Abstract:
Based on the concepts of dynamic field theory (DFT), we present an architecture that autonomously generates scene representations by controlling gaze and attention, creat...Show MoreMetadata
Abstract:
Based on the concepts of dynamic field theory (DFT), we present an architecture that autonomously generates scene representations by controlling gaze and attention, creating visual objects in the foreground, tracking objects, reading them into working memory, and taking into account their visibility. At the core of this architecture are three-dimensional dynamic neural fields (DNFs) that link feature to spatial information. These three-dimensional fields couple into lower dimensional fields, which provide the links to the sensory surface and to the motor systems. We discuss how DNFs can be used as building blocks for cognitive architectures, characterize the critical bifurcations in DNFs, as well as the possible coupling structures among DNFs. In a series of robotic experiments, we demonstrate how the DNF architecture provides the core functionalities of a scene representation.
Published in: IEEE Transactions on Autonomous Mental Development ( Volume: 3, Issue: 1, March 2011)