surveys are discussed. The survey results indicate that the
course organisation and topics are effective for the students.

Keywords—embedded systems; education; programming;
micro:bit

I. INTRODUCTION
In this paper, an innovative organisation of the embedded

systems module for the engineering cybernetics education
curriculum is proposed. As shown in Figure 1, the underlying
idea is to organise the course into three parallel layers:

• theoretical lectures with exercises. This component of
the module is systems-oriented and focuses on system
specifications, modelling, development processes,
performance estimation, verification, architecture design
and control;

• laboratory. This component of the course is designed to
be both hardware-oriented, by focusing on studying the
industry standard Programmable Logic Controller
(PLC) [1] and the advanced reduced instruction set
computing (RISC) machine (ARM)-based embedded

Fig. 1. The proposed hands-on organisation of the embedded systems course.

system micro:bit [2] designed by the British
Broadcasting Corporation (BBC), as well as software-
oriented, by focusing on programming, debugging and
reviewing. The laboratory is based on group projects;

• applications. Both the theoretical lectures as well as the
laboratory work is designed to provide the students with
an improved hands-on automation experience for
implementing industry standard embedded systems [3].

The presented course is the TTK4235 - Embedded Systems
[4]. This course is a 4th semester module of the five years
master’s degree programme in cybernetics and robotics given
at the Department of Engineering Cybernetics, Norwegian
University of Science and Technology (NTNU), Trondheim,
Norway. Recommended previous knowledge for the course
includes basic knowledge and skills in the fields of analog and
digital electronics, information technology and programming.
Before taking this module, all the students are required to
attend extensive courses on both procedural and object-oriented
programming. The course organisation and main topics are

presented in this paper. To show the effectiveness of the course
from a pedagogical perspective, result analysis of after-course
surveys are outlined. The comparison between the results of the
surveys indicates that the module design and topics are
engaging, effective and helpful for students. The paper is
organised as follows. In Sect. II, the selected pedagogical tools
are presented. The course overview is discussed in Sect. III.
The laboratory content is depicted in Sect. IV. The course
learning outcomes are delineated and analysed in Sect. V.
Conclusions and future work are outlined in Sect. VI.

II. PEDAGOGICAL TOOLS
The adoption of the unified modelling language (UML) [5]

as a foundation for the proposed module is motivated by the
fact that this tool can potentially be utilised to build a solid
educational and scientific base with embedded systems design
as the cornerstone, which will ensure a systematic and even-
handed integration of concepts from both computer science and
electrical engineering [6].

The choice of the BBC micro:bit platform [2] is motivated
by a variety of reasons. Firstly, it is desirable to use an ARM-
based architecture, as NTNU already has courses focusing on
other architectures [7]. This requirement is met by the Nordic
Semiconductor nRF51822 System on Chip [8], which is the
main component of the BBC micro:bit platform. Furthermore,
for practical and logistical reasons, it is desirable to use a “self-
contained” board that would limit the need for the students to
do extensive manual setup before the lab work could begin.
The “plug-and-play” aspect of the BBC micro:bit proved
excellent for this. Lastly, the assumption that students learn
best by tinkering with systems on their own, made it desirable
that each student would get to keep their lab equipment after
the lab sessions – and after the course all together. The
micro:bit is an inexpensive piece of equipment; as well as
being easy to extend outside of a lab setting. These
characteristics make the micro:bit the ideal platform for
teaching embedded systems in a practical way. It should be
noted that there are many programming languages available for
the micro:bit, including Python, Touch Develop, Javascript and
C++ [2]. However, the C language has been selected for the
proposed course as the main programming language to be used.
This choice forces the students to code their applications
without relying on extra support from existing software
libraries. This fact exposes them to a much deeper understating
of what is happening at a lower level from a software/hardware
perspective, highlighting important aspects and challenges that
are typical of embedded systems.

The selection of PLC-based developing platforms for the
proposed course is motivated by the fact that this is an effective
way of providing students with a real industry-like experience.
In [9], a cost-effective approach for the design of educational
projects in a PLC course for electrical engineering education is
presented. In [10], a PLC platform is used to recycle a
discarded robotic arm for automation engineering education.
These works show that engineering students improve their
practical problem-solving abilities by working on an extensive
design project using PLC-based technology.

TABLE I. THE ORGANISATION OF THE COURSE CONTENT

Lectures Laboratory Projects

8 lectures hands-on
laboratory
classes

elevator project (PLC)
elevator project (C-programming)
micro:bit (C-programming) project

Fig. 2. Each student is provided with a micro:bit starter kit consisting of a
micro:bit microcontroller, a micro:bit breakout board, a servo motor, a
trimmable potentiometer, a breadboard and set of jumper wires.

III. COURSE OVERVIEW
In this section, the proposed course organisation and main

topics are presented. As shown in Table I, the course content
includes 8 theoretical lectures, laboratory classes and 3 course
projects. The content of the theoretical lectures is depicted in
Table II. Each weekly lecture lasts 6 hours. The topics of each
lecture are presented hereafter.

Lecture 1: introduction on embedded systems and UML,
Nordic Semiconductor seminar. Lecture 1 presents the course
overview, expectations, logistics, processes, syllabus and a
session of questions and answers related to the course and to
the corresponding prerequisite material [4]. Successively, an
introduction of embedded system with the most relevant
descriptions, definitions and vocabulary is considered [11].
Following, a review of microprocessor/microcontroller
architectures is discussed. To engage the students and introduce
them to the forthcoming laboratory work, a short seminar is
organised by the company Nordic Semiconductor. During this
seminar, each student receives a micro:bit starter kit consisting
of a micro:bit microcontroller, a micro:bit breakout board, a
servo motor, a trimmable potentiometer that has a small knob
built right in and it is breadboard friendly, a breadboard and set
of jumper wires. This starter kit is shown in Figure 2.
According to a formal agreement between Nordic
Semiconductor and NTNU, the company provides the
microcontrollers while all the other components are provided
by the university. This arrangement contributes towards a
hands-on sustainable learning experience and it enables
students to use low-cost, course-specific hardware to complete
lab exercises at home. This represents an extension of the
university laboratory and gives students the possibility of
improving their learning involvement. Lecture 1 is additionally
complemented with an introduction of UML. An overview of
different paradigms and models regarding the development
process of embedded systems is also given with particular
emphasis on designing techniques, such as incremental and
waterfall approaches [12]. Finally, an introduction of UML
class diagrams is given [5].

Lecture 2: flipped class on C-programming, PLC
introduction. Lecture 2 consists of a review of the main topics
of the C programming language [13]. Motivated by the fact that
the presented course is a 4th semester module of the five years
master’s degree programme in cybernetics and robotics, and
that all the students have already attended extensive courses on
both procedural and object-oriented programming, this class is
organised as a flipped classroom [14] covering the following
topics: programming introduction, overview of how the C
language works, types, operators and expressions, control flow,
functions and program structure, pointers and arrays, structures,
input and output. A flipped classroom is an instructional
strategy and a type of blended learning that reverses the
traditional learning environment. This is achieved within this
course by delivering instructional content and describing the
main guidelines for each considered topic of the lecture
beforehand through the on-line Blackboard [15], a virtual
learning environment and course management system. In this
way, the students are divided in groups and can prepare their
assigned topics so that the class becomes the place to work
through problems, advance concepts, and engage in
collaborative learning. Lecture 2 is additionally complemented
with an introduction to Programmable Logic Controller (PLC)
[1], [16] programming to introduce the students to the
forthcoming laboratory work. Finally, a discussion on C-
programming and coding style is given to enable student
making the best use of the C language [17].

Lecture 3: UML concepts and class exercise. Lecture 3
introduces the fundamental concepts of UML sequence
diagrams [5], [18], [19] with particular emphasis on embedded
systems. These diagrams allow for getting clear visual clues to
possible flows of control over time, for emphasising time
ordering, for showing object lifelines and for illustrating the
focus of control. The notion of messages (or stimulus) and of
lifeline are discussed by highlighting the observation of time,
temporal constraints and object activations. The concepts of
suspension, interaction, duration constraints are also outlined.
Successively, the UML use case diagrams are presented as an
essential tool for identifying services offered by the system to
be designed and its main functionalities. The different concepts
of inclusion, extension and generalisation are analysed. Further,
advanced concepts related to UML class diagrams are outlined,
such as keywords, multiple and dynamic classification,
associations, enumerations, responsibilities, static operations
and attributes, aggregation and composition, derived properties
and qualified associations. To introduce the students to the
forthcoming laboratory work, a class exercise is finally
considered focusing on the development of use cases, class and
sequence diagrams for an elevator system.

Lecture 4: UML concepts and class exercise. Lecture 4
depicts the essential concepts of UML state machine diagrams
[5]. A finite state machine is a popular technique to describe
the behaviour of a system and it is also one of the most relevant
design patterns in embedded systems. Many applications from
simple home appliances to complex communication systems
implement event-based state machines. Different aspects are
discussed within this lecture, including internal activities,
activity states and super states. With particular emphasis on
embedded systems, the design of concurrent states is discussed

allowing the students to anticipate both the benefits and
challenges of concurrent programming. Guidelines for
implementing state machines with the C-programming
language are successively outlined by highlighting the use of
nested switches to handle the state transitions. Successively,
UML timing diagrams are described as another form of
interaction diagrams, where the focus is on timing constraints.
When considering embedded systems, UML timing diagrams
are extremely relevant to identify time constraints and
deadlines. Finally, a class exercise is considered to prepare the
students to the forthcoming laboratory work by focusing on the
development of UML state machine and timing diagrams for an
elevator system.

Lecture 5: analog and digital signals, communication, code
verification. Lecture 5 presents an introduction and review of
analog and digital signals [20]–[22]. The difference between
analog and digital signals is described outlining their most
important properties. Definitions about certain elementary
signals are provided. The basic notions involved in the
characterisation of communication systems are outlined. With
respect to embedded systems, it is highlighted that working
with electronics means dealing with both analog and digital
signals, inputs and outputs. Electronics systems have to interact
with the real, analog world in some way, but most of our
microprocessors, computers, and logic units are purely digital
components. These two types of signals are like different
electronic languages. Signals are passed between devices in
order to send and receive information. To achieve this, different
basic notions of communication protocols are presented. In
particular, the two main properties of data exchange are
discussed: message-based data exchange and shared memory-
based data exchange. The definition of the most essential
communication parameters is depicted, such as latency, jitter,
fault handling and redundancy. Based on these fundamental
concepts, it is highlighted in this lecture that embedded
electronics is based on interlinking circuits (processors or other
integrated circuits) that are integrated to create a symbiotic
system [22]. Individual circuits must share a common
communication protocol to swap their information. Hundreds
of communication protocols exist, and, in general, each can be
separated into one of two categories: parallel and serial. Based
on this classification, the following communication protocols
are presented in the class: serial, universal asynchronous
receiver transmitter (UART), serial peripheral interface (SPI),
inter-integrated circuit (I2C) [21], [22]. To prepare the students
to the forthcoming laboratory work, a review of code
verification techniques for C-programming is finally presented
[23].

Lecture 6: ADC/DAC, modulation, SDLC, class exercise.
Lecture 6 introduces a review of the fundamental notions for
converting a signal from analog (continuous) to digital
(discrete) form [21]. This conversion, which is achieved by
adopting analog-to-digital converters (ADC), is especially
relevant for embedded systems because it provides a link
between the analog world of transducers/sensors and the digital
world of signal processing and data handling. The main steps of
the conversion process are described in detail, including the
phases of sampling and holding, as well as quantisation and
encoding. Relevant sampling considerations are discussed by

TABLE II. THE ORGANISATION OF THE COURSE TEORETICAL LECTURES

Week Course
content

Description References Time

Week 1

Lecture 1

- Course overview, expectations, logistics, processes, syllabus, FAQ, and prerequisite material [4] 2 hours
- Embedded systems descriptions, definitions and vocabulary
- Microprocessor/microcontroller architectures
- micro:bit introduction: Nordic Semiconductor Seminar

[2], [11], [31] 2 hours

- UML introduction; paradigms and models (development process):
prototyping, incremental, waterfall
- UML: Class Diagrams

[5], [12] 2 hours

Week 3

Lecture 2

- Flipped class on C-programming review: introduction, how C works, types, operators and
expressions, control flow, functions and program structure, pointers and arrays, structures, input
and output

[13] 5 hours

- PLC introduction: “Programming of a FESTO production line” [1], [16] 0.5
hours

- C-programming: coding style, making the best use of C [17] 0.5
hours

Week 5 Lecture 3
- UML Sequence Diagrams, Use cases, Class Diagrams, advanced concepts [5], [18], [19] 4 hours
- Class exercise: Use cases, Class Diagram and Sequence Diagrams for the Elevator project 2 hours

Week 7 Lecture 4 - UML: State Machines and Timing Diagrams [5] 4 hours
- Class exercises: State Machines and Timing Diagrams for the Elevator project 2 hours

Week 9 Lecture 5
- Analog and digital signals [20], [21] 1 hour
- Communication protocols: serial, UART, SPI, I2C [22], [31] 4 hours
- C-programming: code verification [23] 1 hour

Week 11

Lecture 6

- ADC and DAC, aliasing [21] 1 hour
- Modulation (AM, FM, PWM) [21] 2 hours
- Software Development Cycle: non-functional Vs functional requirements, Waterfall Vs Iterative
V Model [5] 1 hours

- Class exercises: UML modelling of an automated teller machine (ATM) 2 hours

Week 14

Lecture 7

- Industrial instrumentation and control
[29]

2 hours
- Temperature control 1 hour
- Error in measurements 1 hour
- Class exercises: UML modelling of a Vending Machine 2 hours

Week 16 Lecture 8 - Reading research papers [30] 2 hours
- Exam simulation: requirements analysis, development process selection, system design, sensors 4 hours

highlighting the importance of the sampling frequency in terms
of reconstructing the transmitted signal. In this perspective, the
sampling theorem is outlined as a fundamental bridge between
continuous-time signals and discrete-time signals [21]. As a
direct consequence of this theorem, the phenomenon of aliasing
is described as an effect that causes different signals to become
indistinguishable (or aliases of one another) when sampled with
an improper frequency. The definitions of workspace, scope,
dynamic range and resolutions are successively introduced and
supported with various class exercises. Further, the necessity of
designing communication strategies for interconnecting remote
embedded systems is discussed by highlighting that the
objective of a communication system is to transmit information
signals (baseband signals) through a communication channel
[21]. Since this baseband signal must be transmitted through a
communication channel, an appropriate procedure is required
to shift the range of baseband frequencies to other frequency
ranges suitable for transmission, and a corresponding shift back
to the original frequency range after reception. This is known
as the process of modulation and demodulation. Based on these
concepts, a review of different modulation techniques is
presented, including amplitude modulation (AM), frequency
modulation (FM) and pulse width modulation (PWM). To
support the students with the forthcoming laboratory work and
projects that are run in parallel, a discussion on the software

development cycle is presented by highlighting the differences
between non-functional and functional requirements and by
introducing the V-model [24] software development life cycle
(SDLC) as an extension of the previously introduced waterfall
model. Finally, a class exercise is considered by focusing on
the UML modelling of an automated teller machine (ATM).

Lecture 7: industrial instrumentation and control, errors,
class exercise. Lecture 7 presents a review on control theory.
Embedded systems traditionally follow the paradigm sense-
think-act [25]. This require the use of sensors to monitor the
environment, a decision-making approach to take a decision
based on a predefined task and the sensed environment, and
finally an acting mechanism, to perform the predefined task by
adapting to the environment. Focusing on the
thinking/decision-making necessity of embedded systems,
fundamental notions of control theory are presented [26]. It is
highlighted the fact that the majority of embedded designs are
closed loop control systems, as opposed to open loop control.
These concepts are especially relevant for students of
engineering cybernetics. From this perspective, a review of
essential notions for designing controllers for embedded
systems is presented, including design guidelines for
implementing a proportional–integral–derivative (PID)
controller [27] and a bang–bang controller (2 step or on–off
controller) [28], with practical applications to temperature

control for smart-buildings. Emphasising the fact that control
and instrumentation are interdisciplinary fields, the basic
concepts and principles that govern the operation of industrial
plants and processes are successively discussed. In particular,
the need for accurate measuring/sensing devices to achieve
robust control of embedded systems is outlined. In this regard,
the different types of error in measurements [29] is discussed
from a qualitative point of view. Finally, a class exercise is
considered by focusing on the UML modelling of an automated
vending machine.

Lecture 8: reading research papers, exam simulation.
Lecture 8 introduces some useful guidelines for reading
research papers related to embedded systems. This is motivated
by the fact that reading research articles is fundamental to stay
up to date with the latest developments in embedded systems
technology. This is additionally supported by the fact that more
and more researchers recognise a mutual relationship between a
student’s academic reading skills and academic success [30].
Therefore, to provide the students with a hands-on reading and
learning experience, the design and implementation of
embedded systems is considered starting from their description
through scientific papers. The design process includes the
identification of the system requirement specifications, the
selection of an appropriate development approach, the
implementation of UML diagrams and the implementation of
different aspects for sensors or communication protocols.
Based on this methodology, a class simulation of the final exam
is performed to prepare the students.

IV. LABORATORY OVERVIEW
In this section, the proposed laboratory organisation and

main topics are presented, as shown in Table III. The
laboratory content is run in parallel with the theoretical lectures
presented in Sect. III. In the following of this section, the main
laboratory topics are presented referring to Table III.

PLC programming. The PLC laboratory of the lab is in
many ways intended to prime the students with the necessary
mindset of solving the more complex task of programming an
elevator controller in C. The PLC implementation is not as
“fully fledged” as the C implementation – but it is useful for
understanding the needs of the system overall; something that
student feedback has confirmed. The PLC lab setup consists of
a Siemens SIMATIC S7-300 for each desk – connected to both
a computer, as well as a model elevator, shown in Figure 3. The
PLC is then programmed using the SIMATIC STEP-7 software
[36]. As there are good manuals available for this [36], the
students are left to discover the basics on their own – while
being able to ask the on-lab student assistants for guidance
where needed. The end goal of this exercise is to be able to
control the model elevator to a specified floor by use of an
accompanying order panel. This is a simplified version of the
successive elevator C-programming project, in the sense that
concurrent orders and a queue system is not expected from the
students. The effectiveness of this lab module is demonstrated
by the feedback collected from the students, as shown in Figure
4. After the PLC lab, students feel like they have a much better
understanding of this topic.

Version control (Git). The main project of the course is

Fig. 3. The elevator model setup used in the course project. Courtesy of the
Dept. of Engineering Cybernetics, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway.

Fig. 4. Feedback collected from students regarding the helpfulness of
conducting the PLC programming lab.

programming the elevator setup in the C programming
language (see Sec. IV). As this design is much more complex
than the PLC implementation, version control is necessary.
Within this lab assignment, the students are introduced to the
Git version control system [32]. The students are not forced to
use Git over any other version control schemes, but it is
expected that they can demonstrate that their code is under
some version control. This is to encourage good, industry-
proven approaches to manageable source code [37].

Debugging (GDB). With the increasing complexity of the
systems to be developed, software bugs are a fact of life. When
entering this course, the students are already familiar with a
“printf-style” of debugging. In this course, they are encouraged
to use more systematic, and less time-consuming, approaches
[37]. To this end, they are introduced to the GNU Debugger
(GDB) [33].

Elevator C Programming. The objective of the laboratory
“Elevator C Project” is to program all the necessary control
software to run the same elevator model as described in the
PLC programming assignment. The model closely simulates an
industry standard elevator and it consists of four floors, and an
accompanying button panel for “cab orders” as well as
“external orders”. This setup is connected to a controlling
computer, where the students write their software. The setup is
shown in Figure 3. This laboratory project enables the students
to get the most hands-on experience with programming a
logical control system. At this stage, they already have an

understanding of the basic needs of the system, thanks to both
the design methodology and the UML introduction from the
theoretical lectures as well as the two-weeks PLC lab revolving
around the same model. This understanding is further
reinforced by having the students first document a suggested
approach and the overall system architecture, before jumping
head first into uncharted territories. When the students begin
coding their solution, they quickly see the benefit of version
control and debugging, which they have already been
introduced to in weeks 4 and 5, as shown in Table III. Learning
version control systems for the sake of version control and

learning systematic debugging in a purely theoretical setting
would make it difficult for the students to approach these
concepts. However, being able to apply these concepts first-
hand in a laboratory project where they are needed has been
very beneficial for the retention of the material – as the class
feedback has shown.

Elevator FAT and peer reviewing process. The elevator
project culminates in a factory acceptance test (FAT), that is
held 7 weeks after the beginning of the project, as shown in
Table III. This acceptance test is scored and counts toward the

TABLE III. THE ORGANISATION OF THE LABORATORY COURSE WORK

Week Lab content Description References

1 Group formation Students form groups, either by choosing a lab partner, or by being assigned one.

2 PLC programming Introduction to PLCs in general. Implementing simple logic to get the first bit of hands-on
experience.

3 PLC programming Students apply what they learned the previous week to implement a rudimentary elevator
controller, that makes a model elevator go to a selected floor.

4 Version control (Git) Students are exposed to the most commonly used version control scheme today; git. At this
stage, they learn what they will later need to know to effectively manage their own source code
in the coming elevator project of the course.

[32]

5 Debugging (GDB) Students already know how to do “print debugging” when taking this course. However, they
lack knowledge of more structured tools, such as the GNU Debugger (GDB). Here, they are
introduced to tools they will need to use for debugging their own code in the elevator project.

[33]

6 Elevator project This is the beginning of the course elevator project. The project culminates in a fully functional
elevator control software suite, that is capable of handling arbitrary orders. In this first week,
the students focus mainly on overall system design.

[4]

7 Elevator project The students now have a decent understanding of the system requirements of the elevator
controller. They have structured their ideas using UML diagrams to help communicate their
design choices, and they are ready to start implementing.

[4]

8 Elevator project The students begin coding their solutions. This is done in the C programming language, which
is running on a computer connected to a model elevator with four floors, and buttons for “cab
orders” as well as “external orders”.

[4]

9 Elevator project The students freely use this time to code. Student assistants are present in the lab, to provide
guidance to students who might need some input.

[4]

10 Elevator project This is the last “dedicated week” of the elevator project. The students are free to continue work
on their solution until the Factory Acceptance Test (FAT) in week 12, but this must be done
outside of the normal lab hours.

[4]

11 micro:bit, build systems
(make)

The students get acquainted with embedded systems by using the micro:bit platform. This
week is dedicated to learning about General Purpose Input/Output (GPIO) in the form of
buttons and LEDs. In addition to this, the students are introduced to automatic build systems, in
this case GNU make, which is used further in the micro:bit labs.

[34]

12 micro:bit, Elevator FAT This week is dedicated for full-duplex communication between embedded systems and host
computers, by using UART (Universal Asynchronous Receiver Transmitter) peripherals. They
also demonstrate their elevator implementation, which counts toward their final course score.

[35]

13 micro:bit In this week, the students learn about low-power applications, by using the micro:bit
nRF51822 “programmable peripheral interconnect” to directly couple buttons to tasks, such
that the CPU does not have to be on.

[8]

14 micro:bit Here, they learn about extending a one-chip system by using the I2C (a.k.a. TWI) protocol to
communicate with an accelerometer, and a magnetometer, present on the micro:bit platform.

[35]

15 micro:bit This week, they use they accelerometer from last week to generate a pulse width modulated
(PWM) signal, which drives a servomotor, based on what angle the students hold their
micro:bit.

[35]

Fig. 5. Feedback collected from students regarding the helpfulness of
conducting a code peer-review to evaluate code quality.

Fig. 6. Feedback from the students regarding the logical progression through
the micro:bit exercises.

final grade the students achieve in the course. This way, the
laboratory work feels meaningful, and the students have an
extra incentive to fully absorb the concepts in the lab – rather
than treating the lab work as something merely required to take
the exam. To encourage a code quality standard [38], the
students conducted a peer-review of other groups’ code. The
feedback collected suggests that this was one of the most
beneficial aspects of the course, and it prompted increased
awareness in code readability among the students, as shown in
Figure 5.

Micro:bit C Programming. The micro:bit section of the
laboratory is where the students get practical experience
working with embedded devices – in this case the ARM
Cortex®-M0 based nRF51822 system on chip (SoC) from
Nordic Semiconductor [8]. This chip is embedded in the BBC
micro:bit [2] platform. The micro:bit can be programmed in
several ways. Out of the box it already supports an online
JavaScript programming environment, as well as a version of
microPython [2]. As this abstracts away a lot of the low-level
details necessary for understanding the platform, the C
programming language is selected instead for the proposed lab
project. This approach allows the students to program the board
nRF51822 SoC directly, while adding minimal overhead
compared to the JavaScript and microPython approaches.

The labs occurring in the weeks 11-15 (see Table III) are
first opened with an introduction to automatic build systems –
in this case GNU Make [34] – which is used throughout the
micro:bit labs. From there, the students advance through a

Fig. 7. The grade distribution for the students of the proposed embedded
systems course.

number of common embedded systems applications, including
General Purpose Input/Output (GPIO), Universal
Asynchronous Transmitter-Receiver (UART), low power
considerations with extended CPU sleep, the Inter-Integrated-
Circuit (I2C) bus protocol, and Pulse Width Modulation
(PWM) generation. All these tasks are supported by the content
provided in parallel during th theoretical lectures of the course,
as described in Sect. III. These labs are organized in such a way
that the later labs build on the previous ones. For example, the
PWM lab in week 15 (see Table III) uses the I2C-connected
micro:bit accelerometer from week 14 (see Table III) to
determine the desired pulse width. In this way, it is possible to
avoid creating disjoint tasks that may feel meaningless on their
own for the students. Based on the feedback from the students,
this approach has been a good way to organize the lab content,
as shown in Figure 6.

At the end of the course, the students are free to keep their
micro:bit, and encouraged to experiment with them on their
own. It remains to be seen how this will impact the retention of
the course lab curriculum.

V. COURSE LERNING OUTCOMES
Portfolio evaluation is the basis for the final grade. Parts of the
portfolio are final written exam (70%), exercises and laboratory
work (30%). The result for each part is given in percentage
units, while evaluation of the entire portfolio (the final grade) is
given as a letter. The grades are A, B, C, D, and F, with A
being the highest and F, short for failed, the lowest. The student
grades distribution is shown in Figure 7. On a total number of
157 students, 3,2% achieved grade A, 7,6% concluded with
grade B, 69,4% obtained grade C, 10,8% received grade D,
1,9% achieved grade E and 7% failed the exam.

VI. CONCLUSIONS AND FUTURE WORK
In this work, a comprehensive syllabus of the embedded
systems module for the engineering cybernetics education
curriculum was presented. This module combines both a series
of structured theoretical classes as well as practical and highly
engaging laboratory assignments with group works. The
students are involved with a highly-integrated organisation of
the course, which includes system-oriented, hardware-oriented,
software-oriented and application-oriented aspects of
embedded systems. Theoretical notions are complemented with

a hands-on experience for implementing both industry standard
embedded systems, such as Programmable Logic Controller
(PLC) technology [1], as well as low-cost microcontrollers
specifically designed for use in embedded systems education,
such as the micro:bit microcontroller [2]. These choices
contribute towards an application-ready, sustainable and
effective educational experience. The analysis of results from
student surveys indicates that the course organisation and
topics are compelling and helpful.
In the future, the feedback received by the students can be
consider improving their learning experience and the quality of
the provided teaching offer. Further, this same educational
approach can be applied to new modules for the engineering
cybernetics education curriculum in combination with the use
of open-source prototyping tools [39].

REFERENCES
[1] K. Collins, PLC programming for industrial automation. Exposure,

2007.
[2] G. Halfacree, “Getting started with the bbc micro: bit,” The Official

BBC micro: bitR User Guide, pp. 17–26.
[3] W. Rekdalsbakken and F. Sanfilippo, “Enhancing undergraduate

research and learning methods on real-time processes by cooperating
with maritime industries.” in Proc. of the 28th European Conference on
Modelling and Simulation (ECMS), Brescia, Italy, 2014, pp. 108– 114.

[4] Norwegian University of Science and Technology (NTNU). (2018, June)
Course - Embedded Systems - TTK4235 - NTNU. [Online]. Available:
https://www.ntnu.edu/studies/courses/TTK4235.

[5] M. Fowler, UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional, 2004.

[6] T. A. Henzinger and J. Sifakis, “The discipline of embedded systems
design,” Computer, vol. 40, no. 10, 2007.

[7] (2018, June) TTK4155 - Embedded and Industrial Computer Systems
Design. [Online]. Available: https://www.ntnu.edu/studies/courses/
TTK4155#tab=omEmnet

[8] Nordic Semiconductor. (2018, June) Nordic Semiconductor. [Online].
Available: www.nordicsemi.com/.

[9] L. Guo and R. Pecen, “Design projects in a programmable logic
controller (plc) course in electrical engineering technology,” in Proc. of
the American Society for Engineering Education. Citeseer, 2008, pp. 1–
10.

[10] F. Sanfilippo, O. L. Osen, and S. Alaliyat, “Recycling a discarded
robotic arm for automation engineering education.” in Proc. of the 28th
European Conference on Modelling and Simulation (ECMS), Brescia,
Italy, 2014, pp. 81–86.

[11] P. Marwedel, Embedded system design. Springer, 2006, vol. 1.
[12] C. Larman and V. R. Basili, “Iterative and incremental developments. a

brief history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.
[13] B. Kernighan and D. M. Ritchie, The C programming language. Prentice

hall, 2017.
[14] B. Tucker, “The flipped classroom,” Education next, vol. 12, no. 1, pp.

82–83, 2012.
[15] P. Bradford, M. Porciello, N. Balkon, and D. Backus, “The blackboard

learning system: The be all and end all in educational instruction?”
Journal of Educational Technology Systems, vol. 35, no. 3, pp. 301–
314, 2007.

[16] G. Bitar, “Programming of a FESTO production line,” 2015, bachelor in
Informatics and Automation (IA), Telemark University College,
Norway.

[17] GNU Operating System. (2018, June) Making The Best Use of C.
[Online]. Available:
https://www.gnu.org/prep/standards/html_node/Writing-C.html.

[18] G. Martin, “Uml for embedded systems specification and design:
motivation and overview,” in Proc. of the Design, Automation and Test
in Europe Conference and Exhibition. IEEE, 2002, pp. 773–775.

[19] L. Apvrille, P. de Saqui-Sannes, C. Lohr, P. Senac, and J.-P. Courtiat, ´
“A new uml profile for real-time system formal design and validation,”
in Proc. of the International Conference on the Unified Modeling
Language. Springer, 2001, pp. 287–301.

[20] R. R. Yarlagadda, Analog and digital signals and systems. Springer,
2010, vol. 1.

[21] L. Frenzel, Principles of electronic communication systems.
McGrawHill, Inc., 2007.

[22] SparkFun. (2018, June) Tutorials. [Online]. Available: https://learn.
sparkfun.com/tutorials.

[23] M. Karlesky, G. Williams, W. Bereza, and M. Fletcher, “Mocking the
embedded world: Test-driven development, continuous integration, and
design patterns,” in Proc. of the Embedded Systems Conference, CA,
USA, 2007, pp. 1518–1532.

[24] S. Balaji and M. S. Murugaiyan, “Waterfall vs. v-model vs. agile: A
comparative study on sdlc,” International Journal of Information
Technology and Business Management, vol. 2, no. 1, pp. 26–30, 2012.

[25] M. Siegel, “The sense-think-act paradigm revisited,” in Proc. of the 1st
International Workshop on Robotic Sensing (ROSE’03). IEEE, 2003, pp.
5–pp.

[26] T. Wescott, Applied control theory for embedded systems. Elsevier,
2011.

[27] I. Pan, S. Das, and A. Gupta, “Tuning of an optimal fuzzy pid controller
with stochastic algorithms for networked control systems with random
time delay,” ISA transactions, vol. 50, no. 1, pp. 28–36, 2011.

[28] S. C. Bengea and R. A. DeCarlo, “Optimal control of switching
systems,” automatica, vol. 41, no. 1, pp. 11–27, 2005.

[29] G. K. McMillan, D. M. Considine et al., Process/industrial instruments
and controls handbook. McGraw Hill, 1999, vol. 7.

[30] P. D. Pearson, M. L. Kamil, P. B. Mosenthal, R. Barr et al., Handbook of
reading research. Routledge, 2016.

[31] H. Fairhead, “Micro: bit iot in c,” 2016.
[32] git scm.com. (2018, June) Git version control system. [Online].

Available: https://git-scm.com/
[33] N. Matloff and P. J. Salzman, The Art of Debugging with GDB, DDD,

and Eclipse. No Starch Press, 2008.
[34] F. S. Foundation, GNU Make Manual. Free Software Foundation, 2016.
[35] J. Catsoulis, Designing Embedded Hardware, 2nd ed. O’Reilly, 2005.
[36] H. Berger, Automating with STEP 7 in STL and SCL: SIMATIC S7-

300/400 programmable controllers. John Wiley & Sons, 2014.
[37] D. T. Andrew Hunt, The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley Professional, 1999.
[38] S. McConnell, Code Complete, 2nd ed. Microsoft Press, 2004.
[39] F. Sanfilippo, H. Zhang, K. Y. Pettersen, G. Salvietti, and D.

Prattichizzo, “ModGrasp: an open-source rapid-prototyping framework
for designing low-cost sensorised modular hands,” in Proc. of the 5th
IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob), Sao Paulo, Brazil ˜ , 2014, pp. 951–957.

