

Improving Student’s Engagement Through the Use of

Learning Modules, Instantaneous Feedback and

Automated Marking

Prapa Rattadilok

School of Computer Science

University of Nottingham

Ningbo, China

prapa.rattadilok@nottingham.edu.cn

Chris Roadknight

School of Computer Science

University of Nottingham

Ningbo, China

chris.roadknight@nottingham.edu.cn

Abstract—Assessment is central in effective teaching. This

research sets out to discover the impact and effectiveness of

timely assessment and feedback on student performance and

engagement. Qualitative and quantitative data is collected from

two cohorts of students with different levels of engagement. We

have shown that more regular feedback and engagement resulted

in a significantly improved pass rate and average mark. In

conclusion, enabling timely assessment and feedback can improve

student performance and give educators tools that make this

process more manageable.

Keywords—instantaneous feedback; student engagement;

learning modules; automated marking

I. INTRODUCTION

Because it is impossible to predict what students learnt with
any certainty, assessment is therefore commonly used to
determine whether any teaching activites resulted in intended
learning. There are a number of different types of assessment
methods, whereby formative and summative assessments are
among the most commonly used. While summative
assessments are used to record and report on students’ overall
achievement at a given point, formative assessment is one of
the most powerful ways of improving student’s learning
achievement through feedback [1].

Assessments’ feedback is one of the most powerful
influences on the learning of students [2]. It can also be
considered as a retention strategy particularly during the first
year of university by lessening student’s performance anxieties
and intensifying their perception of academic support that are
available. In addition to that, the process of providing feedback
itself can also be used to inform the teacher regarding students’
understanding gaps for ongoing curriculum development [3].

Various forms of generic feedback can be provided rapidly
and cost-effectively. However, benefits to students are
constrained to mainly signaling weaknesses in knowledge in
comparison to personalised feedback. Timeliness of the
feedback is also vital in motivating students in the process of
competency achievements. Feedback that shortly follows an
assessment allows students to reflect on their own performance
while it is fresh in their minds, whether this be regarding their

strengths and weakness. This further builds on their capabilities
and addresses deficient areas [4]. Nevertheless, personalised
and timely feedback can pose challenges in terms of time and
logistics particularly for large cohorts.

A virtual learning environment is used to automatically
deliver personalised and timely feedback to two different
cohorts of first year computer science students. Combining this
with the use of learning modules [5] enables a deeper feedback
process, this feedback process aims to answer the following
three feedback questions: Where am I going? How am I going
and Where to next? [2]. This paper compares students’
performance of the two cohorts, prior and following the
implementation of automated personalised feedback.

II. MARKING AND FEEDBACK

Marking provides feedback to students and helps teachers
identifying areas of student misunderstanding. Research [6]
suggested that good feedback should address both cognitive
and motivational factors at the same time. For cognitive factors,
this includes highlighting what stage they are at in their
learning and what to do next. On the other hand, motivational
factors develop once the student feels that they have control
over their own learning.

Surveys [7][8][9] indicate the differences in guidelines for
feedback strategies and feedback content, which vary greatly
between institutions. In particular, emphasises the need to
inform students as early as possible regarding the differences in
the feedback process at university and school levels [10].

Digital feedback has only gained more popularity in recent
years [9][11]. The use of text-editing tools, voice-recorded
feedback, and web-based feedback are some examples of
digital feedback. Although they can be made available to the
students relatively promptly, none of these surveys discuss
instantaneous and automated feedback.

III. AUTOMATED FEEDBACK

Instantaneous and automated feedback is an emerging field
of research in teaching and learning. The scalability challenge
in lecture theaters as well as in Massive Open Online Courses

(MOOC) have fueled the need for automated feedback. Two
main areas where automated feedback have been used are
language learning [12][13][14] and computer programming
[15] [16][17].

National Language Processing (NLP) was used in [12] to
extract linguistic features and evaluate the submitted piece of
works according to syntax and topical features. Researchers in
[13] apply machine learning to the task of evaluating ‘English
as Second Language’ students. Their technique focuses on
writing aspects such as grammar, spelling, sentence diversity,
structure and organisation. The benefit of having automated
feedback in particular is highlighted in [14]. Computerised
feedback, which was inserted into student’s work, became a
productive source for learning as evidenced by the increased
quality of each subsequent written draft by students.

Learning computer programming is somewhat similar to
language learning. There is a clear set of syntax and structure
that needs to be followed to produce a desirable outcome.
Although there may be a number of approaches to achieve the
same outcome, the complete specifications are known and the
mistakes are predictable [15]. In [16], 69 different tools for
learning programming were evaluated. Although mistakes are
the most common type of feedback, many provide no
knowledge on “how to proceed” and do not provide alternative
solutions. In [17], the use of a plugin, FrenchPress, was
evaluated in helping the learners learn how to program. Rather
than focusing on compile-time, run-time or logical errors,
FrenchPress targets the programmer’s shortcomings whereby
the programming environment does not alert them, such as
better use of data type e.g. using constant instead of variable, or
public instead of local variables.

IV. LEARNING MODULES

Learning modules [5] is a package of teaching material
consisting of a sequence of activities and provisions of
evaluations. From students’ perspective, learning modules
provide benefits in terms of: instant feedback to the learner;
optional, self-continuative and recycling paths to achieve the
learning objectives; and individualised use of instructions.
From the teachers’ perspective, learning modules provide
benefits in terms of: the tracking student’s learning progress;
improvement of teaching instruction through behavioural
observation of students, resulting from the learning outcomes
achieved by the students; and the enabling of learning outside
of the teacher’s presence. Fig. 1 [18] shows an illustrative
presentation of learning modules.

Fig. 1. Illustrative representation of learning module.

The ideal instructional model for learning modules is to
itemise the subject content into a collection of concepts for
students to work through and their performance can then be
evaluated based on their competency. The responsibility for
working through these collections of concepts is placed on the
students with the teacher’s role being to evaluate, comment and
guide. A student can work on a single concept repeatedly, or
several students can work on concepts simultaneously.

Learning modules maximise the use of technology to
effectively enhance the occurrence of learning outside of
classrooms. This shifts the teaching focus away from verbalised
instruction. The teacher, as the orchestrator of learning
activities, advises the students according to the learnt content
the students have demonstrated. Rather than focusing on what
has been taught, the student’s performance and progress are
evaluated.

V. THE THREE FEEDBACK QUESTIONS

An ideal learning experience or environment requires both
teachers and students to seek answers to these three questions:
1) Where am I going?, 2) How am I going?, and 3) Where to
next?. Unfortunately, teachers very often do not consider
feedback given to students as learning possibilities for
themselves [2].

The attainment of learning objectives related to the task or
performance, i.e. “Where am I going?”, can be judged on
many dimensions. For example, direct “passing a test”;
comparative “doing better than last time”; or even automatic
and triggered outside of specific awareness “seek more
challenging tasks”. The last dimension promotes goal-directed
action thus establishing the conditions for ongoing learning.

The information related to a task or performance can be
measured according to some expected standard. This could be
in relation to prior performance, or to success or failure on a
specific part of the task. This measurement of progress can be
given by the teacher, peer, task or themselves. It can be used to
infer how the student should proceed i.e. “How am I going?”.

The final feedback question to be addressed is “Where to
next?”. Rather than offering sequential instruction, feedback
can be used to provide information that leads to greater fluency,
learning and automaticity as well as deeper learning. For
example, sign-posting to enhanced challenges, more
information about what is and what is not understood.

VI. THE INSTANTENEOUS FEEDBACK AND AUTOMATED

MARKING PLATFORM

A traditional programming task normally consists of a set
of objectives and constraints (Fig. 2). Students often self-assess
the software they developed according to the level of similarity
of their output based the given objectives. However, problems
arise particularly when the students are starting to learn how to
program e.g. during practical sessions, as this assumption may
not necessarily always be correct.

Fig. 2. Example of a traditional programming task.

This may therefore impact the overall levels of engagement
and in-class interactions, as students may choose to never
interact with their tutors during the practical sessions.
Consequently, they miss opportunities to learn skills that could
enhance their learning experience and subject-matter
knowledge on the practical session topic. This issue can be
exacerbated, especially for summative assessments, as students
are evaluated based on the number of objectives and constraints
they have achieved. In addition to this, their naive self-
assessments during their practical sessions may have a long
term impact on the efficiency of a piece of code and their
coding style.

To evaluate the effectiveness of using learning modules to
address the three feedback questions, the instantaneous
feedback and automated marking platform (iFaME) was piloted
using an off-the-shelf virtual learning environment. iFaME
exploits fill-in-multiple-blanks and jumbled-sentences (Fig. 3)
to automate the feedback and the marking for each
programming task. While fill-in-multiple-blanks focus on
evaluating students’ understanding of syntax, jumbled-
sentences evaluate both students’ programming logic and
syntax. A set of statements can be selected to address the given
instructions similar to what is shown in Fig. 2.

Fig. 3. Example of a jumbled-sentence task.

Traditional programming tasks for practical sessions are
organised into weekly journal entries. Each journal entry is
divided into mandatory and supplementary sets of tasks. The
supplementary sets of tasks are aimed at catering for the
occasions where skilled students can gain additional practice.
Students have two options in completing each journal entry.

They can choose to complete a journal entry by programing
from scratch, or by using iFaME.

While the feedback on iFaME is pre-specified, any journal
entries that are completed by programming from scratch are
manually assessed and given feedback by the tutors. Although
the assessment and feedback for this option is not as
instantaneous as iFaME, the tutors delivered the assessment
and feedback for all submissions within a week of submission.

Fig. 4 compares the level of engagement between two first
year computer science students. To protect their identities, the
names of the students are anonymised to student A and student
B. Each pie chart illustrates the level of engagement for each
student. Three components are monitored, including the lecture
slides, practical programming tasks and others (e.g. student’s
satisfaction surveys). The level of engagement for each of the
three components are measured based on the amount of time
students spent on different types of content. In Fig. 4, these
three components are represented using red, blue and yellow
respectively. As shown, both of the students spent most of their
time in carrying out their practical tasks. Student B (i.e. the
right pie chart) has a more balanced level of engagement
between different types of content when compared to Student A
(i.e. the left pie chart).

Fig. 4. A comparisons of the level of engagement on different learning

contents i.e. the lecture slides (red), practical programming tasks (blue) and

others (yellow) between two students: A (left) and B (right).

Having observed this behavioural patterns, and in order to
promote student engagement [19], students are permitted to
retake all of their summative assessments. The number of
permitted attempts is three due to the administrative efficiency.
The rest of this paper discusses the implementation outcome for
a first year ‘Programming in C’ module. The cohort consists of
400 students with a mixed background in computer
programing. The outcome compares the performance between a
previous cohort of students when completing a traditional
programming task.

According to our demographic survey, the two cohorts do
have similar programming background. There are 5% of the
students with experience in C programming language, 10% of
the students with experience in C and at least one other
programming language, the rest of the students either have no
programming experience at all or having only non-C
programming experience.

VII. IMPLEMENTATION OUTCOME

Fig. 5 compares the performance of the two cohorts using
histograms. When comparing the performance from the
previous cohort in the top graph, the number of students who

	

	

failed the module, (i.e. scoring below 40), was lower and the
average score of the students increased by 14%.

Fig. 5. A comparisons of the performance between the two student cohorts:

previous year (top) and this year (bottom).

Fig. 6 compares behavioural patterns of the two cohorts,

where x-axis represents the timeline and the y-axis represents

the count of students that engage with the learning materials.

As illustrated, the previous cohort (i.e. the top graph) focused

their study closer to their summative assessment period,

whereas the behavioral pattern for the current cohort is much

more evenly distributed.

Fig. 6. A comparisons of the quantity of accessing learning contents between

the two student cohorts: previous year (top) and this year (bottom).

Fig. 7 demonstrates student feedback for the 2 questions:

“Journal entries keep me engaged with the learning?” (i.e. pie

chart on the left), and “Being able to resit summative

assessments helps me work harder on my learning progress”

(i.e. pie chart on the right) respectively.

Fig. 7. Survey results on the question “Journal entries keep me engage with

the learning?” (left), and “Being able to resit summative assessments helps me

work harder on my learning progress” (right).

At the end of year qualitative surveys, students were asked
“What have you most liked about this module?”. The answers
are largely positive. Example responses related to the learning
modules and iFaME include “the journal entries are very
intuitive and progressive”, “the use of resits and the amount of
provided supplementary tasks give me opportunities to study
harder on the topics I realised I am not very good at.”, “Both
the automated assessment and programming from scratch help
me practice my coding skills in different ways”, “the range of
automated assessments available are impressive”.

Students were also asked “Would you prefer a mixture of
different assessment methods? (i.e. fill-in-multiple-blanks,
jumbled-sentences and programming from scratch)”, 60%
responded “Yes”. The survey also asked if the students think
they should be involved in the design of their assessment
methods. 80% of the students answered “Agree” and “Strongly
Agree”.

VIII. CONCLUSIONS AND FUTURE WORK

The paper presents the use of learning modules,
instantaneous feedback and automated marking in addressing
the three feedback questions 1) Where am I going?, 2) How am
I going?, and 3) Where to next?. The implementation outcome
indicates positive changes in students’ studying behaviour.
iFaME allows students to revisit their prior knowledge,
organise their knowledge and eventually develop their
programming mastery, which is in line with the learning
module discussed in section IV. Students appear to be more
engaged with the learning materials as well as having a better
performance based on their summative assessment results.

According to the qualitative survey, the feedback from
students is also largely positive. Benefits for students include
enhanced learning experience through active-learning,
improved accuracy of students’ problem solving abilities in
programming, feedback is provided more efficiently and
therefore increases the number of opportunities where students
can tackle a variety of programming exercises. Due to the
success of this pilot study, the technique is now being
implemented on a second year JAVA programming module.
Many of the students indicated their excitement towards

learning programming even when that was initially their main
worries having had no previous programming experience. It is
the authors aim to develop an in-house software suite
specifically to implement this iFaME platform to enhance the
features available and to include additional programming
languages such as C++ and C#. The ease of use and design
features help clarify tasks for both staff and students.

Specific investigative objectives for this in-house software
suite include optimal design iFaME workbenches for both staff
and students, the viability of automatically generating iFaME
based programming tasks, coursework or examinations by
adding certain common mistakes to each model-answer codes,
and the possibility of applying iFaME in other STEM subjects,
such as engineering, and mathematics.

From the teacher’s assessment and feedback workload
perspective, having developed and applied iFaME for two
consecutive years, it was apparent that the workload was
significantly reduced in the second year. This was most
apparent in the reduction of time taken to provide feedback.

REFERENCES

[1] D. Wiliam, “Assessment: The Bridge between Teaching and Learning,”
Voices from the Middle, vol. 21, no. 2, December 2013.

[2] J. Hattie, and H. Timperley, “The Power of Feedback,” Review of
Educational Research, vol. 77, no. 1, pp. 81-112, March 2007.

[3] K. Weston-Green, and M. Wallace, “A method of providing engaging
formative feedback to large cohort first-year physiology and anatomy
students, ” Adv Physiol Educ, vol. 40: 393–397, 2016.

[4] T. Zehra, M. Tariq, S. K. Ali, A. Motiwala, J. Boulet, “Challenges of
providing timely feedback to residents: Faculty perspectives,” Journal of
Pakistan Medical Association, 65(10), 1069-1074, 2015.

[5] J. W. Robinson, and W. B. Crittenden, “Learning Modules: A Concept
for Extension Educators?,” Journal of Extension, 35-44, 1972.

[6] S. M. Brookhart. How to Give Effective Feedback to Your Students:
Alexandria, ACDC, 2008.

[7] Write Now, “Assessment, Feedback and Marking Practices,” no date.
[Online]. Available at: http://www.writenow.ac.uk/wp-content/uploads/
2010/12/writenowguide_assessment-designmarking-and-feedback_final.
pdf. [Accessed 18 August 2018].

[8] D. Copping, “Eliminating Unesccary Workload Around Marking,”
March 2016. [Online]. Available at: http://2fv5d843v9w22sxtto1ibxtu-
wpengine.netdna-ssl.com/wpcontent/uploads/2016/03/Marking_report_
240316.pdf. [Accessed 18 August 2018].

[9] V. Elliott, J. Baird, T. N. Hopfenbeck, J. Ingram, I. Thomson, N. Usher,
M. Zantout, J. Richardson, and R. Coleman, “A Marked Improvement?
A Review of the Evidence on Written Marking,” April 2016. [Online].
Available at: https://educationendowmentfoundation.org.uk/public/files/
Publications/EEF_Marking_Review_April_2016.pdf. [Accessed 18
August 2018].

[10] H. Jones, A. Bavage, A. Gilbertson, M. Gorman, J. Lodge, K. Philips,
and K. Yeoman, “Increasing the Quality of Feedback on Assignements
while Altering Student Perceptions of Good Feedback based on Their
School Experience,” June 2009. [Online]. Available at: https://www.
heacademy.ac.uk/system/files/jones_final_report.pdf. [Accessed 18
August 2018].

[11] Curtin University, “Assessment and Student Progression Manual:
Principles and Requirements,” no date. [Online]. Available at:
https://clt.curtin .edu.au/local/downloads/assessment/Feedback.pdf.
[Accessed 18 August 2018].

[12] J. Wilson and G. Andrada. “Using Automated Feedback to Improve
Writing Quality: Opportunities and Challenges,” Handbook of Research
on Technology Tools for Real-World Skill Development, pp.678-703,
2016.

[13] M. Liu, Y. Li, W. Xu, and L. Liu. “Automated Essay Feedback
Generation and Its Impact on Revision,” IEEE Transactions on Learning
Technologies, Vol. 10 (4), 2017.

[14] E. Cotos, “Potential of Automated Writing Evaluation Feedback,” 2011.
[Online]. Available at: https://pdfs.semanticscholar.org/8c62/9ecefde59
520845205 201df89c434615ea2e.pdf. [Accessed 18 August 2018].

[15] R. Singh, S. Gulwani, A. Solar-Lezama, “Automated Feedback
Generation for Introductory Programming Assignements,” PLDI, June
2013.

[16] H. Keuning, J. Jeuring, and B. Heeren, “Towards a Systematic Review
of Automated Feedback Generation for Programming Exercises,”
ITiCSE, July 2016.

[17] H. Blau, “Automated Style Feedbacl for Advanced Beginner Java
Programmers,” PhD Thesis, University of Massachusetts, 2015.

[18] Extend, “Teacher for Learning,” no date. [Online]. Available at:
https://extend.ecampusontario.ca/wp-content/uploads/teacher_for_learni
ng_module.pdf. [Accessed 18 August 2018]

[19] J. P. Hausknecht, C. O. Trevor, and J. L. Farr, “Retaking Ability Tests in
a Selection Setting: Implications for Practice Effects, Training
Performance, and Turnover ,” Journal of Applied Psychology, Vol. 87,
No. 2, 243–254, 2002.

