

Chan, Y. C., Gan, C. M., Lim, C. Y., Tan, T. H., Cao, Q. and Seow, C.
K. (2023) Learning CS Subjects of Professional Software Development and
Team Projects. In: 2022 IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE), Hong Kong, 04-07 Dec
2022, ISBN 9781665491174 (doi: 10.1109/TALE54877.2022.00020)

There may be differences between this version and the published version.
You are advised to consult the published version if you wish to cite from it.

https://eprints.gla.ac.uk/287297/

Deposited on 13 December 2022

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/51762.html
http://eprints.gla.ac.uk/view/author/49593.html
http://eprints.gla.ac.uk/view/author/49593.html
https://doi.org/10.1109/TALE54877.2022.00020
https://eprints.gla.ac.uk/287297/
http://eprints.gla.ac.uk/

Learning CS Subjects of Professional Software

Development and Team Projects

Yu Chyi Chan
School of Computing Science,

University of Glasgow

SIT@NYP Building

Singapore 567739
2609786C@student.gla.ac.uk

Tien Hwa Tan

School of Computing Science,

University of Glasgow

SIT@NYP Building

Singapore 567739

2609787T@student.gla.ac.uk

Chian Min Gan

School of Computing Science,

University of Glasgow

SIT@NYP Building

Singapore 567739
2609779G@student.gla.ac.uk

Qi Cao

School of Computing Science,

University of Glasgow

Glasgow, Scotland, UK

qi.cao@glasgow.ac.uk

ORCID: 0000-0003-3243-5693

Chun Yu Lim

School of Computing Science,

University of Glasgow

SIT@NYP Building

Singapore 567739
2609794L@student.gla.ac.uk

Chee Kiat Seow

School of Computing Science,

University of Glasgow

Glasgow, Scotland, UK

CheeKiat.Seow@glasgow.ac.uk
ORCID: 0000-0002-6499-9410

Abstract—Professional Software Development (PSD) course

is about the emerging profession of software engineering which

involves developing, deploying, testing, and maintaining

software. Currently, the Bachelor of Science with Honours in

Computing Science (CS) joint degree programme of University

of Glasgow (UofG) and Singapore Institute of Technology (SIT)

carries out both PSD and Team Projects (TP) courses

concurrently, where students are expected to apply the theory

learnt from PSD to real-world projects in TP. TP is a practical

project continuation from knowledge learnt in the PSD course.

Both PSD and TP last two trimesters in parallel. This paper

analyses the advantages and disadvantages of the current

learning methods in PSD and TP. It is possible that there is still

room for improvement in the current system. To further analyse

the current learning system, a comparison of how the Software

Engineering course is taught in other universities is also

performed, from where ideas and methodology are proposed.

The proposed methodology is analyzed and discussed from the

suggestions or feedback of the CS students who have gone

through both PSD and TP courses. The purposes are to improve

the learning effectiveness of both PSD and TP courses.

Keywords—Professional Software Development, Project-

based Learning, Software Engineering, Software Development

Life Cycle.

I. INTRODUCTION

Software Engineering or Professional Software Design
(PSD) teaches students knowledge of software development
life cycle (SDLC). SDLC knowledge includes topics of
software process modelling, software architecture, continuous
development, testing strategies, and software change
management, etc. [1]. The knowledge of team organisation
and software project management are also taught in this course
[2]. As an interdisciplinary course, Software Engineering or
PSD is offered to cohorts from multiple specialities, such as
computing science (CS), information & communications
technology, engineering, etc. Students with diverse
background are expected to apply PSD skills or practices to
design, develop, maintain, test, and evaluate computer
software. The intangible nature of software products makes
the learning of software engineering more complicated. This
makes software engineering or PSD a hard subject to teach.

Students in the higher education are taught theory
knowledge and process of SDLC [2]. But they are not exposed
to real-world software projects often. Software industry has

increasing demands for skilled professional software
developers equipped with Software Engineering knowledge.
It is necessary to train more software manpower from higher
education [3]. What students learned in higher education have
different focuses compared to the expectations from software
industry companies’ perspectives. Students do not have
sufficient SDLC experience in real software industries and are
often left unprepared for software projects in fast changing
working environments. There is a learning gap from the theory
knowledge into practical SDLC skills in higher education [4].
To close the learning gap, some universities including the
Bachelor of Science with Honours in CS joint degree
programme between University of Glasgow (UofG) and
Singapore Institute of Technology (SIT) offer courses for both
theory and practices [5]. In the curriculum of CS joint degree
programme between UofG and SIT, both PSD course and
Team Projects (TP) course are taught for two continuous
trimesters concurrently. Team Projects course is for students
adopting theory learnt from the PSD course and working in
real software projects with real-world software companies.
Students are grouped with 4 or 5 members for each software
project. The combinations of the PSD and TP courses could
provide students with the proper SDLC skill sets to anticipate
ongoing changes of the SDLC technologies.

Although the combination of theory and practice courses
is offered in the software engineering education, the learning
effectiveness of such approach may be varied from different
higher education settings. The motivation of this paper is to
improve the learning effectiveness of both PSD and TP in the
CS joint degree programme between UofG and SIT. As such,
the juniors enrol in the Bachelor of Science with Honours in
Computing Science degree can have a more effective learning
system and benefit more from the modules as well as be more
prepared to step out into the work industry with all necessary
SDLC skills equipped.

According to the students’ feedback, there are some
limitations in the current setting of concurrent commencement
of both PSD and TP. The research question for this paper
would be: How effective is the current software engineering
teaching method and how can it be improved?

The objective of this paper is to have a deep analysis of the
teaching method and efficiency of PSD and TP to identify
their current limitations and to propose ideas to improve the
learning process. Additionally, a comparison of the teaching

method of Software Engineering in SIT with other universities
is carried out in order to identify the areas of improvement to
improve the learning effectiveness of both PSD and TP.

II. RELATED WORK

This section discusses related works in the literature. The
pedagogy and methodology used are studied and analysed.

A. Using Experimentation As a Teaching Tool

It is not always possible to have complete or real-world
projects for students to work on due to resource constraints or
course goals. Kuhrmann and Munch [6] reported to use
experiments as a teaching tool in Software Engineering
courses. The course was organised in three phases. The first
phase (three weeks duration) were to provide the
fundamentals required. In the second phase, students worked
on the chosen topic and prepared small presentations as well
as essays. The third phase wrapped up the course and reflected
on the experiments. Experiments aid in identifying and
analysing a problem to develop solutions, with quick feedback
and learning allowed. Having a controlled environment allows
students to experience risks and failure scenarios, as well as
improve communication and collaboration skills. But the class
size may be limited with this method.

Similar methods were also studied by other researchers,
with an example presenting in [7].

B. Teaching Software Engineering without a Project

Component

Most project-centric courses assume students already have
software engineering or PSD knowledge and skills, despite
some of the materials not being covered. The students are
often expected to start the project before they learn the
concepts, resulting in them learning these concepts after they
have been working on the project for weeks, and often too late
to apply them.

To prepare students for future projects courses, a course
aimed at teaching software development principles and
practices was designed and delivered without a project
component for second-year undergraduate CS students [8].
The class consisted of three units and each unit ended with an
examination. There were two lectures weekly and students
had two weeks to complete the assignments.

In addition to learning programming, students learned how
to share their codes effectively with their peers. They also
learned basic design and usability principles, and how to use
existing architectural and design patterns to maximise
changeability in an iterative process.

After the course, students were prompted to provide
feedback anonymously. The majority of them found that the
assignments were useful and relevant. Surprisingly, students
preferred on-demand access to the recorded lectures more than
live lectures, even though they were not able to ask questions
in the recorded lectures. However, some students commented
that the assignments should be scaled down. Overall, the
course was a successful one that met the learning objectives.

C. Teaching Software Engineering with Project Component

Some institutions designed a project-based software
engineering course. A teaching experience report [9] describes
that teaching theoretical concepts without linking them to
practical applications may discourage the learning of students.
Hence, they proposed project-based learning approach,

combined with project management to create an environment
that allowed students to deal with managers and real
stakeholders. The purpose was to expose students to the
realities of working on a software project in a corporate
setting. The lectures were mixed with project lessons,
allowing students to grasp theory before applying it to the
project. The project was divided into four stages, each of
which was linked to the subject covered in previous lectures.
The four stages included requirements elicitation, planning &
modelling, prototyping & systems integration, and
presentation to stakeholders. The pedagogy was a success, and
the students were enthused about it. However, some of the
challenges encountered were: unbalanced groups of
undergraduate students, varied times of each stage, and lack
of planning and integration of the projects.

Majanoja and Vasankari [10] reflected their experience in
organising capstone projects in a software engineering course.
Based on the results, the technical aspects imposed significant
challenges on the students. This was due to a lack of coding
skills and resources to provide detailed technical guidance on
all team-specific issues. Hence, it suggested strengthening
students’ technical skills before the project [10].

Recent advances in release management and collaboration
workflows reduce the effort of students and instructors during
delivery while also improving the quality of the deliverables.
Bruegge et al. [11] presented Rugby, an agile process model
based on Scrum that allows reacting to changing needs.
Additionally, Tornado, a scenario-based design method that
emphasises the use of informal models for client-student
interaction was used to improve early communication.
Students can deal with changing requirements, produce
several releases, and get client feedback during the course
using the combination of Rugby and Tornado.

Agile software development was identified as the major
software engineering trend [12]. However, it is discovered that
course materials and structure tended to deviate from real-life
scenarios. It was suggested to combine Software Engineering
courses with industry internships, so that students can learn
agile practices and take on challenges in a professional setting.

D. Enhancing Learning using Reflexive Weekly Monitoring

The addition of Reflexive Weekly Monitoring (RWM)
was explored to streamline the process of learning software
engineering in conjunction with normal programming projects
in an academic environment [13]. It was recommended for
cases where novice developers run projects in teams while
simultaneously taking other courses that may require the use
of software engineering practices [14].

The RWM method was conceived to monitor development
teams in a software engineering undergraduate course [13]. It
used self-reflection and collaborative learning practices to
help students be aware of their individual and team
performance. It ensured that the module coordinators were
aware of the progress of each student through weekly updates.
The results obtained indicated that RWM was effective in
enhancing the learning experience in the given scenario. 18
out of 32 teams in the study indicated that the monitoring
sessions helped them increase their effectiveness,
coordination, and sense of belonging to a team, but did not
necessarily help their productivity.

E. Teaching using Integrated Active Learning Tools

Active learning is a technique of teaching that involves
students actively engaging with course material through
conversations, problem-solving, case studies, role plays, and
other ways [15]. The use of active learning or teaching tools
complements lectures and makes them more interesting for
students while helping them in retaining knowledge.

To improve software engineering education by aligning it
with academic and industry best practices, active learning
teaching tools was developed in [16], consisting of class
exercises, case studies, and case studies videos in partnership
with the industry. 60 hours of software verification and
validation (V&V) were created. The results showed that the
software engineering knowledge taught through lectures was
reinforced by this pedagogy.

A similar approach was also adopted at the University of
Brasilia [17], that used a methodology of combining Problem
Based Learning with Learning by Teaching. They believe that
by having to teach another person the same concept, a person
will learn more effectively. The students were required to
produce questionnaires and videos to present their studies. The
results showed that this learning environment was engaging
and empowering students’ learning. However, more time and
effort were needed and some students were not interested.

Team-Based Learning (TBL) is one of the methodologies
of active Learning. It is a form of structured small-group
learning that emphasises students' preparation outside of class
as well as the application of knowledge within a class [18]. An
experience report [19] presented that adopting of TBL in
software engineering courses demonstrated an increase in
student engagement.

F. Teaching using Free Open Source Software

Educators have also been exploring using free open source
projects as a teaching tool in software engineering courses.
The term open source refers to software that has source codes
that anyone can inspect, modify, and enhance [20]. Dorodchi
et al. [21] have designed a course that focused on open-source,
teamwork and modelling to teach the fundamentals of
software programming. Students had the opportunities to
work with open-source software to simulate working on an
industry project and learn agile development. By using the
open-source software, they have applied reverse engineering,
software modelling, and project modification to include new
features. Based on the results, students were dissatisfied with
open source activities primarily because of the challenges
associated with installation, configuration, and running on
different operating systems. However, the impact of open
source and teamwork were observed to be positive overall.

An experience report [22] showed that a collaboration with
a large free open source software project could allow the
students to gain benefits by incorporating principles of
Project-Based Learning and Service Learning. Through the
project, teachers could also teach several essential software
engineering along the way. The experience was beneficial and
invaluable for students, the teaching team as well as the open-
source community.

Another group of educators from Towson University [23]
introduced five learning activities using open source software
as a teaching tool for software testing to provide students with
real-world hands-on software testing knowledge and
experience.

To learn more about the students' challenges, benefits, and
attitudes toward working with open source software, Pinto et
al. [24] conducted 21 semi-structured interviews with the
students. Students reported that there was an improvement in
their technical skills and self-confidence. Some of them found
it extremely crucial for instructors to be involved with open
source initiatives.

G. Teaching Software Engineering using Gamification

Gamification has been getting popular in educational
settings [25]. Akpolat and Slany [26] from Graz University of
Technology made use of gamification to enhance software
engineering student engagement in an extreme programming
course. The 50 student volunteers were randomly placed into
five teams and were required to work on a pacific challenge
about one of the extreme programming practices every week.
The winning team of the week was rewarded with the
challenge cup. Participants reported that they were learning
more with gamification. There was also a discernible trend
toward more intensive use of a practice that had been the focus
of a weekly challenge.

Studies reported in [27] and [28] revealed a positive
impact of gamification in teaching. Students felt more
motivated and the approach enhanced their learning
experiences.

III. METHODOLOGY

SDLC methodologies, the practices, and processes that are
used by software developers teams as a direction to
manoeuvre through the SDLC successfully. This section
covers the current learning method and the proposed method
of the PSD and TP courses in our CS joint degree programme.

A. Current Learning Method

In the current learning method, students are taught SDLC
theory in the PSD course. In parallel, our university works
with real customers from software industry for the real-world
software projects in the TP course. It is to provide students the
real working experience to interact with software companies.
It allows students to practice while learning knowledge in the
PSD course concurrently. In TP projects, team members are
randomly assigned and tasked to bid for the projects that
interests them. The learning process is segmented into six
stages for the TP, mainly the Requirement Gathering day, four
series of sprints with meeting the real customers monthly, and
a Final Demonstration day.

As mentioned, the curriculum for PSD works in parallel
with TP as well as many other modules. The course is
designed to have students learning SDLC and working on a
TP project in parallel. The learning outcomes including some
key topics taught in the PSD course are shown as follows.

• Carry out selected software process models and
Unified Modeling Language (UML) design for
professional software development.

• Design and implement software architecture in SDLC.

• Perform software validation, verification, and testing
for the developed software systems.

• Conduct software refactoring to enhance software
functional and non-functional requirements.

• Ensure delivering high quality software under resource
constraints by software project management and agile
software development skills learnt in this course.

The learning journey for PSD includes weekly mini-
quizzes, physical tutorials, two tests, a team project, and an
examination. The weights of the assessment components are
arranged next: weekly pop-up mini quizzes; 22% for each of
the test 1 and test 2 as the closed-book tests physically
conducted in the classroom settings; 20% for a team-based
coursework project with four students per group; and 30% for
the final exam in the classroom setting. The weekly pop-up
mini quizzes are for the purpose of improving the student
attainments in the course. The pop-up quizzes are conducted
at random timing during each lecture, with multiple-choice
question (MCQ) formats to test the students’ understating on
contents described in the same lecture. The pop-up quizzes are
to examine if students follow the lecture discussions or not on
the spot. But there is room to enhance the way of the pop-up
quizzes been conducted, as there are currently no result
statistics for each MCQ question on how many students made
mistakes on which MCQ option.

1) Weekly Mini Quizzes
Students are required to participate in pop-up mini-quizzes

during the lecture at random times throughout the lecture
period. As believed, this is to ensure students pay attention
during lectures, provide interactive sessions for the lecture and
allow students to gain a deeper understanding. It contributes a
total of 6% to the total mark for the assessment.

2) Tests
The current module consists of 2 tests, with one set before

the recess week and another before the final examination. The
first half of the assessment focuses more on the understanding
and application of different UML Diagrams. Whereas the
second half is on software management and code refactoring.
Also, it contributes a total of 44% in total which is only
slightly less than both examination and project report adds up.
However, each of the tests weighs higher than the project
report alone.

3) Project Report and Final Examination
The project report requires the students to undertake two

project topics from the existing Team Projects. The teams are
required to understand and apply what they have learned from
the lecture. Teams are formed by students themselves, with
the experiences and knowledge from the team project they are
working on. The final section filled the remaining 50% of the
entire assessment percentage.

4) Team Project Learning Method
The current learning method for TP ensures individuals are

equipped with skills that are not just knowledge received from
books. It shapes students to be self-disciplined and
communicate as a team. It guides the team to meet deadlines
and ensure timely deliverables while meeting customers'
expectations.

B. Limitations Identified

As mentioned, the current method allows the students to
learn and apply the SDLC knowledge concurrently.
Customer collaboration allows students to have the
opportunity to experience a real-world tradeoff in terms of
meeting customers' expectations. Students will be able to
respond independently when problems arise. The application
of software knowledge enhances the understanding of

students. The monthly progress demonstration also allows
them to improve themselves in terms of communication
skills.

The group assignment of PSD allows students to be
software architects. They can redesign the current project
using the knowledge learnt in PSD. This enables them to
identify flaws in the current project planning, encouraging
potential future improvement.

During the project closure phase, students are taught how
to carry out code refactoring and testing, enhancing the
quality and robustness of the software before handing it off
to the customers. This invaluable experience is beneficial to
future software projects.

However, there are various limitations to the current
teaching method. Some of the limitations identified in this
paper are knowledge not taught in time, different project
difficulties and group formation.

As responded, some of the applications in software
engineering do not meet the timeline of the TP. For instance,
the UML Diagram was taught in PSD too late as teams were
nearing the end of the TP when it was taught.

Secondly, the project scope of the various Team Projects
had varying difficulties and different domains which makes
it unfair for the teams that got the higher difficulty projects as
they may not be equipped with the necessary skillset and
require extra training themselves which results in inconsistent
deliverables.

Moreover, group allocation methods have impact to
learning experience [29]. Currently, the groupings of students
in TP are randomly assigned before having to choose the
topics. The general interest of the team might be different,
leading to students being unmotivated in their work,
negatively impacting their contribution to the project as well
as the quality of software produced. The lack of motivation
thus leads to them not contributing as much as other
teammates that are passionate about the project which may
result in an unfair workload on some team members therefore
team morale is affected.

To add on, the change in team members for PSD changes
the momentum as everyone is relatively new to their own TP
and was required to grasp a deep understanding of other
projects may not be ideal due to the huge range of projects
available. Therefore, an additional effort has to be spent to
understand another project which could prove to be a hurdle
as the amount of time provided for the completion of the
assignment is limited.

To resolve the limitations, the ideas proposed in this paper
are knowledge to be taught earlier, choosing the TP projects
before forming the groups, and making use of gamification to
improve the overall experience.

C. Proposed Learning Method

Given the analysis of the advantages and limitations of the
learning method, this paper proposes three methods to help
improve the delivery of the courses of PSD and TP.

Firstly, the PSD theory should be taught beforehand to
students before embarking on the TP project as mentioned in
[8], especially knowledge of project planning and high-level
design of the software. Having proper project planning is
extremely essential to ensure the project starts right. Hence,

instead of running PSD and TP concurrently, fundamental
software engineering knowledge should be delivered a few
weeks before the start of the TP projects allowing students to
have enough time to digest questions about uncertainty. Such
a method would greatly improve the knowledge and enable a
better understanding of the implementation of the project in
different sprint phases.

Secondly, to address the current limitations, we propose
that the team members should be able to choose the projects
that they are interested in before they are grouped. This would
ensure that all teammates would have the same interest and
thus have higher motivation to do the project. Additionally,
with similar interests, the team could be able to function better
as everyone has a common goal. Furthermore, we would like
to propose the grouping for PSD and TP to be the same, so
that students do not need to spend more effort trying to
understand another project in addition to their current one.

Thirdly, we suggest adding gamification elements to the
teaching of the course as proposed in [26]-[28],[30]. A
leaderboard could be set up to display the scores students
obtained using Kahoot. We believe that this method can
encourage student engagement in the lecture. Additionally, a
healthy competition could be introduced between peers to
further improve students' engagement and interaction with fast
processing. As reported in [31], Kahoot enhanced student
learning in the classroom, with the greatest effects reported on
classroom dynamics, engagement, motivation, and an
improved learning environment.

With these methods being proposed, they are presented
and explained to the Year 2 students in the CS joint degree.
Students are asked to provide their feedback according to their
own personal learning experience in the PSD and TP courses.
It is to measure how learners think is the proposed methods
could address some of their concerns in the learning of these
two courses. The survey questionnaires are conducted to
validate the proposed methods next.

IV. RESULTS AND ANALYSIS

According to our proposed methods to improve the
learning effectiveness of the PSD and TP courses, survey
questionnaires are conducted to gather the feedback and
comments of students from the Bachelor of Science with
Honours in CS joint degree programme of UofG and SIT.

Fig. 1. Prior software engineering expertise.

20 participants out of 116 students are randomly invited
from the cohort. We first ask if these participants have any
prior experience in Software Engineering or PSD. Then
according to the response, they rate their experience in the
courses of PSD and TP, and how likely they will apply the
knowledge they learnt in PSD in the future software

development projects. They are also requested to share their
feedback on the proposed methods.

Out of the 20 participants, 80% have prior experience in
software engineering or PSD, while 20% do not have any
experience before the PSD course as shown in Fig. 1. For
those students with prior PSD knowledge, about 80% of them
rate that they will highly likely apply the PSD knowledge in
the future software projects.

Fig. 2. How likely to apply knowledge for those without prior experience.

Whereas for participants with no software engineering
knowledge, 75% of them vote that they will apply the PSD
knowledge learnt into software projects as shown in Fig. 2.
This shows that the current teaching method has a positive
impact on learning.

Fig. 3. Rating of satisfaction.

As shown in Fig. 3, most participants have a satisfactory
experience with the course of PSD and TP. Despite the
positive rating, participants have also feedback that there is
room for improvement in the current teaching method. Some
participants find that the concurrent teaching of both PSD and
TP courses does not allow them to have time to fully grasp
the knowledge due to a tight academic schedule and high
commitment needed for TP, resulting in them producing
subpar work for their TP. Additionally, some of the projects
require them to explore a new field or technology. Extra
efforts are needed to meet the expectations of the customers
from the real software companies.

With regards to the teaching methods for PSD, with a scale
above 7 as the benchmark, 70% find that the current method
is effective, especially with the weekly lecture pop-up
quizzes which increase their attention in class. Some
participants have feedback that the continuous assessment
enabled them to study the knowledge consistently without
having to study everything at once before the final
examination. There is also feedback such as the weekly
physical tutorial sessions should be changed to online
teaching as the time to travel to campus is longer than the
length of the 1-hour tutorial sessions. They would prefer

online learning especially if there is no other lesson on the
day of the tutorial.

65% of the participants have the opinion that the current
delivery of the PSD course is related to TP. However, the
other participants find that the contents taught are not quite
related as their selected projects do not allow them to apply
most of the knowledge learnt in PSD.

For the first proposed method on having the PSD theory be
taught first, followed by the TP projects at later time, instead
of the concurrent progress of both courses, most participants
support it. It is observed the rating is 4.05 out of 5 in the
Likert scale, as shown in Fig. 4.

Fig. 4. Ratings for PSD knowledge to be taught before TP projects.

For the second proposed method on the group formation
that allows students to choose their group members with the
same interest on TP projects scopes, the responses of the
participants are shown in Fig. 5, with rating at 4.05 out of 5
in the Likert scale.

Fig. 5. Participants’ ratings for group formation according to their interests.

Fig. 6. Ratings for incorporating Kahoot method instead of a weekly quiz.

The responses of the participants on the third proposed
method to add gamification elements in the PSD course are
shown in Fig. 6. Based on the feedback from participants, it
would be seen that the Kahoot method would be the most
popular option to be implemented in future teaching methods.
The participants have the opinion that through this method,
they would pay more attention to the lesson in order to score
better.

V. CONCLUSION

As the unique combinations of the PSD course and TP
course offered in the joint Bachelor of Science with Honours
in CS joint degree programme of UofG and SIT, it is an
interesting topic to analyze and discuss the learning
effectiveness from the viewpoint of students.

A few limitations of the current settings of PSD and TP
courses have been identified in the paper. To address these
limitations, three methods have been proposed to benefit the
future cohorts when learning these two courses. It is to
reiterate the importance of having to learn the PSD knowledge
first, rather than teaching of both PSD and TP in parallel. As
such, it serves to provide a better learning experience and
ensure that the students are fully equipped with the respective
needed PSD knowledge. As such, this proposed method
would greatly enhance the quality of work delivered to the
clients.

Providing some flexibility to students in the group
formations of TP courses can also bring positive benefits in
the learning. Using gamification component of Kahoot to
replace weekly pop-up quizzes will also enhance learning
enjoyment of students during the sessions. The assessment
weightage for quizzes could be reduced to improve overall
satisfaction without causing students to be demoralised even
if they do badly in the first quiz.

With the survey findings, it is evident that the methods we
propose and the feedback from the surveyees would bring
great improvement to the curriculum and enhance the overall
learning experiences of PSD and TP courses.

REFERENCES

[1] I. Sommerville, Software Engineering, Pearson Publisher, 2018.

[2] R. Ferdiana, “Software engineering education learning process for
professional developers,” Journal of E-Learning and Knowledge
Society, vol. 12, no. 2, 2016, doi: 10.20368/1971-8829/990.

[3] N. Assyne, H. Ghanbari, M. Pulkkinen, “The state of research on
software engineering competencies: A systematic mapping study,”
Journal of Systems and Software, vol. 185, 2022, doi:
10.1016/j.jss.2021.111183.

[4] D. Oguz and K. Oguz, "Perspectives on the Gap Between the Software
Industry and the Software Engineering Education," IEEE Access, vol.
7, 2019, doi: 10.1109/ACCESS.2019.2936660.

[5] D. Hussain and L. Söderlindh, "Software engineering, bridging theory
and practice in an agile learning environment," in IEEE Global
Engineering Education Conference, 2022, pp. 541-546, doi:
10.1109/EDUCON52537.2022.9766486.

[6] M. Kuhrmann and J. Munch, "Enhancing Software Engineering
Education Through Experimentation: An Experience Report", in IEEE
International Conference on Engineering, Technology and Innovation,
pp. 1-9, 2018, doi: 10.1109/ICE.2018.8436357.

[7] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A.
Wesslén, Experimentation in software engineering. Springer Berlin,
Heidelberg, 2012, doi: 10.1007/978-3-642-29044-2.

[8] P. McBurney and C. Murphy, “Experience of teaching a course on
software engineering principles without a project,” in 52nd ACM
Technical Symposium on Computer Science Education, 2021, pp. 122–
128, doi: 10.1145/3408877.3432550.

[9] M.L. Fioravanti, B. Sena, L.N. Paschoal, et al., “Integrating Project
Based Learning and Project Management for Software Engineering
teaching,” in 49th ACM Technical Symposium on Computer Science
Education, 2018, pp. 806–811, doi: 10.1145/3159450.3159599.

[10] A. Majanoja and T. Vasankari, “Reflections on teaching software
engineering capstone course,” in 10th International Conference on
Computer Supported Education, 2018, pp. 68–77.

[11] B. Bruegge, S. Krusche, and L. Alperowitz, “Software engineering
project courses with industrial clients,” ACM Transactions on
Computing Education, vol. 15, no. 4, pp. 1–31, 2015.

[12] O. Cico, L. Jaccheri, A. Nguyen-Duc, and H. Zhang, “Exploring the
intersection between software industry and Software Engineering
Education - A systematic mapping of software engineering trends,”
Journal of Systems and Software, vol. 172, 2021.

[13] M.R. Marques, S. Ochoa, M.C. Bastarrica, and F.J. Gutierrez,
“Enhancing the Student Learning Experience in Software Engineering
Project Courses,” IEEE Transactions on Education, vol. 61, no. 1, pp.
63-73, 2018, doi: 10.1109/TE.2017.2742989.

[14] L.B. Sherrell and S.G. Shiva, “Will earlier projects plus a disciplined
process enforce SE principles throughout the CS curriculum?” in 27th
International Conference on Software Engineering, 2005, pp. 619-620,
doi: 10.1109/ICSE.2005.1553615.

[15] L. Saunders and M. Wong, “Active Learning: Engaging People in the
Learning Process,” in Book: Instruction in Libraries and Information
Centers: An Introduction, 2020, doi: https://doi.org/10.21900/wd.12.

[16] S. Acharya, P. Manohar, P. Wu, A. Ansari, and W. Schilling,
“Integrated active learning tools for enhanced pedagogy in a software
engineering course,” in ASEE Annual Conference and Exposition,
2016, doi: 10.18260/p.24318.

[17] S. Antonio Andrade De Freitas, W. C. M. P. Silva and G. Marsicano,
"Using an Active Learning Environment to Increase Students'
Engagement," in IEEE 29th International Conference on Software
Engineering Education and Training, 2016, pp. 232-236, doi:
10.1109/CSEET.2016.24.

[18] R. Mcdaniel, “Team-Based Learning,” Vanderbilt University, 2013.

[19] C. S. Ramos, R. A. Kosloski, E. Venson, et al., “TBL as an active
learning-teaching methodology for software engineering courses,” in
XXXII Brazilian Symposium on Software Engineering, 2018, pp. 289–
297, doi: 10.1145/3266237.3266253.

[20] “What is open source?,” Accessed: Apr. 10, 2022. [Online]. Available:
https://opensource.com/resources/what-open-source

[21] M. Dorodchi, E. Al-Hossami, M. Nagahisarchoghaei, R. S. Diwadkar
and A. Benedict, "Teaching an Undergraduate Software Engineering
Course using Active Learning and Open Source Projects," in IEEE
Frontiers in Education Conference, 2019, pp. 1-5, doi:
10.1109/FIE43999.2019.9028517.

[22] A. Tafliovich, F. Estrada, and T. Caswell, “Teaching software
engineering with free open source software development: An
experience report,” in Annual Hawaii International Conference on
System Sciences, 2019, pp. 7731–7741.

[23] L. Deng, J. Dehlinger and S. Chakraborty, "Teaching Software Testing
with Free and Open Source Software," IEEE International Conference
on Software Testing, Verification and Validation Workshops, 2020, pp.
412-418, doi: 10.1109/ICSTW50294.2020.00074.

[24] G. Pinto, C. Ferreira, C. Souza, I. Steinmacher and P. Meirelles,
"Training Software Engineers Using Open-Source Software: The
Students' Perspective," in IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Education and Training,
2019, pp. 147-157, doi: 10.1109/ICSE-SEET.2019.00024.

[25] “Gamification in education: What is it & how can you use it?,” True
Education Partnerships. Accessed: Apr. 1, 2022. [Online]. Available:
https://www.trueeducationpartnerships.com/schools/gamification-in-
education/

[26] B. S. Akpolat and W. Slany, "Enhancing software engineering student
team engagement in a high-intensity extreme programming course
using gamification," in IEEE 27th Conference on Software Engineering
Education and Training, 2014, pp. 149-153, doi:
10.1109/CSEET.2014.6816792.

[27] M. R. Souza, K. F. Constantino, L. F. Veado and E. M. L. Figueiredo,
"Gamification in Software Engineering Education: An Empirical
Study," in IEEE 30th Conference on Software Engineering Education
and Training, 2017, pp. 276-284, doi: 10.1109/CSEET.2017.51.

[28] R. Malhotra, M. Massoudi and R. Jindal, "An Innovative Approach:
Coupling Project-Based Learning and Game-Based Learning
Approach in Teaching Software Engineering Course," in IEEE
International Conference on Technology, Engineering, Management
for Societal impact using Marketing, Entrepreneurship and Talent,
2020, pp. 1-5, doi: 10.1109/TEMSMET51618.2020.9557522.

[29] Q. Cao, L.H.I. Lim, V. Dale, N. Tasler, “Experiences in Python
Programming Laboratory for Civil Engineering Students with Online
Collaborative Programming Platform,” in 14th annual International
Conference of Education, Research and Innovation, 2021, doi:
10.21125/iceri.2021.1305.

[30] Q. Cao, B.T. Png, Y. Cai, Y. Cen, D. Xu, “Interactive Virtual Reality
Game for Online Learning of Science Subject in Primary Schools,” in
IEEE International Conference on Engineering, Technology, and
Education, 2021, doi: 10.1109/TALE52509.2021.9678916.

[31] S. A. Licorish, H. E. Owen, B. Daniel, and J. L. George, “Students’
perception of Kahoot!’s influence on teaching and learning,” Research
and Practice in Technology Enhanced Learning, vol. 13, no. 1, 2018.

	Enlighten Accepted coversheet
	287297

