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Integration of Active Vision and Reaching From a
Developmental Robotics Perspective
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Abstract—Inspired by child development and brain research, we
introduce a computational framework which integrates robotic ac-
tive vision and reaching. Essential elements of this framework are
sensorimotor mappings that link three different computational do-
mains relating to visual data, gaze control, and reaching. The do-
main of gaze control is the central computational substrate that
provides, first, a systematic visual search and, second, the trans-
formation of visual data into coordinates for potential reach ac-
tions. In this respect, the representation of object locations emerges
from the combination of sensorimotor mappings. The framework
is tested in the form of two different architectures that perform vi-
sually guided reaching. Systematic experiments demonstrate how
visual search influences reaching accuracy. The results of these ex-
periments are discussed with respect to providing a reference ar-
chitecture for developmental learning in humanoid robot systems.

Index Terms—Biologically inspired robot architectures, develop-
mental robotics, robotic active vision and reaching.

I. INTRODUCTION

NGINEERING robot systems that interact autonomously,

purposefully, and safely within our daily environment
requires overcoming a number of challenges. One of the
major challenges is the integration of different sensor and
motor modalities, and the coordination of the many degrees of
freedom (DOF) intrinsic to complex robotic systems. Histori-
cally, learning and adaptation processes have been extremely
valuable in both mastering the aforementioned complexity, but
also in deriving optimal parameter settings. Such processes of
self-calibration and continuous adaptation also have the added
advantage of allowing robotic systems to deal with changing
and/or unconstrained environmental conditions.

Learning and adaptation, however, are not the final solution
to the problem of efficient coordination of high dimensional
systems. The reason being that any adaptation process will al-
ways perform poorly if applied to large parameter spaces. To
overcome this issue, additional strategies of task decomposi-
tion, and the application of time regimes within the incremental
learning process, must also be put in place. In other words, only
by building up task complexity in incremental stages, such that
all competences do not need to be learned at the same time, can
modalities be accurately and reliably linked together.

Manuscript received March 01, 2010; revised August 23, 2010; accepted
September 17, 2010. Date of publication September 30, 2010; date of current
version December 10, 2010. This work was supported by the EC-FP7 Projects
IM-CLeVeR and ROSSI, and through UK EPSRC Grant EP/C516303/1.

The authors are with the Department of Computer Science, Aberyst-
wyth University, Aberystwyth, SY23 3DB, U.K. (e-mail: msh@aber.ac.uk;
sdm @aber.ac.uk; jxl@aber.ac.uk; mhl@aber.ac.uk).

Digital Object Identifier 10.1109/TAMD.2010.2081667

There are many ways in which such a sequential paradigm
of task composition and learning rate can be set up, but po-
tentially the most productive strategy, especially with regard to
humanoid robotics, is to adhere to the well defined and highly
structured stages of child development. This approach also has
the additional advantage of mimicking specific human charac-
teristics, namely body shape, and actuator and sensor modali-
ties, attributes consistently sought after within humanoid robots.
Furthermore, based on the premise that incremental learning in
infants occurs largely as a result of interaction with adults, it
is possible to organise the learning process in such a way that it
involves human-robot interaction, thereby facilitating the devel-
opment of the humanoid robot through intuitively guided non-
robotic-experts.

The particular way infants develop within the first months
after birth might also indicate the way internal representations
of the world are sequentially organized from a brain develop-
ment perspective. For instance, if competence A is always de-
veloped before competence B, it may be that A is a prerequisite
for B. It might also be that B can only be achieved if A is al-
ready present, or that B is in fact the result of the modulation
of A (here, we understand behavior modulation to be equivalent
to evolutionary refinement [1]). How we understand the order
of occurrence of competencies in infants in the context of what
is known about developing brain architectures might also give
additional insights into how sensorimotor qualities can be rep-
resented. In this sense, combined findings in brain research and
developmental psychology might provide a coherent guideline
for the engineering of architectures that enable a humanoid, or
similar, robot system to develop behavioral and cognitive capa-
bilities analogous to humans.

This study, therefore, presents a conceptual framework for
anthropomorphic robots that is inspired by findings in brain re-
search, child development, and our own experiments on sensori-
motor learning for autonomous robots. We present two compu-
tational architectures that implement this framework on a robot
system solving a visually guided reaching task. The experiments
with the robot system demonstrate the performance and require-
ments for visual search and robot reaching which, in turn, we use
to evaluate our framework and the architectures with respect to
our ultimate goal: an autonomously learning humanoid robot
system that develops in a similar way to human infants during
the first months of life.

II. OVERVIEW AND MOTIVATION

The two computational architectures we present in this study
allow a robotic active vision system, equipped with an arm,
to perform visually guided reaching [Fig. 1 (Bottom)]. Thus,
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Fig. 1. Top: Schema of the computational architecture integrating visual search
and reaching competence. Bottom: Robotic system and scenario. An active vi-
sion system observes the objects on the table, which can be picked-up by a ma-
nipulator.

they are working examples for the integration of active vision
and reaching competences. In fact, the two architectures are
the result of a series of experiments on sensorimotor learning
of eye-saccades [2], visual search [3], and hand—eye coordina-
tion [4], [5]. In Fig. 1 (Top), the general computational schema
that both architectures instantiate is illustrated. Both operate in
three different computational domains, the retinotopic reference
frame, the gaze, and the reach space. All visual data are repre-
sented and processed in a retinotopic reference frame which is
determined by the resolution and dimension of the image data
that the camera delivers. The range of absolute motor positions
of the active vision system defines the gaze space, where the
latter represents the possible camera orientations. Finally, the
reach space is defined by the robot arm coordinates that deter-
mine the points in space that the arm can reach to.

The three different domains are linked together by two map-
pings: the sensorimotor mapping for eye-saccades and the map-
ping between gaze and reach space. Within this experimental
setup these mappings are already learned and fixed.

The last core element of our architectures is the visual
memory, which stores motor configurations of the active vision
system. Thus, it is represented in the gaze space. Two main
functions are provided by the visual memory. First, it modulates
visual search and therefore is essential to enable the system
to perform a systematic visual scan of the environment, and
second, its content represents potential reach targets (since the
entries in the gaze space can be directly mapped into the reach
space).

In summary, the two mappings provide the transformation of
visual data into reach coordinates. This is only possible via the
gaze space. In addition, visual search is also mediated by the
visual memory and thus, the gaze space is the central element
of this framework.

The motivation of this “gaze space centered approach” is
threefold; first, it has a strong biological grounding based on
the neurophysiological literature [6] (see Section II-A for fur-
ther discussion). Second, the gaze space provides the global ref-
erence frame which is needed for a robust visual search by a
robotic active vision system. Any retinotopic reference frame
of an active vision system can only be local and cannot di-
rectly provide a global reference that allows robust visual search
(see [7] for a detailed discussion). Third, the involvement of
the gaze space instantiates a specific time line of staged compe-
tence learning that adheres closely to what is observed during in-
fant development, thus providing additional biological validity
(see Section II-B for further discussion). In particular, the map-
ping for eye saccades must be learned first before a robust and
stable visual search competence can emerge, whilst only if vi-
sual search is performed successfully can a coherent hand—eye
coordination be established to allow successful visually guided
reaching. The sequence of competences can, therefore, only be
achieved through the following stages:

1) eye-saccades;

2) visual search;

3) hand-eye coordination.

This leads to the last competence: visually guided reaching.
Within the actual developing biological system, such discrete
stages of competence do not exist, but rather the system pro-
gresses through overlapping parallel development. Such a syn-
chronous learning process is currently being explored [8] and
may be integrated into the overall architecture at a later date.

A. Brain Areas Involved in Visual Search and Reaching

Intrinsic to any active vision system is the process of sac-
cade, the voluntary or reactive movement of the vision system
to bring selected parts of the visual scene into higher resolu-
tion. The biological structure responsible for this process is the
superior colliculus; visual information passes from the super-
ficial to the deep layer of this structure to elicit the correct se-
quence of oculomotor neurons and an accurate saccade [9]. This
mapping process that links coordinates within the peripheral vi-
sion to the correct motor response establishes itself during the
first seven months of infant development [10]. Infants begin by
making highly variable primary saccades, followed by up to five
secondary hypometric saccades, before bringing the image onto
the fovea. By the seventh month, the mapping processes have
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Fig. 2. Primary brain structures involved in visually guided reach: posterior
parietal cortex (PPC); parietal reach region (PRR); lateral intraperietal area
(LIP); medial intraperietal area (MIP).

produced a much more accurate primary saccade with only two
or three secondary saccades required for accurate foveation.

Not saccading to an object previously saccaded to is also a
critical attribute of the visual system, especially in the context
of visual search. This is referred to as inhibition of return (IOR)
and essentially refers to the suppression of stimuli (object and
events) processing where those stimuli have previously (and re-
cently) been the focus of spatial attention. In this sense, it forms
the basis of attentional (and thus, visual) bias towards novel
objects. Although the neural mechanism underpinning IOR is
not completely understood, it is well established that the dorsal
frontoparietal network, including frontal eye field (FEF) and su-
perior parietal cortex, are the primary structures mediating its
control. These are some of the many modulatory and affecting
structures of the deep superior colliculus (optic tectum in non-
mammals), the primary motor structure controlling saccade.

Although visual information from the retina starts at the su-
perficial superior colliculus, and there are direct connections be-
tween the superior and deep layers [9], the former cannot elicit
saccade directly [11]. This information has to be subsequently
processed by a number of cortical and subcortical structures
that place it: 1) in context of attentional bias within egocen-
tric saliency maps (posterior parietal cortex) [12]; 2) the afore-
mentioned IOR [13]; 3) overriding voluntary saccades (frontal
eye fields) [9]; and 4) basal ganglia action selection [14]. Thus
biologically, there exists a highly developed, context specific
method for facilitating the most appropriate saccade as a form
of attention selection. One of the main problems to overcome
in constructing an IOR system is the accurate mapping of the
retinotopic space to the global egocentric space, i.e., foveated
objects within a retinotopic map must be logged within a global
egocentric map to allow subsequent comparison with periph-
eral retinotopic information. The lateral intraparietal (LIP) area
is the primary candidate brain region for this process given its
position in modulating the transfer of visual information from
superficial to deep superior colliculus.

As well as holding information about what objects have been
saccaded to, the LIP region is also considered to contain infor-
mation on task-specific object saliencies within the egocentric
space [12]. The relay of this information to the medial intrapari-
etal region (MIP) is the considered starting point for task-spe-
cific motor actions and, thus, LIP is central and critical to the
saccade-reach process. It is these combined features of LIP that
are the primary inspiration for the “gaze space centered ap-
proach” (Fig. 2).

In terms of eliciting a motor action, MIP transfers reach in-
formation to the premotor cortex in order to generate the move-
ment vector that will take hand to target. Target location within
MIP has been reported to be in eye-centered coordinates with
gain modulation in relation to proprioceptive hand position [15].
The key to deriving a movement vector is to establish a common
reference frame and this can either be done by: 1) coding hand
position in eye-centered coordinates; or 2) coding the target in
body-centered coordinates.

Using single neuron cell recordings within discrete regions of
the posterior parietal cortex during different situations of reach
performance, it appears that the parietal reach region codes pro-
prioceptive information about hand position in eye-centered co-
ordinates and that the movement vector is derived from simple
subtraction of hand location from target position [16]. Develop-
mentally, accurate reach does not take place until around four
months [17] and this correlates with the known development of
LIP and MIP structures within infants [18].

B. Infant Development

Development in the human infant is restricted by a series
of constraints, which restrain the infant’s action repertoire and
sensing capabilities. Initially, these constraints reduce the per-
ceived complexity of the environment and limit interaction, pro-
viding a scaffold which helps the infant to make sense of the
world [19], [20]. These constraints are then gradually eased, or
lifted, allowing the infant to advance into a new stage of de-
velopment [20]. In essence, such constraints prevent the infant
from learning to run before it can walk.

In this section, we describe the process of learning to saccade,
search, and reach, as it occurs in the human infant. Infants de-
velop at different rates, and there is no set order or time line for
the appropriation of skills, although the onset of some actions do
commonly precede others. Developmental psychology supports
the theory that early motor skills are related to perceptive and
cognitive development [21], which varies from child to child.

1) Saccades: The eyes of the fetus can be seen to move in
the womb from 18 weeks after conception, although the eyes
stay closed until week 26 [22]. At birth, the eyes are the most
controlled of the infant motor abilities, perhaps due to the lack
of resistance in the socket. The neonate also has relatively poor
vision, although saccades to what it can see are remarkably ac-
curate. It is interesting to note that the newborn can saccade to
stimuli at all, since in the womb there will be little, if any, visual
stimuli.

Initially, the neonate can only focus at a distance of around
21 cm, which relates to the distance to the mother’s face when
held [22]. Color perception is coarse [23], but with similar cat-
egorization to adults by the second month [24], and the seen
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image is diffuse with a lack of clarity in the center of the visual
field [25]. Perhaps due to these restrictions, the neonate is most
attracted to diffuse lights and colors, and moving objects within
its focal range [26].

Eye saccades in the neonate are relatively few in number.
They are initiated in response to visual stimuli in the periphery
of the visual field, but also in response to sounds [27]. Newborns
tend to fixate on a single stimuli, but may be distracted by a
sufficient peripheral stimuli. They are more likely to saccade
to near objects than far ones, and to saccade horizontally,
rather than vertically [28]. Although remarkably effective, these
early saccades are not as accurate or rapid in onset as the
adult variety, taking up to two seconds to trigger and often
requiring several saccades to fixate the target [10], [28]. The
mature form of saccade does not develop until after seven
weeks of age, although this is sufficient for the young infant’s
requirements [29].

During the second month, the infant’s ability to focus con-
tinues to improve, and acuity undergoes its greatest improve-
ment [25]. The field of view also increases from around 20 de-
grees at six weeks to 40 degrees at 10 weeks [30]. The frequency
of eye saccades increases with the majority of fixations now fo-
cused within objects [31]. The accuracy of saccades continues
to improve and, correspondingly, the number of saccades re-
quired to fixate reduces, with near adult ability observed at seven
months [10].

2) Visual Search: There is disagreement as to whether
neonates are capable of visual search. Tronick and Clanton [32]
interpreted infants’ saccades in the absence of visual stimuli as
visual search, although this was disputed by Salapatek [33] who
suggested stimuli unobserved by the experimenters may have
triggered the saccades. Further evidence provided by Haith [34]
indicates newborns may be capable of visual search.

During the first month after birth, infants tend to fixate on
object edges, rather than internal features [31]. Milewski [35]
has shown that, as well as ignoring internal features at this age,
young infants are incapable of remembering anything about
them. By the second month searches are similar to adult levels,
with more saccades and the majority of fixations now focused
within objects [31]. The infant can follow moving stimuli to
mid-line [36], although it shows very little head movement
during gaze shifts of up to 30 degrees amplitude [37].

In the third month, the infant moves the head to assist vi-
sual search, making head movements about 25% of the time
for 10 degree gaze shifts and all of the time for 30 degree gaze
shifts [37]. Search continues to improve until the sixth month,
by which time the infant is visually insatiable, moving head and
eyes to search for, and fixate on, novel stimuli [26].

3) Reaching: In the womb, the limbs of the fetus demon-
strate movement around eight weeks, with hand—face contact
and flexing of fingers observed at week 10 [38]. However, at this
age the brain is not yet developed enough for these actions to
be intentional. General arm and finger movements appear to be
refined over the following weeks. These movements are the re-
sult of lower brain functions and occur less frequently as neural
myelination takes place between 18 and 24 weeks.

Hand-to-mouth movements continue after birth, and were ini-
tially also considered to be purely reflexive [39], [40]. How-

ever, more recent studies by Butterworth and Hopkins [41] and
Rochat [42] have shown that these actions may actually be in-
tentional. Trevarthen [43] and Von Hofsten [44] have shown
that, provided they have adequate support, newborns can make
general reaching movements toward visual stimuli. The neonate
has a reflex grasp, and so may even close its fingers around ob-
jects if it makes contact. Nevertheless, this type of reaching is
ballistic, and uncoordinated; newborns do not attempt to ad-
just their reaching pattern during the reaching movement, and
simply withdraw if they are unsuccessful. Although the reaching
is goal directed, and initiated by a visual stimulus, it is not
guided by visual feedback. For this reason, this early reaching
is called visually elicited reaching. It disappears during the first
seven weeks after birth to be replaced by the onset of more de-
liberative reaching [45].

The infant continues to improve the control of its limbs with
the first successful reaching, where the hand regularly makes
contact with the target, occurring at around three months. This
coincides with a shift from one- to two-handed reaching [36],
[46]. Reaches consist of a series of jerky movements, as the in-
fant attempts to control the motion by altering the limb stiffness
[47]. By this stage the infant can grasp and reach at will, but ac-
tions are still visually and tactually elicited [22].

Around four to five months after birth, the infant begins
to bring reaching and grasping together under the control of
visual feedback [48]. Although currently requiring multiple
movements to reach to an object, the infant will learn to
make smoother, more continuous, movements over the coming
months. Hand-eye coordination is well developed by nine
months, with the infant being able to reliably manipulate
objects and pass them from hand to hand [26].

Roughly summarizing this description of the first months
of infant development, it seems that competence learning is
achieved in part successively, but also in parallel. The founda-
tions for saccade, visual search, and reaching are all in place
at birth, to some extent, however, they are not sufficient to
perform the task of visually guided reaching, and are lacking
additional competencies required to do so (such as intent). All
three abilities improve over the first months of life, although
they may also deteriorate before doing so (as is the case for
reaching).

Of all three abilities, the saccade is most developed at birth,
and the fastest to improve, followed by visual search, and finally
reaching. The stages of development coincide to ensure that the
ability to saccade is reasonably developed by the time visual
search commences, and that both are well established before
there is sufficient arm control for purposeful reaching. All three
abilities must be in place before visually guided reaching can be
performed, and so the onset of that final stage is constrained by
the level of refinement of the constituent parts.

Although all three abilities develop consecutively, there is
an underlying series of constraints that require saccade func-
tion to precede visual search, to precede reach. We use this
sequence to inform the development of our robotic architec-
tures and our gaze space centered framework towards visually
guided reaching: eye-saccades first, followed by visual search,
finally followed by hand—eye coordination, which leads to visu-
ally guided reaching.
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C. Specific Aims of This Study

In this work, we introduce two architectures that instantiate
the above described gaze space centered approach towards visu-
ally guided reaching. Both architectures differ in the way visual
search is modulated. We will demonstrate that this difference
has an impact on the achieved accuracy of reaching. The ex-
perimental results we provide will allow an evaluation of these
architectures with respect to their future use as reference archi-
tectures for developmental learning in humanoid, and similar,
robot systems.

III. METHODS

The active vision system consists of two cameras (both pro-
vide RGB 1032 x 778 image data) mounted on a motorized
pan-tilt-verge unit (Fig. 1). Here, only one camera and two de-
grees of freedom (DOF) are used: the left camera verge move-
ment, and tilt. Each motor is controlled by determining its abso-
lute target position, or the change of the current position, given
in radians (rad). The use of only one camera and two degrees
of freedom was sufficient in the context of the current archi-
tectures in order to get the same reaching precision when the
second camera was involved [5]. It was not necessary therefore
to use the second camera system. Thus, the active vision system
configuration is fully determined by the absolute motor posi-
tions of the tilt and left verge axis, (pit, por.)- The absolute
positions of these two parameters define the gaze space.

The active vision system is oriented towards a table where
colored objects (balls) are placed. A robotic manipulator is

mounted on the same table in order to pick-up and move these
objects. The objects do not change their location. Hence, the
objects on the table provide a static scenario for the active
vision system.

The robot arm and hand systems (SCHUNK GmbH & Co.
KG) have seven DOF each, but only five DOF of the arm are
used in order to place the robot hand at certain positions on the
table. The hand system has three fingers, each with two seg-
ments equipped with a pressure sensitive sensor pad. Since the
objects used in this scenario have the same shape and consis-
tency, only one grasping procedure was applied in this exper-
iment. The control of the grasping is out of the scope of this
paper.

Since the objects are only located on a table, the domain of
the reach movement, referred to here as reach space, is repre-
sented as a 2-dimensional polar coordinate system. Taking the
base of the arm as a reference, a table location is fully deter-
mined by the distance d (cm) and the planar angle of the arm
« (rad). The inverse kinematic mapping between the 2-dimen-
sional reach space and the 5-dimensional joint space of the arm
is solved analytically, and is not described here. It is important
to note that arm control only places the hand on the table with
respect to a given distance and relative angle (d, «). The actual
table space the system is operating in is defined by the range
of distances d and angle «, here: —1.4 < a < 1.4(rad) and
33 < d < 59(cm).

IV. TwWO COMPUTATIONAL ARCHITECTURES FOR GAZE
MODULATION

In the following, we introduce two computational architec-
tures for gaze-modulated visual search. Both architectures use
mapping processes to facilitate saccade action, where (X,Y)
coordinates of the local retinotopic image data are transformed
into motor position changes (Apyit, Ap,r) given in rad. The
execution of these motor position changes drives the camera in
such a way that the corresponding stimulus at the (X,Y") co-
ordinates end up in the fovea, i.e., the image center. The actual
saccade mappings can either be learned [49], [50] or manually
designed. The latter was employed for this study.

The central element of both architectures is the visual
memory, which stores the absolute motor configuration of the
active vision system (piit, por) after the execution of a suc-
cessful saccade. A saccade is successful if the object is driven
into the central region of the image; the assumed location of
the fovea. The domain of the visual memory is the gaze space
and is referred to as VMGS (visual memory in gaze space).

We now introduce two very distinct strategies for how visual
search can be modulated by the content of the visual memory
(VMGS) to generate an IOR mechanism. In the first architec-
ture A, Figs. 3 and 4, the suppression of stimuli which the
system has already saccaded to is performed in the domain of
the local retinotopic reference frame. Thus, the inhibition of re-
turn is operating in the local retina space. In the second archi-
tecture Ag, Fig. 5, stimuli that the system has already saccaded
to are suppressed in the gaze space. As a consequence, the final
action selection process for eye-saccades is performed in the
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global gaze-space for Ag. The following sections provide more
detailed descriptions of the two architectures.

A. Eye-Saccade Action Selection in Retina Space

The overall computational architecture of A consists of
three main functional stages that implement: 1) filtering of
image data; 2) action selection and execution; and 3) the pro-
cessing of the visual memory VMGS.

A color filtering process on the current camera image data
generates a saliency map referred to as the retina-based saliency
map (RBSM). The dimensions of the RBSM are determined
by the width and height of the camera images (wRet x hRet).
Each stimuli in RBSM is represented by a nonzero entry of
the corresponding (X,Y’) coordinates. Due to the previously

learned eye-saccade mapping, each (X,Y) coordinate of a
nonzero entry in the RBSM elicits a corresponding motor
change (Apiit, Ap,r) for a successful saccade. Together
with the current absolute motor positions (delivered by the
active vision system), this produces, for each nonzero (X,Y)
coordinate, the expected absolute motor positions of the vi-
sion system if a saccade towards this stimulus was executed.
This is expressed in Fig. 3 in the form of (X, Y, pti, por)®,
which refers to a list of all nonzero (X,Y’) coordinates and
their expected final absolute motor configurations after the
corresponding saccade. These potential motor configurations
are tested against the current entries of the visual memory
VMGS. If the potential absolute motor configuration is present
in VMGS then the corresponding (X, Y") coordinate is labeled
1, otherwise 0. In this way, we get a new list ([0/1], X,Y)* of
all nonzero (X,Y’) coordinates in the RBSM which are labeled
according to their presence in the VMGS. This list can be trans-
formed into a local visual memory map (LVMM), having the
same dimensions as RBSM. In contrast to RBSM, the nonzero
entries in LVMM represent the stimuli the system has already
saccaded to. Hence, the subtraction of RBSM from LVMM
will generate a new map, overlaid saliency map (OSM), which
contains only the stimuli which have not yet been saccaded to
by the active vision system.

The OSM is fed into the action selection process, which
is implemented as a winner-take-all (WTA) process. If the
subsequent saccade execution is successful, the final configura-
tion (peit, Por) is stored as a new entry in the visual memory
(VMGS).

The usage of the gaze space as a domain for representing the
visual memory provides the globally acting IOR. Fig. 4 rep-
resents the image data (RGB) as well as the RBSM, LVMM,
and OSM data for different camera positions. The nonblack en-
tries represent stimuli, or nonzero activations, and black pixel
values indicate zero activation values. In this particular scenario
we started with two objects on the table. After the active vision
system stored them in its visual memory (by executing saccades
towards them) the saccade process was turned off and a new
object was placed on the table. One can clearly see, for arbi-
trary camera positions, that there is only one stimuli present in
the OSM. The LVMM, however, contains stimuli (one or two)
which correspond to the objects the system has already stored
in the visual memory. Thus, in any camera position, only the
new object is fed into the action selection process for the sac-
cadic eye-movement. Notice that even if the old objects fall out
of the visual field (left and right image in Fig. 4), as soon as they
are back the system will inhibit them again. The IOR thus acts
locally on the current image input but is stored globally in the
gaze space.

B. Eye-Saccade Action Selection in Gaze Space

The second architecture Ag (Fig. 5) has a structure similar
to A in that there are three main functional parts: image data
filtering, action selection, and visual memory. The processing
between the two architectures differs after the generation of
the RBSM in that now all stimuli in the RBSM are mapped
into the gaze space. Hence, instead of a retina-based saliency
map, we have now a gaze-based saliency map (GSSM). The
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new object

- - -VMGS
- - -GSSM

Fig. 6. Particular system states of architecture Ag for different camera posi-
tions after a new object is placed on the table. The new object is not yet present in
the visual memory VMGS. Since VMGS directly inhibits the gaze space based
saliency map, only one stimulus is present in GSSM. See text for details.

process of transformation is the same as for architecture Ax.
For each stimuli in RBSM the expected final absolute motor
configuration of the potential saccade is derived but, instead of
testing each (pyit, po 1 )-configuration for each potential saccade
against the visual memory (VMGS), they all are stored in the
GSSM.

The current GSSM is fed into the same action selection
process (WTA) with the outputs as absolute target positions
(ptitt, por)- If the movement of the camera to this target posi-
tion represents a successful saccade, it will again be stored in
the visual memory VMGS.

With respect to the IOR mechanisms, the VMGS can directly
inhibit the GSSM because both are represented in the same do-
main. Thus, the IOR mechanism operates exclusively in the gaze
space.

Here again we have plotted the image data and resulting
VMGS and GSSM configurations for different camera posi-
tions (Fig. 6). As in the previous scenario, we started with two
objects on the table. After the two objects were stored by the
system in the VMGS, the saccade execution was deactivated
and a new object was placed on the table. Inhibition by the
visual memory, VMGS, means that only the stimulus of the
new object emerges in the GSSM. Since the GSSM represents
the data fed into the action selection process, the next saccade
would lead to the fixation of the new object.

V. INTEGRATION OF REACH COMPETENCE

As visual memory, VMGS, is the central element for the vi-
sual search, so it is for reaching. For both architectures it is the
VMGS which links reaching and visual search (Fig. 7). The cur-
rent content of the VMGS is fed into an action selection process
(again a winner-takes-all strategy). The selected target position
in gaze space (piii, Por) 1S translated into the corresponding
coordinates in the reach space (d, ). The learning of such a
mapping between gaze and reach space is demonstrated in [4],
[5]. It is a model-free case-based learning method which allows
faster learning when compared with artificial neural networks
[49]. However, the learning experiments did not only generated
the mapping applied to these architectures here. It also provided
a base-line for the expected average reaching accuracy of this
robotic system, which is (2.00 £ 1.0 cm) [5].

Furthermore, it is important to notice that the applied map-
ping is bidirectional. Thus, after successfully grasping an object
at the given target position, this position in reach space can be
mapped back into the gaze space. These data are used to remove
the corresponding entries in the visual memory VMGS. This has
two important consequences. F irst, the corresponding object lo-
cation is not inhibited anymore by the VMGS and therefore new
objects which might be placed on this position can immediately
be detected by the robot system. Second, the next action selec-
tion process initiating reaching does not involve stimuli repre-
senting the object which has been picked-up already. Hence, it
guarantees that the robot reaches only to objects the system has
not yet reached to.

In this setup, the grasped objects were not put back into the
work area. In other words, one object after the other is removed
by the robot. The success of a grasp is indicated by the pressure-
sensitive finger pads of the robot hand.

VI. EXPERIMENTS

In implementing the two architectures Az and Ag for our
robotic system, we have to consider one essential parameter,
called €. The value of ¢ defines the maximal distance between
two points in the gaze space such that they can be considered to
be the same object. This is necessary due to the noise associated
with the variation in active vision configurations for saccades
towards the same object. ¢, therefore, defines a neighborhood
for a specific gaze space configuration to compensate for this
noise effect.

Obviously, € will highly influence the number of elements
stored in the visual memory, VMGS, and therefore the behav-
ioral dynamics of the active vision system, which in turn deter-
mines the reaching performance.

In the following, we will present two sets of experiments. The
firstis focused on the visual search only where it is demonstrated
how e determines the number of saccades needed to scan a visual
scene. In the second set of experiments, the performance of the
visually driven reaching is tested for different object positions
and e-values.

A. Visual Search Only

Here we present experiments conducted to test the impact of
e-values on the visual search. The reaching component is not
involved. In each experiment three objects were placed on the
table, similar to the scenario shown in Figs. 4 and 6. For each
parameter setting, the visual memory VMGS was empty and the
starting orientation of the camera was kept constant.

Saccades were measured via the output recording of the ab-
solute positions of the verge motor. Fixating the objects on the
table, the corresponding verge motor position values are very
distinct (=~ —0.5, ~ 0.2, and ~ 0.5 rad) and allow us to derive
the correlation between the state of the active vision system and
the fixated object or eye-saccade execution.

Once a (ptiit, por) configuration of a successful saccade is
stored in the VMGS, it remains there. Thus, the visual search
will generate saccades to all the stimuli until the stored config-
urations in VMGS cover the whole scene, at which point the
system will stop saccading. The metric of the e-parameter was
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Fig. 7. Integration of reach control for both architectures.

the Euclidean distance and each test run was conducted over 800
seconds.

A selection of runs are presented in Fig. 8 (architecture A)
and Fig. 9 (Ag). The experiment with € = 0.0 (shown in Fig. 8)
essentially illustrates system behavior without any inhibition
mechanism. Here, the system remains in the same configuration
apart from small fluctuations. After the camera has saccaded to
the most salient stimulus, it remains in the same position since
a neighborhood of zero results in no inhibition of nearby pixels
generated by the same object. Theoretically, a large number of
different saccades should finally lead to a coverage of the whole
object stimulus. However, due to the limited precision of the ac-
tive vision system, a target position might not be achieved by the
system’s actuators. In such a situation a close-to-zero-neighbor-
hood will never lead to total inhibition of all the stimuli gener-
ated by one object of a reasonable size.

In general, however, the plots show that the larger the e-value
the fewer saccades or (ptiit, por) configurations in VMGS were
necessary to inhibit the stimuli generated by the objects. This
was indicated by the time and number of saccades required until
the active vision system stopped. Although a qualitatively sim-
ilar trend of behavior was generated by architecture Ag (Fig. 9),
the time taken to reach execution of the final saccade was gen-
erally longer compared to architecture Az (see Table I for nu-
merical values).

On the other hand, if € is too small (here 0 < € < 0.001), the
saccade process does not stop because the actuators are not able
to precisely drive into the gaze space configuration needed to
cover all stimuli in GSSM (Ag) and RBSM (Ag), respectively.
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TABLE I
DURATION OF SACCADING PROCESS
¢ (rad) || Time (sec.) until
final saccade
Az | Ay
0.010 103 213
0.020 33 50
0.030 26 23
0.040 10 54

B. Evaluating the Visually Guided Reach

In this series of experiments, we have evaluated the accuracy
of reaching after the complete scanning of a scene by the ac-
tive vision system. This was done for both architectures, A
and Ag. Starting with an empty visual memory, VMGS, and
€ > 0.005 the system saccades towards three objects on the
table. After the active vision system had stopped reaching was
triggered, and the resulting target positions in reach space were
compared with the actual object positions. The distance on the
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TABLE II
AVERAGE REACH ERROR VALUES FOR ARCHITECTURES A AND Ag

Object position € (rad) Total average
in reach space over
d(em)  a(rad) 0.005 0.010 0.015 0.020 0.025 0.030 || object positions
A
33 -1.4 2.97+0.00 | 2.37+£0.70 | 2.26+0.49 | 2.87+£0.32 | 1.87£0.72 | 1.96+0.46 2.38+0.65
0.0 3.02+0.00 | 3.08+£0.09 | 2.81+0.88 | 3.01£0.87 | 1.56+£0.55 | 2.89+0.55 2.70+£0.78
1.4 4.16+£0.09 | 3.07+£0.98 | 2.56+0.84 | 1.51£0.68 | 2.12+£0.85 | 2.004+0.00 2.61+1.10
59 -1.4 2.46+2.00 | 2.88+£2.14 | 3.76£2.07 | 2.54+2.21 1.16£0.00 | 2.10£1.27 2.48+1.89
0.0 2.31+£0.00 | 2.31+£0.00 | 2.31+£0.00 | 2.29+£0.07 | 2.29£0.07 | 2.24+0.11 2.294+0.06
1.4 7.05+1.94 | 7.66+£0.00 | 6.44+2.58 | 7.05£1.94 | 6.44+2.58 | 2.15+1.94 6.131+2.67
Total average
over g-values 394+2.72 | 428+2.72 | 4.17+2.53 | 3.96+£2.76 | 3.29+£2.72 | 2.17£1.29 >3.10£2.00
Até’
33 -1.4 226+049 | 2.64+0.32 | 2.05+£0.32 | 2.15+£043 | 2.78£0.61 | 2.46+0.53 2.394+0.53
0.0 2.254+0.78 | 2.55+£0.65 1.97+£0.77 | 2.58+£0.64 | 2.69+0.82 | 2.48+1.22 2.42+0.84
1.4 2.00+£0.00 | 2.83+1.07 | 2.21+£0.65 | 2.00£0.00 | 2.21£0.65 | 3.57+1.52 2.474+0.99
59 -1.4 236+£0.87 | 250096 | 2.71+£1.44 | 2.48+1.57 | 3.54£1.59 | 3.90+2.32 2.92+1.59
0.0 2.254+0.13 | 235+0.16 | 2.29+£0.07 | 2.29+£0.07 | 2.31£0.00 | 2.314+0.00 2.30+0.10
1.4 1.54+0.00 | 2.15+£1.94 | 4.604+3.23 | 7.66+£0.00 | 3.374+2.96 | 1.54£0.00 3.48+2.87
Total average
over g-values 2.11+£0.57 | 250+£1.02 | 2.64+£1.71 | 3.194+2.14 | 2.82+£148 | 2.71+£1.45 >2.66+1.51
All error values given in cm.
table between estimated target position and actual position are TABLE III
called reaching error values. OVERVIEW OF THE DISCUSSED APPROACHES TO VISUAL SEARCH
Reaching error values were collected in a systematic way by Approach to Domain
selecting specific object positions and e-values (0.005 < ¢ < visual search || Action selection  Visual memory IOR
. . Ay RT global GS RT
0.030). For each configuration, ten visual search processes were sy local GS alobal GS alobal GS

run leading to ten error values. In such a way, a total of 360
reaching error values were collected for each architecture.

The average errors with respect to the e-values and the object
positions are summarized in Table II (all values given in cm).

Comparing only the two architectures it turns out that Ag pro-
duces, on average, better estimations than A (2.66 +1.51 cm
versus 3.10 £ 2.00 cm). However, both average errors are much
higher compared to the average errors achieved while learning
the applied mapping between gaze and reach space (2.00 £
1.0 cm), which indicates our base-line [5]. This base-line is de-
termined by the whole robotic setup including specifics of the
robotic hardware, the spatial configuration of the robot arm and
the vision system, as well as the learning method. Changes in
this setup might result in a different overall average reaching
error indicating the lower bound of the reaching accuracy that
can be expected for the visual search task.

Comparing the average of the reaching errors values with re-
spect to the e-values one can see that the best estimations for
architecture Ag are achieved for ¢ = 0.005, the smallest value.
In contrast to A, where ¢ = 0.030 (the largest value) led to the
best estimation.

The data also indicate differences with respect to the object
positions, but these differences are qualitatively very similar be-
tween the two architectures. Both architectures have their worst
estimation results in the (59, 1.4) position. Very similar estima-
tions results can also be found in the (59, 0.0) position. For all
the positions of distance 33 cm, we can also see similar average
errors. In summary, object position related error values were the
same for both architectures, suggesting that the error was caused
by other factors. For example, they may have been caused by the
mapping applied or by the given light conditions.

(RT, retinotopic reference frame; GS, gaze space reference frame)

VII. DISCUSSION

A. Interplay of Local and Global Domains for Visual Search

Itis interesting to compare our two architectures, Az and Ag,
with respect to the domains of the different processing tasks in-
volved in the visual search, namely: 1) eye-saccade action selec-
tion; 2) visual memory; and 3) the domain the IOR is operating
on, i.e., where the suppression of visual stimuli takes place.

The two architectures presented within this study make use of
a global reference frame, the gaze space, in order to represent the
visual memory. However, for architecture Ay, eye-saccade ac-
tion selection is done in the retina space (OSM in Fig. 3) which
is also the domain for the suppression of stimuli (subtraction of
LVMM from RBSM). Whereas in architecture Ag, action se-
lection is done in the local gaze space. It is referred to as local
because the stimuli in GSSM are determined by the stimuli in
RBSM, which represents the current visual input (retina space)
only. The suppression of GSSM by VMGS, however, acts in the
global domain of the gaze space.

Table III provides an overview of the domains involved. We
see both architectures facilitate an interplay between local and
global reference frames. This is possible because of the map-
ping between the local retina space and the global gaze space.
As we have seen in architecture Ax, this mapping can even be
bidirectional, from RBSM (retina space) to VMGS (gaze space)
to LVMM and OSM (both retina space). Although the map-
ping itself (mapping for eye saccades) is not bidirectional, it
maps retina coordinates (X, Y") to relative motor positions Ap.
A mapping that transforms the absolute motor position of the
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active vision system p into retina coordinates (X,Y") does not
exist. This is only achieved indirectly and through the actions
performed by the active vision system.

B. Visual Search Determines the Reaching Precision

For both architectures, the achieved accuracy of reaching is
determined by the e-values, thus, by the modulation of the visual
search by the visual memory. The results show that for Az the
best estimations are achieved for large ¢ values, while for Ag
small € values provided the best accuracy.

In general, the e value relates to the number of saccades
needed to cover all the stimuli caused by an object. Conse-
quently, the larger the e-values the less the number of entries
in the VMGS that represent a certain object. These data would
suggest that Ar performs better if only a few saccades are
made towards the objects, while vice versa for Ag. However,
such a conclusion might be misleading. In fact, it is not the
number of saccades that determine the achieved accuracy, it is
the “quality” of stored configurations in VMGS representing
the saccades made towards the object. This “quality” results
from the whole process of visual search involving the mapping
between retina and gaze space, the processes of action selection
and inhibition of return, as well as the content and organization
of the visual memory. In this sense, it seems better to say that
Ax is “specialized” in making only a few, but very good sac-
cades towards an object. These few saccades provide the best
estimations that can be achieved. Thus, for this architecture, the

more saccades executed and stored in the VMGS, the poorer
the quality of estimation on average.

The opposite is the case for Ag. This architecture seems to
produce poor saccades towards objects in general. Therefore,
it requires more saccades in order to get a reasonable sample of
gaze space configurations. Thus, the larger this sample the better
estimation of the object location.

The difference in accuracy between both architectures with
respect to the e-value is hard to derive from the architecture. It
is the result of all the processes involved and therefore an emer-
gent property, which for now, we are only able to describe by
the statistics derived from our experimental data. Unfortunately,
only the same can be said about the error values of visual search
when compared with our base-line 2.00 & 1.0 cm [5]. For both
architectures, the visual search processes generate higher av-
erage errors. These higher error values can only be caused by
the visual search processes since the uncertainties of the robotic
hardware and the learning errors are indicated by the base-line.

C. Combining Both Architectures

The fact that both architectures have certain advantages (Ag
provides better estimations but needs to execute more saccades,
whereas A can produce very reasonable estimations with a
limited number of saccades) warrants some critical analysis on
combining both architectures. Such an integration requires one
additional action selection process acting in gaze space, which
guarantees conflict resolution if the two streams generate dif-
ferent target coordinates for the eye saccade (Fig. 10).
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This extended architecture can also overcome a bottle neck
effect that was previously apparent in both architectures Ax and
Ag; the reach action could only be determined by the content of
the visual memory VMGS. Thus, only objects that the system
had saccaded to could be picked up. A reach action without a
saccade was, therefore, impossible. This limitation is addressed
within the combined format by allowing the content of GSSM to
be transformed into the reach space. Moreover, like VMGS the
GSSM can also be modulated by the reach component. Thus,
the system is also able to perform reach guided saccades, i.e., it
can look to where the arm reaches.

D. Representing Space Through Mappings

In both architectures, visually guided reaching is achieved
through combining two sensorimotor mappings. There is no ex-
ternal absolute coordinate system that the robot system refers
to in order to derive spatial locations from the visual data. In
former experiments we have shown that these mappings can be
learned in a very fast way and are able to adapt continuously to
changes, for example, if the spatial location between arm and
vision system changes [5], [50]. Therefore, we argue that the
introduced architectures establish an embodied representation
of space which is generated by the learned sensorimotor map-
pings and which is entirely the result of robot—environment in-
teraction. Thus, we see this system as a demonstration of how
concepts like space can emerge from embodied systems and
how, through interaction, it can learn the correlation between
different sensorimotor modalities. Here, the different sensori-
motor modalities are the active vision system and the robot arm.
Both can indeed act independently, but by actively learning the
relation between reach and gaze space a new behavioral com-
petence is established: “looking where the arm reaches to,” as
well as “reaching were the active vision system looks.”

E. General Framework for Developmental Learning in
Humanoid Robots

At the outset, we promoted the “gaze centered approach” as
a step towards developmental learning for humanoid robots. Al-
though the experiments presented here are not conducted on a
humanoid robot, we argue that the general framework can di-
rectly be applied to any robot system which is equipped with
an active vision and arm-hand system. As long as reproducible
saccadic eye-movements and reach actions are generated by the
system, the gaze centered approach can be implemented. In-
deed, a challenge for advanced humanoids is the involvement of
head movements when fixating objects and generating eye-sac-
cades. This requires additional mappings and a higher dimen-
sional gaze space. Moreover, the presence of two arm-hand sys-
tems needs more sophisticated coordination mechanisms, es-
pecially for object manipulation. However, the core concept of
the architectures—the gaze centered coordination of vision and
reaching remains valid.

The architectures allow the application of any kind of map-
pings, e.g., neural networks. The action selection processes,
here winner-take-all, can be replaced by more sophisticated
mechanisms too. In this sense, the two architectures demon-
strate the general concept and outline the minimal requirements

of our approach in order to achieve the final task, visually
guided reaching. As we have already mentioned at the be-
ginning, these particular architectures instantiate a time line
similar to the development of these particular competencies
in infants, and strongly reflect the interrelationship of primary
vision and reach components of the brain. Hence, we argue
the architectures provide a robust framework for future studies
of developmental learning processes similar to human infants.
Linking all the discussed learning processes into one con-
tinuum as observed during child development, as opposed to
running them in isolated stages, is the focus of current research
activities.

VIII. CONCLUSION

In this work, we introduced a computational framework that
integrates robotic active vision and reaching. The core elements
of this framework are three different computational domains
(retina, gaze, and reach space), which are linked by sensori-
motor mappings. This particular organization is the result of
former work in robotics where we have investigated learning
schemas for eye saccades and eye-hand coordination inspired
by child development and findings in brain research. This frame-
work is, therefore, a first attempt to combine these “pieces” into
one framework.

Two architectures were presented that successfully instan-
tiate this framework. The architectures demonstrated how vi-
sual search and visually guided reaching can be modulated by
the gaze space.

Gaze space modulation allows hand-eye coordination
without a global reference frame. The space the robot system
interacts with is represented by the two sensorimotor mappings
that transform visual data into reach coordinates and vice versa.
It could be therefore referred to as an example for a distributed
representation of space that emerges from the robot environ-
ment interaction and the coordination of different sensorimotor
modalities.

We have outlined how this framework leads to a specific time
line of competence development when we try to learn the in-
volved sensorimotor mappings from scratch. This time line is
similar to child development of humans. Therefore, we argue,
this work provides a promising reference architecture for hu-
manoid robotics and developmental learning in humanoids.
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