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Abstract—Inspired by infant development, we propose a three
staged developmental framework for an anthropomorphic robot
manipulator. In the first stage, the robot is initialized with a
basic reach-and- enclose-on-contact movement capability, and
discovers a set of behavior primitives by exploring its movement
parameter space. In the next stage, the robot exercises the
discovered behaviors on different objects, and learns the caused
effects; effectively building a library of affordances and associated
predictors. Finally, in the third stage, the learned structures and
predictors are used to bootstrap complex imitation and action
learning with the help of a cooperative tutor.

The main contribution of this paper is the realization of an
integrated developmental system where the structures emerging
from the sensorimotor experience of an interacting real robot
are used as the sole building blocks of the subsequent stages
that generate increasingly more complex cognitive capabilities.
The proposed framework includes a number of common features
with infant sensorimotor development. Furthermore, the findings
obtained from the self-exploration and motionese guided human-
robot interaction experiments allow us to reason about the
underlying mechanisms of simple-to-complex sensorimotor skill
progression in human infants.

Index Terms—affordance, developmental robotics, imitation,
motionese, goal emulation, sensorimotor learning

I. INTRODUCTION

In the last two decades robotic studies inspired by the

developmental psychology have gained wide popularity [1, 2].

The major driving force behind this is the notion that adopting

a developmental pathway similar to those of infants should

pave the road for intelligent and human-like behaving robots.

In general, developmental robotics aims to advance science

at two fronts [1, 3, 4, 5]: Creating intelligent behavior

via mimicking infant development, and understanding human

development through modeling and testing the hypotheses

from Psychology and Neuroscience. As such, embodiment,

sensorimotor learning, exploration and interaction with the

environment are often at the core of developmental robotics.

In this paper, we propose a staged developmental skill

acquisition framework that transforms an arm-hand robotic

system with a limited sensorimotor capacity into a robot
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that can perform a set of goal-directed actions, use learned

affordances to understand its environment, make predictions

about the consequences of its actions, and finally engage in

action imitation through possibly multi-step planning.

Discovering behavior primitives and learning the affor-

dances provided by the environment, and learned behavior

primitives are central for the proposed framework. We suggest

that this early skill development can be achieved without

supervision by having an embodied agent interact with its

environment. During this interaction the agent organizes its

continuous sensorimotor space into discrete sensorimotor rep-

resentations or schemas (motor primitives, perception mecha-

nisms and predictors) [6, 7] with continuous parameters where

necessary. The result of this organization then can be used for

simple planning and imitation. In this paper, we report the re-

alized developmental progression of our robot until this point;

however, it is possible to take this a step further towards high-

level intelligence by associating the representations formed

with symbols and operators with which inference, reasoning

and communication mechanisms can be built.

In the proposed developmental progression, we envision

three major stages as depicted in Fig. 1. In the first stage

the robot is assumed to have only two basic movement mech-

anisms: a basic finger enclose behavior akin to infants’ palmar

grasp reflex, and one basic arm action, that generates simple

arm movements to transport the hand to a salient area in the

visual field of the robot, i.e. to the vicinity of an object. These

design choices are well supported by the infant literature. In

the newborn infant, a basic neuro-muscular infrastructure for

reaching and grasping is present: when an object is placed in

the palm of a newborn, the tactile stimulation triggers a finger

flexion reaction. Similarly, reaching movements aimed towards

objects in the center of the visual field are often expressed in

newborns’[8, p.235].

Stage I includes the exploration of the parameter space of

the arm movement shaped by hand-object contact information.

The contact information, if any, sensed during the approach

and possibly after the finger enclosure, is used to cluster the

executed movements, yielding a set of behavior primitives such

as ‘push’ and ‘grasp’. Stage II is concerned with developing

visual perception and prediction ability by using the motor

primitives developed in Stage I. The robot probes the envi-

ronment to learn about relations between objects, behavior

parameters, and the effects created. The resultant knowledge,

i.e. learned affordances and effect predictors, are used by the
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Fig. 1: The staged development of the robot and the caregivers role are summarized.

Please watch the video at http://emreugur.net/tamd2014/ to see how this development is realized in the real robot.

robot to make plans to achieve a given desired goal state

(e.g. a goal can be ‘make the ball disappear’ encoded as a

feature vector). In our previous work, we showed that the robot

can successfully imitate expert demonstrations by sequential

emulating the displayed subgoals [9]. In the expert tutor case,

the tutor knew the behavior repertoire, affordance detection

and effect prediction capabilities, and imitation mechanisms

of the robot. However, a more natural developmental setting

should encourage even naı̈ve tutors to adapt their teaching

strategy and learn to display motionese for the successful

imitation of the robot. With the current work, we are extending

those results with new experiments where we employed naı̈ve

tutors and analyzed their teaching performance. Regarding

the evolution of teaching strategies, although one can expect

that the subjects would modify their task demonstrations over

several trials, “how” they would modify certain features of

the demonstration, such as shape, speed and amplitude of the

trajectory is not trivial to predict. To see how naı̈ve subjects

engage in motionese in our robotic setting, we employed three

naı̈ve tutors who were not informed about the perception and

imitation mechanisms of the robot

We suggest that a robot can learn new skills via imitation

learning1 by extracting the important steps from the observed

movement trajectory, and then encoding them as subgoals that

it can fulfill. In imitation tasks involving objects, replication

of the important steps of the observed action is not trivial

since objects may have different affordances for humans and

robots. As such, a demonstrated action may not correspond to

any behavior primitive developed so far, and so its end result

cannot be achieved using the goal satisfaction ability provided

by Stage II. It is likely that infants also have similar difficulties

in mapping observed actions to their own repertoire, and

so are not good (complex) imitators during the first natal

year. To speed up skill acquisition via imitation, parents and

caregivers are known to make modifications in infant-directed

actions, i.e. use ‘motionese’ [10], to help infants ‘parse’ the

demonstrated actions easier. With the aim of creating this

dynamic interaction between the learner and the demonstrator,

we implicate Stage III in segmenting, with the help of the tutor,

1Generally speaking, imitation refers to finding the behavior sequence
that enables the robot to follow a similar trajectory as the demonstration.
Goal emulation on the other hand refers to computing a behavior sequence
to achieve the goal regardless of the followed trajectory.

the demonstrated behavior into chunks that can be replicated

by Stage II movement generation mechanism (i.e. goal emu-

lation). This effectively means that the robot can learn a new

skill via imitation provided that it can interpret a demonstrated

skill as a sequence of subgoals that each can be satisfied in the

detected order. If the demonstrator is informed about the kind

of motionese she is supposed to display, she can deliberately

insert the motionese cues into her trajectory in the ‘right’

moments, enabling the detection and sequential emulation of

the subgoals. In our previous work, we showed that the robot

can successfully imitate expert demonstrations by emulating

the displayed subgoals [11]. In the expert tutor case, the

tutor knew the behavior repertoire, affordance detection, effect

prediction, and imitation mechanisms of the robot. However,

a more natural developmental setting should encourage even

naı̈ve tutors to adapt their teaching strategy, and learn to

display motionese for the successful imitation of the robot.

With the current work, we are extending those results with new

experiments where we employed naı̈ve tutors and analyzed

their teaching performance. Regarding the evolution of teach-

ing strategies, although one can expect that the subjects would

modify their task demonstrations over several trials, “how”

they would modify certain features of the demonstration, such

as shape, speed and amplitude of the trajectory, is not trivial

to predict. To see what is really happening in our setting, for

the analysis and evaluation of Stage III, we employed three

naı̈ve tutors who were not informed about the perception and

imitation mechanisms of the robot, and analyzed their teaching

performance and strategies in the current study.

In the next section, we first discuss human infant develop-

ment with particular attention to the stages that inspired the

work presented in this paper, and then summarize the related

robotics literature. In Section III, we describe the proposed

three stage developmental framework, with details of behavior

and affordance representation, learning methods, prediction

mechanisms, and imitation. In Section IV, the results of the re-

alized developmental progression on a real robot are provided

with the details of discovered behavior primitives, learned

affordances and goal-emulation performance. The limitations

of the current system, and future research directions are

indicated in the Discussion and Future Work Sections. Finally,

the Conclusion Section summarizes the results obtained, and
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underlines our contribution.

II. RELATED STUDIES

A. Infant development

1) Early motor development: The sensorimotor develop-

ment in humans already starts in the womb [12] and progres-

sively shapes infant behavior after birth into the childhood

[13, 14]. Newborns have several innate reflexes such as pupil

reflex to light, sucking reflex or palmar-grasp reflex that help

the development of motor and cognitive skills. Palmar reflex

in particular is “integrated into later intentional grasping” [14,

p. 7] after repeated activation of the reflex and execution of

grasp action. This reflex is transient, and disappears by 6

months of age [15, p. 199]. By 4 months of age, infants learn

to perceive the reachability boundaries [15, p. 199] and they

can successfully reach for objects [16, p. 41]. By 5 months

of age, infants slow down their hand speeds when grasping

objects, i.e. they have learned to adjust hand reach speed

by this age [15, p. 100]. It takes 9 months for infants to

reach for objects with correct hand-orientation and adjust their

grip size based on objects’ size before contact [15]. Hand

orientation and grip size appear to develop later than hand-

speed parameter since “babies younger than 9-months lack a

fully-developed map between visually perceived orientations

and corresponding hand orientations” [15, p. 200]. Between

7-9 months, babies explore the environment and objects using

various behaviors including grasp, drop, and hit [1]. This

indicates that, by this time, the infant has already transformed

their initial seemingly uncontrolled ‘move hand’ actions into

a set of behavior primitives from its most basic movement

primitive, ‘move arm’. Between 7-9 months, they learn the

causality relations and object dynamics in response to their

actions [1]. It is plausible to think that while interacting with

the environment, babies monitor these consequences of their

actions and relate the consequences to the visual properties

of the objects they interact with. In other words, they learn

object affordances, the action possibilities offered by their

environment [17], in this stage. Finally, by 10-12 months, they

can imitate actions and generate multi-step plans to accomplish

goals such as reaching a distant toy resting on the towel by

pulling the towel first [18].

Infants between 7-10 months have already acquired a set of

behaviors that are qualitatively different and that can be used

for different purposes such as grasping, dropping, reaching,

shaking, etc. These actions can be considered as behavior

primitives that are utilized to develop more advanced skills

through practice. There is evidence that complex behaviors

are represented in a modular fashion by the central nervous

system. For example, the ‘transport’ and ‘grasp’ components

of grasping action appear to be controlled by different regions

of the human brain [15, p. 217]. Furthermore, there is a

developmental order in maturation of these areas. Thus, it

is plausible that the infant starts from a small number of

reflex-like behaviors, and then progressively discovers and

distinguishes new behaviors through the use of existing ones.

Such developmental progression must be complemented in

infant’s perceptual system. First, a crude perception system

may suffice to discover the basic behaviors, but a more

advanced perception is needed to differentiate more complex

behaviors and to discover more abstract concepts.

2) Affordances, means-end behaviors, prediction: At 7-10

months, the infant starts observing the effects of her hitting,

grasping and dropping actions on objects more often, and can

learn the dynamics of the objects [1]. The infant in this stage

has already acquired a number of manipulation behaviors and

is able to detect different properties of objects such as shape,

position, and size. Using her motor skills, she interacts with the

environment accumulating knowledge about the relationships

between objects, actions and the effects that she perceives.

According to Elsner and Hommel[19], infants learn to use

anticipation for goal-directed actions in two phases. They

execute random actions in the environment, self-monitor the

changes, and learn the action-effect associations in a bi-

directional way. Later, they start to control their actions by

predicting the effects they can create. This process effectively

corresponds to the learning of the affordances[17] provided

by the environment. The learning in this stage is largely

performed in a goal-free fashion through self-exploration

and self-observation [20, 21, 22, 23]. After approximately

9 months of age, the infant starts using the learned object-

action-effect relations in a goal-directed way, anticipating a

desirable change in the environment and behaving accordingly

[24, 25, 26]. Behavior in this developmental period involved

recalling action-effect mappings and making simple plans that

may involve multiple steps [18]. Goal emulation, a form of

imitation characterized by the replication of the observed end

effect [23], starts after this period, and infants become skilled

at emulating unseen movements after 12 months of age [27].

3) Goal emulation, imitation and motionese: Infants’

means of imitation changes over time. While younger infants

are more inclined in achieving the goal of a demonstrated

action, older infants tend to exactly imitate (and in later stages

over-imitate) the observed target action sequence even if those

actions are not physically related to the goal [28]. Imitating an

action sequence is difficult for young infants as they need to

map the observed actions to their own sensorimotor repertoire

[29] (also see [30] for neurophysiological evidence on how

infants’ own action repertoire affects the understanding of ob-

served actions of others.). Thus, a big challenge for successful

imitation performance is to map the observed actions onto the

observer’s motor repertoire.

In order to deal with this challenge, parents support infants

by making modifications in infant-directed actions, i.e. use

“motionese” [10, 31]. Motionese is characterized by higher

range and simplicity of motion, more pauses between motion

segments, higher repetitiveness of demonstration, and more

frequent social signals to an infant [10, 32]. Fine-grained

analysis using a computational attention model further reveals

the role of motionese in action learning [33]. Longer pauses

before and after the action demonstration underline the initial

and final states of the action (i.e. the goal of the action)

whereas shorter but more frequent pauses between movements

highlight the subgoals of the action [34]. Of particular interest

is that such modifications are elicited by the responses of an

action learner [35]. Not only the age of a learner but also
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her ability to recognize the demonstrated action (e.g. visual

attention) influences the task demonstration.

In this section we focused on imitation that involves manip-

ulation of objects, and discussed that this form of imitation is

observed in later stages of infancy. On the other hand, object-

free imitation, i.e. imitation involving only body parts, has

been reported to be present in newborns [36]. Whether this

early form of object-free imitation shares common mecha-

nisms with the latter object based imitation is still an open

question in biological systems[37], which we do not consider

in this paper.

B. Developmental robotics literature

Recently, the role of proprioceptive and tactile perception in

early motor development has been studied in different hand-

arm robot systems. Although the crucial role of proprioceptive

and tactile perception in human for grasping and manipulation

has been long known, it is only recently that these have been

incorporated in robotic studies. Oztop et al. [38] emphasized

the importance of tactile feedback and its precedence over vi-

sion during grasp development, and developed a computational

model that parallels human grasp learning. A range of robotics

studies also have shown that tactile alone and in combination

with vision enables dexterous manipulation in hardware (e.g.

[39]). To mimic infant learning, Savastano and Nolfi [40]

proposed a neurorobotic model where a simulated humanoid

robot learns reach and grasp skills incrementally. Similar to

our work, they use simple reactive behavior models to explore

a given object using touch. In the experiments, they systemat-

ically manipulate maturation constraints leading to various de-

velopment strategies, and observe similar characteristics with

infant development for example in motor babbling strategies.

Although these studies provide more psychologically plausible

models where strategies obtained during development match

those of infant strategies, they span a relatively short period

of development, and all were realized in simulation. On the

other hand, in Saegusa et al.[41], a real humanoid robot learns

coordination of head, arm and finger joints through motor

babbling for fixation, reach and grasp actions based on sensory

feedback. Unlike our developmental system where behavior

primitives are self-discovered, they used pre-defined target

configurations for these actions, and their focus was in learn-

ing the association between actuator commands and visual,

prioperceptive and somatosensory effects. Tani and Ito [42]

studied behavior primitive formation within neurodynamical

systems framework, where diverse set of non-trivial emergent

behavior patterns can be generated by modulating so-called

parametric bias (PB) parameters of a recurrent neural network.

This framework was realized in a low-dimensional robot arm-

hand system with visual and prioperceptive sensors obtaining

a number of end-point and oscillatory behavior patterns. Built

upon [42], Nishide et al. [43] models robot and object motion

experience obtained from push actions on cylindrical objects.

The system self-organizes experience based on motions of the

objects, and provides object-posture dependent push regions

that would generate reliably predictable rolling motions. Our

system critically explores hand-closure, which generates richer

interactions and leads to more complex sensorimotor skills.

Learning affordances in the form of object-action-effect

relations has been widely studied in robotics in recent years

[44, 45, 46, 47, 48], and has been reviewed in [9]. Overall

it can be stated that the affordances learning framework

that we have proposed and develop further in this paper,

provides the following three characteristics that do not exist

simultaneously in any other previous work: (1) multi-step

planning, (2) categorization of the perceptual space based on

actions and their effects with continuous parameters, and (3)

generalization of the knowledge obtained through exploration.

A number of studies address different combinations of these

three capabilities, however seamless and complete integration

of these characteristics is still missing as discussed in detail

in [9]. More recently, affordance exploration was combined

with intrinsic motivation guided learning in [49], was linked

to language learning in [50, 51], and was integrated into

human activity learning in [52]. While Ivaldi et al. [49] do not

particularly focus on affordance learning, in their experiments,

the iCub humanoid robot learns object properties by actively

choosing among objects to explore, actions to execute and

caregivers to interact. This socially guided intrinsic motivation

framework [53] that combines robot’s manipulatory actions

with social guidance significantly increases object recognition

performance, and can be directly used to increase speed of

affordance learning. In Koppula et al. [52], object affordances

are learned along with human activities in an integrated frame-

work. This system is modelled with a Markov Random Field

where the nodes encode the subactivities and affordances; and

the edges correspond to the learned relations between these

components. Based on RGB-D video input, the system was

realized using PR2 robot where not only initial/final perceptual

state but also temporal evolution is studied.

The idea of using previously developed capability for af-

fordance prediction in imitation learning is not new. Lopes et

al. [54] also used affordances that are modelled in Bayesian

Networks to interpret demonstration and to imitate with the

robot’s own behaviors. While they were able to recognize

one-step actions and make one-step predictions, they did not

take the further step to enable multi-step prediction and plan

generation. Our system can perform multi-step prediction and

planning, and as shown in the last stage of development

reported in the current paper, it can extract multi-step behav-

iors from the demonstration that may include multi-objects.

Moreover different from other studies [55], we recruited naı̈ve

subjects who naturally adapted their demonstrations based on

the robot’s imitation performance, and used some ‘motionese’

features enabling the robot to imitate complex actions.

While many studies focus on development of skills corre-

sponding to one particular stage of development, some others

modelled long-term development that is achieved in several

stages, similar to our work. In their survey of the ontogeny

of tool use, Guerin et al. [13] formulates concrete recommen-

dations on general mechanisms of sensorimotor development,

and knowledge representation of actions-object relationships.

Cangelosi et al. [56] identifies a number of key challenges in

developmental robotics, and designs a practical roadmap for

developmental robotics which includes a series of milestones

such as action learning, language development, social learning,
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and cognitive integration. Law et al. [57] realized a staged

development with iCub that models an infant from birth to 6

months. iCub, through motor babbling driven with a novelty

metric, starts from uncontrolled motor movements, passes

through several distinct behavioral stages, and achieves reach-

ing and basic manipulation of objects, similar to the human

infants. Our system, on the other hand, develops beyond motor

skill formation, and can even engage with humans, observing

the demonstrated actions and representing them in terms of

robot’s sensorimotor and prediction structures learned in the

previous stages. A longitudinal development was realized also

by Hart and Grupen [58], where a robot self-organizes its

sensorimotor space by assembling basic actions into hier-

archical programs in a bottom-up way, and by learning to

apply these programs in novel contexts in a top-down fashion.

The staged learning of behaviors is guided by an intrinsic

rewards mechanism that maximizes detection of and acting

on affordances with the corresponding behaviors. Hart and

Grupen’s work is focused on behavior formation in a staged

progression with mechanisms similar to accommodation and

assimilation [24] through the so-called affordance discovery

motivator with emphasis on closed-loop control programs as

coupled dynamical systems. In our system, on the other hand,

the behavior formation and affordance discovery are decoupled

with stronger emphasis on learning prediction abilities based

on discovered object affordances using simpler representations

in the behavior level. Development of more complex behaviors

such as grasping with different strategies requires learning

of closed-loop controllers that are guided in real-time by

object affordances and tactile feedback as we discuss in the

Discussion Section.

A large body of work has been accumulated in the last two

decades in this direction with varying degrees of granularity

in modeling, fidelity to biological development, and the target

level of infant intelligence. However, a coherent integral model

that can explain and reproduce various stages of development

altogether in a consistent way is still missing[59] for which

this work may serve as a contribution towards this direction.

III. DEVELOPMENTAL FRAMEWORK

Our aim is to enable the robot to undergo a developmental

progression similar to those of infants. In this section, after

providing the initial sensorimotor representations and built-in

skills of the robot, we give details of the methods that facilitate

such a learning competence. In separate stages, the robot finds

behavior primitives which entail similar events (behavior prim-

itive discovery), it learns how these events change the external

world (affordances learning), and it deduces how observed

behaviors of other agents such as humans can be mapped to

own behavior repertoire (imitation learning). Throughout the

experiments, only the structures emerging from the described

sensorimotor representations are used in subsequent learning

stages. While learning new skills, the previously learned skills

are kept fixed for simplicity.

A. Built-in perceptual and motor skills

Our staged developmental framework is realized using the

robotic system consisting of a 7 DOF Motoman robot arm

Fig. 2: The hand, arm, range camera, and the environment of

the robot.

and an anthropomorphic five fingered 16 DOF Gifu robot

hand mounted on it, as shown in Fig. 2. The maximum

reach of Motoman arm and Gifu hand are 123 cm. and 23

cm., respectively. There are tactile sensors distributed on the

surface of the fingers and palm. For environment perception,

an infrared range camera (SR-4000), with 176x144 pixel array,

0.23◦ angular resolution and 1 cm distance accuracy is used.

With the built-in knowledge of object detection and hand-eye

coordination, the robot can spot, observe, and manipulate the

objects that are within the camera view. In the rest of this

section, the details of these built-in perceptual and motor skills

of the robot are given.

1) Tactile perception: The initially available tactile sensors

on the palm of the robot malfunctioned during the experiment.

So, we emulated those sensors by comparing the position of

the object and the palm and fingers; that were computed using

camera and forward kinematics of the robot, respectively. The

obtained tactile percept is sampled at 50 Hz., and lumped into

2 binary features: palm contact and finger contact. The tactile

perception observed during action execution (that takes for 4

sec.) is encoded in the following tactile trajectory (T r
traj):

T r
traj = (p1, p2, ...p200, f1, f2, ...f200)

where r refers to ‘raw’ encoding. pt and ft correspond to the

palm and finger sensation at timestep t, respectively; and can

be either on (1) or off (0).

Another more compact way of representing tactile percep-

tion during action execution is to segment the trajectory to

successive 0 and 1’s, and represent the tactile trajectory based

on duration of successive segments as follows:

T c
traj = (dp=0

1 , d
p=1

1 , d
p=0

2 ...dp=0
n , dp=1

n , d
f=0

1 , ...df=0
n , df=1

n )

where T c
traj refers to compact tactile perception. d

p=0

1 , d
p=1

1 ,

d
p=0

2 , df=1
n correspond to the duration (number of timesteps)

for the 1st successive no-palm-contacts, for the 1st successive

palm-contacts, for the 2nd successive no-palm-contacts, and for
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the nth successive finger-contacts, respectively. Thus palm and

finger contact durations satisfy the identity:
∑

i=1:n d
p=0

i +
d
p=1

i = 200.

2) Visual perception: The range image obtained from the

infrared range camera is used to compute a number of features

from the objects in the environment as follows:

Object detection: First of all, 3D positions of the pixels

are transformed to the robot coordinate frame (shown in

Fig. 2). Next, after the pixels outside the region of interest

(table) are filtered out, the remaining pixels of the range image

are considered to belong to one or more objects that are

segmented by the Connected Component Labeling algorithm

[60]. In order to reduce the effect of camera noise, the pixels

at the boundary of the object are removed, and the Median and

Gaussian filters with 5×5 window sizes are applied. Finally, a

feature vector for each object is computed using the positions

of the corresponding object pixels as detailed in the next

paragraph.

Object features: The object feature vector includes a

binary feature for object-visibility, and a number of features

related to size, position and shape of the object. The points

with minimum and maximum values along x, y, and z axes

are computed and their difference along these axes are used

as three size-related features. The 3D position of the object

center is used to represent the position feature. The last feature

channel encodes shape-related features, where the distribution

of the local surface normal vectors are used. Specifically,

histograms of normal vector angles along the latitude and

longitude are computed using 20◦ bins (see [9] for details).

Finally, with this encoding, the object feature vector (f ) is

composed of 1 + 3 + 3 + (18 + 18) = 43 features.

f = (visibility, position, size, shape)

Fig. 3: The parameters of the swipe action are illustrated.

Any of these five parameters can be set arbitrarily leading to

different effects.

3) Swipe action: The robot is equipped with a generic

swipe action which swings the robot’s hand towards a detected

object. It takes five parameters (see Fig. 3):

swipe (init, target, end, close, open)

The init, target, and end parameters determine the start, middle

and end points of a minimum-jerk trajectory. They specify

displacement vectors in 3D space with respect to the object

center, where the target is typically set to a small value (i.e.

small offset from object center) to enable physical interaction.

The close and open parameters encode the flexion and ex-

tension of the hand along the trajectory, and take continuous

values between [0−1], where 0 and 1 specifies the first and last

points of the trajectory, respectively. No activation is specified

with a value of −1. Initially, the hand is assumed to be open.

The hand orientation is set such that the wrist is always parallel

to the table plane, and the hand is pointing at shoulder-wrist

direction. The inverse kinematic method described in [61] is

used to compute the joint trajectory using palm center as the

end effector. The duration of swipe action is fixed to 4 sec.

The execution of the same swipe action over the same

object with different parameters can produce different effects.

Depending on how the target parameter is set, the robot can

hit the object with its palm, fingers, or may not hit at all.

Additionally, depending on the palm-object contact dynamics,

the robot may or may not grasp the object. The grasped object

can be taken to different final positions or can drop on the

way due to opening of the hand. The design of the swipe

action was based on the goal of having a simple action that,

even in this limited experimental setting, will enable the robot

to discover meaningful behavior primitives by exploring the

parameter space of the action.

4) Grasp reflex: With a built-in grasp-reflex, if the robot

senses a contact at its palm, the fingers are flexed closing the

hand. Furthermore, at any moment, fingers can be extended

randomly and in this case the robot hand is opened even if

there is an object inside.

B. Stage I: Behavior primitive discovery

The robot, through physical interaction with the world

and observation of the changes in the environment and self,

gradually learns shaping the parameter space in a bottom-up

manner. The rest of this section presents the algorithmic details

of the first stage of this progressive scaffolding of sensorimotor

space, where the robot starts from exploring the parameters of

the built-in generic swipe action.

The sensorimotor system is constrained in the early ages

of human development, and these constraints are gradually

lifted during development [62, 63]. As discussed in [64, 65]

constrained sensing is very useful to deal with the complexity

of input stimuli in absence of necessary perceptual processes,

and to reduce the task space for more effective learning.

Similar to infant development, the action parameters of the

robot are constrained initially, and the constraints are released

gradually during the development. In the first stage, we real-

ized this constraint releasing mechanism by allowing the robot

to explore the swipe parameters as follows:

• target position is the main parameter, i.e. released con-

straint, that is explored in this stage. It is set as an

exploration offset ([0 − 10]cm) from object center in

different directions;

• init position is fixed to back-right-diagonal of the

object from the robot’s perspective, and set with

(10cm, 10cm, 5cm) displacement from object center;
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Fig. 4: Illustrative description of Stages I and II. In Stage I, tactile profiles are grouped through unsupervised clustering, and

then the corresponding behavior parameter space is obtained based on this grouping. In Stage II, the object feature space is

divided to enable affordance detection, and effect prediction is learned. Division of the discs correspond to figurative illustration

of structuring feature and parameter spaces. Different colors correspond to structures related to different behavior primitives.

Fig. 5 shows how the learned structures are used in Stage III.

• end position is randomly set to either init position or to a

position that is symmetric to init along x coordinate with

respect to the object center;

• close is the time-point that is determined by the object

contact and the grasp reflex,

• open is the time-point that determines by the relative time

of hand opening during hand transport. It is set to -1 if

the hand is not to be opened.

swipe(init, target, end,−1,−1) (1)

where,

init = (xobj − 10, yobj − 10, zobj + 5)

target ∈ {(x, y, z) : (|x− xobj |, |y − yobj |, z − zobj) < (10, 10, 10)}

end ∈ {init, initsym}

initsym = (xinit + 2(xobj − xinit), yinit, zinit)

During Stage I, the robot executes swipe action N times by

selecting the parameters from the allowed ranges as defined

above using the uniform random distribution. It observes and

stores the readings obtained from tactile experience, gathering

N tactile trajectories at the end of the exploration.

Behavior primitives are formed by grouping action exe-

cutions that generated similar effects in tactile perception.

In order to find action execution groups with similar tactile

effects, the trajectory experience {T j
traj}

N
j=1 is clustered by

X-means algorithm where each experienced tactile trajectory

is considered as one sample.

{Ci}
I
i=1 ← X-means({T j

traj}
N
j=1)

where I is the number of clusters.

At the end of clustering, with each tactile trajectory cluster

(Ci) a new behavior primitive (bi) is formed, and associated

to the corresponding cluster. The center of each cluster is

assigned a tactile trajectory signature corresponding to that

primitive:

T bi
signature =

1

|Ci|

∑

T
j

traj
∈Ci

T
j
traj (2)

where Ci is the cluster corresponding to bi. T
bi
signature is the

tactile trajectory expected to be generated by the behavior

primitive bi. Signatures will be used to assess the success of

the behavior primitive in the later stages.
Next, the parameters of each behavior primitive are com-

puted by taking the average of the executed parameters:

[target, end, open, close]bi =
1

|Ci|

∑

T
j

traj
∈Ci

[target, end, open, close]swipej (3)

where [...]swipej corresponds to the parameters of the swipe

action executed in trial j, and [...]bi corresponds to the param-

eters of the new behavior primitive bi. The set of discovered

behavior primitives is denoted as B.

The left panel in Fig. 4 summarizes the structuring of

sensorimotor space in Stage I where the clustering of tactile

trajectories is illustrated in 1©. The behavior parameters that

lead to the corresponding tactile profile clusters are illustrated

in 2© of Fig. 4. In this figure, the discovered information

related to each different behavior primitive is shown with a

different color.

At the end of this stage, behavior parameters and tactile

trajectory spaces are divided into paired regions to represent

the corresponding behavior primitives, and shown in the

figurative form in the “What is learned” row.
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C. Stage II: Affordance learning

In this stage, the robot executes the discovered behavior

primitives on different objects of different positions, orien-

tations and sizes in order to learn the offered affordances.

Learning takes place in two steps: First, the robot learns to

detect whether a behavior primitive is afforded, given object

features. In the second step, it learns to predict how object

features would change as a result of an afforded behavior

execution, i.e. it learns to predict the continuous effect gen-

erated in the objects given the initial object features, and the

parameters of the behavior primitive. This is different from

our previous formalization [9] where behavior effects were not

fixed to success/fail. Here we can safely decide the success of

the behavior as behaviors are created based on their tactile

profiles in Stage I; thus an execution which does not create

such a profile should be regarded as a failure.

Affordance representation: The affordances are represented

as triples that consist of the initial percept of the object, the

behavior applied, and the produced effect [66]. Recall that

object feature vector is represented as f . Effect corresponds

to the difference between the final and initial perception of

the robot, and is defined as the vector difference between the

final and initial features: f bi
effect = f bi − f , where f and f bi

represents the feature vector of the object perceived before and

after behavior bi is executed. Here ‘after’ refers to the time-

point where there is no change in perception anymore. Thus

the affordance relation instance, which represents a sample

interaction with the environment, is represented as follows:

{< f bi
effect,f , bi >}

Stage II.a: Learning to detect affordances: In this step,

the robot applies the discovered behavior primitives (Eq. (2))

on different objects that differ in shape, size, and orientation

to learn object affordances. Typically, execution of behavior

primitive bi is expected to create a tactile trajectory similar

to the corresponding primitive’s signature (T bi
signature), Eq. (2).

However, if the execution of bi primitive at trial t does not

create the expected effect, i.e. if the obtained tactile trajectory

is more similar to another behavior signature, the result of the

execution is regarded as failure:

resulttbi =







1(success) if bi = argmin
bi′∈B

(T
bi′
signature − T t

traj),

0(failure) o.w..

Using this training data, a classifier is trained for each

behavior primitive to predict its success given entity feature

vector that include object features.

aff
bi(f)→ {0, 1} (4)

where aff() corresponds to ‘Detect-affordance’ classifier.

Specifically, we used a Support Vector Machine (SVM) clas-

sifier with Radial Basis Function (RBF) kernel to learn this

mapping for each behavior bi, where f is given as the input,

and the corresponding success/fail as the target category.

Stage II.b: Learning to predict effects: In the second step,

the robot learns to predict effects created on objects by

further exploring the end position parameter of the behavior

primitives. It executes the behavior primitives with random

end positions, stores initial and final features of the objects

being interacted, and learns to predict the changes in object

features based on the initial features and the end parameter. We

used Support Vector Machine (SVM) regressors with cross-

validation to learn such prediction for each behavior bi, where

(f , end) is given as the input:

eff
bi(f , end)→ f̂

bi

effect (5)

where eff() corresponds to ‘Predict-effect’ operator, and

f̂
bi

effect denotes the predicted (ˆ) effect. This prediction operator

can predict the effect given the object feature vector, the index

of the behavior primitive, and the end position parameter of

the behavior.

The middle and right panels in Fig. 4 provide a pictorial

description of Stage II. In Stage II.a, learning of the mapping

from object feature space to behavior success is illustrated

where behavior success is measured based on tactile profiles

transferred from the previous stage. Each colored region in

object feature space is created by the SVM classifier of a

behavior primitive (Eq. (4)), and represents the features that

afford the corresponding behavior. On the other hand, the

Predict-effect operator is directly illustrated in Stage II.b panel

where effect features are represented by bars.

At the end of this stage, object features that afford the

discovered behaviors are learned, and the predictors that

predict the effects created by these behaviors are trained. These

learned structures are shown in figurative forms in the middle

and right “What is learned” rows of Fig. 4.

D. Stage III: Imitation

In this stage, in order to teach a complex behavior that

involves one or more objects, a tutor displays the behavior in

front of the robot. As the robot deals with object manipulation

tasks, it focuses only on the trajectory of the objects regardless

of the body movements of the tutor. Based on its observation

of the object movement, the robot extracts the subgoals from

the movement trajectory, finds the actions that produce these

subgoals, and executes these actions in sequence to achieve the

subgoals and the final goal. Therefore in our system, imitation

refers to executing the behavior sequence that achieves the sub-

goals one by one. This practically corresponds to sequentially

moving the object to subgoal positions on the demonstrated

trajectory, rather than exactly replicating the demonstration.

Note that the detailed imitation trajectory of the object between

these subgoals depends on the robot behaviors executed, and

might be different from the demonstrated trajectory.

In understanding and achieving subgoals, the affordance

perception and behavior primitives that are learned in previous

stages are used as basic elements. We already showed that sim-

ple goals can be achieved by sequencing these basic elements

without utilizing additional mechanisms [9]. If however, the

demonstrated actions do not correspond to any robot behavior

developed so far, the robot may fail to extract the subgoals
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Fig. 5: Illustrative description of Stage III. In this stage, subgoals are extracted from demonstration, and difference between

subgoals are encoded as desired effects. The parameters of the afforded behaviors that generate the desired effects are found

and sequenced for imitation. Division of the discs correspond to figurative illustration of structuring feature and parameter

spaces. Different colors correspond to structures related to different behavior primitives. Formation of these structures in Stages

I and II is explained in Fig. 4. The discs filled with different color segments in the middle row for effect prediction correspond

to discovered structures in the effect space (Stage II.a in Fig. 4), i.e. each segment illustrates the object features that were

learned to afford the corresponding behavior.

(a) Demonstration (b) Without motionese (c) With motionese

Fig. 6: An example scenario where insertion of a rod into a

ring is demonstrated in (a). In order to imitate this task, the

robot maps the demonstrated action to its ‘push’ behavior, but

fails to achieve the task as the pushed rod would push the ring.

However, if the demonstration is exaggerated using motionese,

the robot can identify important subgoals, and achieve the task

as shown in (c).

and imitate complex demonstrations. For example, when the

robot is asked to imitate the action of inserting a rod into a

ring as shown in Fig. 6(a), the execution of a behavior that

seemingly achieves the goal may fail to satisfy the imitation

criteria if the observed trajectory has no interpretation in the

sensorimotor space of the robot. In this particular example, if

the robot cannot parse the demonstration into executable sub-

movements, it may attempt to bring the rod to the observed

goal position by simply pushing it to the right, in which case

the ring will be pushed away by the rod, rather than the rod

being placed in the ring (Fig. 6(b)). On the other hand, when

important steps are highlighted through “motionese” as illus-

trated in Fig. 6(c), the robot may extract subgoals represented

in its perceptual space, and find a behavior sequence from its

behavior repertoire to imitate the action correctly.

The Stage III involves mechanisms to detect important steps

of a demonstrated action, which are supposed to be highlighted

by a motionese engaged tutor, in order to split a complex

action demonstration into doable smaller movement chunks.

The details of this motionese based imitation mechanism are

provided in the remainder of this section.

Predicting next states: In order to achieve the imitation

outlined above, the robot needs to predict the effects of a

sequence of behaviors on the objects in the environment, i.e.

needs to predict the next state of the environment. State at

time t corresponds to the list of feature vectors of the objects,

St = [fo0
,fo1

, ..,fom
]t, where m is the maximum number

of objects.

As the behaviors and affordances are learned for single

objects in previous stages, the robot assumes that only the

features of the corresponding object are affected at a time

during the execution of a single behavior. Thus, the next state

that is predicted to be obtained by the execution of bj on object

o is computed as follows:

Ŝt+1 = St + [...0, f̂ ′
bj effect

o , 0, ..] (6)

where f̂ ′
bj effect

o is computed using Eq. (5). Note that as the

effect was defined as the vector difference between the final

and initial features, the features of object o are updated by
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simple summation operator.

Goal emulation: Goal emulation refers to achieving a goal

represented as a desired world state (Sg = [fo1
,fo2

..]). If the

goal state is achievable in one step, our system can find the

best behavior (b∗) along with its parameters (end) using an

iterative search as follows

[...0,f des
effect, 0...] =Sg − St,

b∗(f ,f des
effect) = argmin

bj ,end

(f des
effect − f̂

bj

effect) (7)

where f des
effect is the desired effect on the object whose features

are required to change.

In case a single behavior is not sufficient in reaching the

goal state, the robot needs to search for a plan, i.e. a sequence

of behaviors, whose total effect is predicted to transform the

current state to the goal state (S0
b0−→ S1

b1−→ S2... → Sg).

Because prediction is based on vector summation (Eq. (6)), the

total effect can be estimated by adding all the predicted effects

in sequence to S0. In order to find this behavior sequence,

a state space search method, namely forward chaining2, can

be used. A tree of possible next states is formed in this

formulation where states are encoded in the nodes of the tree.

Each edge corresponds to the prediction of execution of a

behavior on an object, and transfers the state to a different

state based on the affordance predictors and the summation

operators summarized in Eq. (6).

Sequential subgoal emulation: The robot observes the

demonstration and extracts the initial and goal states along

with the intermediate states (encoded as subgoals) by detecting

pauses inserted by a motionese engaged tutor. If no pause can

be detected, then a random intermediate state would be picked

up as the subgoal state (which may result in a failed imitation

attempt).

Once the subgoal states are detected, the robot needs to find

the behavior sequence that brings the initial state (S0) to the

goal state (Sg) following the subgoal states. Assuming three

pauses were detected along with their states (S∗
1 , S

∗
2 , S

∗
3 ), the

robot needs to find four behavior sequences that transfer the

initial state to the goal state:

S0

beh-seq-1
−−−−−→ S∗

1

beh-seq-2
−−−−−→ S∗

2

beh-seq-3
−−−−−→ S∗

3

beh-seq-4
−−−−−→ Sg (8)

Fig. 5 explains how imitation is achieved in Stage III with

the structures learned in previous stages. For each observed

subgoal (encoded as desired effect in feature space), an

iterative search described in Eq. (7) is performed to find

the best behavior primitive that generates the desired effect.

(In general, multi-step behaviors would be needed to satisfy

these transitions, and our framework includes mechanisms to

find those behaviors; however, in the experiment we report

in this paper, single behaviors were sufficient to provide the

the required transitions). Given the object features at time-

point t, a grid search is performed in the parameter space of

each afforded behavior, predicting the effect on the object, and

2We do not imply that human infants necessarily use forward chaining;
but rather, we use it as place holder for the corresponding biological
mechanisms (e.g. reinforcement learning) we might find in biological systems.

the corresponding state transition. Recall that ‘Predict-effect’

(eff()) regressor in Eq. (5) computes the predicted effect for

each ((f t, end)) pair where f t corresponds to object features

in state St and end is the parameter searched.

At the end of this stage, the robot learns new behaviors

that are encoded as the sequence of behavior primitives and

their parameters. Fig. 5, top row shows the extraction of the

subgoals from the demonstration. The middle row illustrates

the search performed in the behavior space in order to find the

behavior primitive along with its end parameter that achieves

the same effect for each subgoal. Finally, bottom-most circles

show the selected behaviors for each desired effect and their

best parameter for the successful imitation.

The role of motionese: Imitation through sequential sub-

goal emulation is possible only if the subgoals can be detected

reliably. We implemented a threshold mechanism based on

the speed of the object during demonstration to capture the

inserted pauses, and assign a subgoal for each captured object

state. The robot finds behavior sequences that are predicted

to generate the desired state changes and satisfy subgoals.

However, if the demonstrator does not present the subgoals

“correctly”, the robot may fail imitation as the demonstrator

and robot motor spaces are different, and their actions might

have different effects on the objects. Thus, we expect the

demonstrator to adapt to imitation strategy of the robot by

finding “correct” means of demonstration, and changing her

teaching accordingly, i.e. by using motionese.

IV. EXPERIMENTAL RESULTS

A. Results of Stage I

The robot performed 64 swipe action executions towards a

graspable object that is placed in a reachable random position

within an area of 20cm×10cm on the table. The parameters of

the swipe action are randomly set according to the allowable

ranges detailed in Section III-B. In order to cover the whole

range of target parameter, the [0−8]cm offsets are divided into

grids with 4cm differences, and [0cm − 4cm] further random

displacement is set within each grid in each trial. Finally recall

that grasp reflex and random hand opening3 are also active in

this stage. The collected sensorimotor experience is as follows:

{target, end, open, close,f ,f effect,T
c
traj,T

c
traj}

64

Sample effect instances of swipe action in different exe-

cutions are provided in Fig. 7 in the form of object position

trajectories, and tactile information. In cases such as trial 2, 11,

and 14, the robot hand did not touch the object, but there is a

slight change in object position either because of the camera

noise or because robot hand is passing over the object and

partially occluding it. In some other cases such as trials 23, 29,

and 35, the object only touches the robot fingers not triggering

grasp-reflex, but being pushed by the fingers. While in trials

38 and 44, the object is grasped and brought to final hand

positions; in trials 5, 8, and 26, the grasped object is released

with random hand opening.

3We simplified the random hand opening effect during grasp, by executing
each action with grasp twice, once no-opening of the closed hand and once
opening the hand in the middle of target and end positions.
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Fig. 7: Top view of sample object position trajectories during

exploration of swipe movement in Stage I. Gray: No-touch.

Bright-red: Palm-only touch. Green: Finger-only touch. Dark-

red: Palm+finger touch. See the text for further description.

The link to the robot video is provided in Fig. 1.

Although our hypothesis in this paper is that tactile per-

ception plays a major role in distinguishing behaviors for

a developing robot, in the experiments we also tested other

sensory modalities by applying X-means clustering4 in the

following channels: changes in object visibility, object po-

sition, and tactile perception in raw ({T traj}) and compact

({T traj}) forms. We concluded that combination of palm and

finger touch information is sufficient to acquire meaningful

behaviors.

1) Behavior primitives based on object visibility: Change

in object visibility gives the basic information regarding to

the existence of the object within robot view during action

execution. Four behavior primitives are found when the robot’s

execution experience is clustered using:

X-means({f effect(visibility)})

where f effect(visibility) refers to use of visibility component

of the effect feature vector f effect. The results show that

each different primitive was characterized by how long the

object became invisible during behavior execution. While in

one of the behavior primitives the object was always visible,

in another primitive, the object becomes invisible in the

second half of the executions. Therefore, these two primitives

correspond to no-effect and wipe-out behaviors. However, as

4In experiments, we applied both X-means and EM-clustering algorithms
which run on real valued and discrete features, respectively; and obtained
similar results. So, to be compatible with the rest of the section, we present
the results obtained from the X-means algorithm.

the object can become invisible because it is covered by the

enclosed robot hand or it is occluded by the moving robot

hand, this wiping-out may not correspond to pushing object out

of the view physically. Additionally, remaining primitives do

not have clear and distinct effects. Thus, the physical meaning

and distinction of these behavior primitives are ambiguous.

2) Behavior primitives with similar object position profiles:

The object position change includes more detailed information

regarding the visual effect created by that action. Three

behavior primitives were found when the robot’s execution

experience is clustered using:

X-means({f effect(position)})

where f effect(position) refers to use of position component

of the effect feature vector f effect. The results show that

while one of the discovered behavior primitives includes a

number of very different action executions, the other primitives

include many action executions with no clear distinction.

Object position information is a complicated one, and direct

clustering in this 3D space does not produce behaviors that

are physically distinguishable. Different factors such as partial

occlusion, disappearing from view, being lifted or pushed to

different sides make an unsupervised clustering challenging.

3) Behavior primitives with similar tactile profiles: Tactile

sensor gives direct information regarding to the physical

interaction of the hand with object, thus tactile profile during

action execution can be used to differentiate behaviors that are

related to manipulation.

When raw tactile trajectories ({T r
traj}) are used, 4 behavior

primitives are formed in total, two of which correspond to

‘grasp’ actions with different end points. On the other hand,

the third primitive represents ‘grasp&release’, and the final

one is a mix of no-touch, push and ‘grasp&release’ actions.

The reason for construction of 2 classes for one grasp action

was probably due to the difference in contact timing of two

execution types with different end points.

Fig. 8 shows the discovered 4 behavior primitives when

action executions are clustered in compact ({T c
traj}) tactile

trajectory space.

X-means({T c
traj})

Each panel corresponds to a different behavior primitive

and gives the executed hand trajectories grouped under that

behavior primitive. The red and blue markers show time-points

where the robot palm and fingers contacted to the object,

respectively.

When clustering is performed with compact tactile profiles,

qualitatively different and meaningful behavior primitives were

obtained. Because compact representation reduces the effect

of exact contact timings, the behavior primitives obtained

from the compact tactile profiles much better distinguishes the

behavior space. The discovered 4 behavior primitives shown

in Fig. 8 can be named as

• push (temporary touch of finger),

• no-touch (no touch),

• release (temporary activation of palm and fingers), and

• grasp (activation of finger and palm until final position).
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TABLE I: The discovered behavior primitives and their parameters.

Name target end open close

Push [-0.01, +0.01, -0.10] [+0.30, +0.07, +0.23] -1 -1

No-Touch [-0.05, +0.08, -0.02] [-0.25, +0.19, -0.15] -1 -1

Release [-0.03, +0.03, -0.02] [+0.04, +0.07, +0.05] [+0.03, +0.07, -0.01] [+0.07, +0.07, +0.01]

Grasp [-0.02, +0.02, -0.01] [-0.05, +0.06, +0.01] -1 [+0.05, +0.07, -0.00]

Fig. 8: Swipe executions are grouped based on similarity

of their compact tactile profiles. Each panel corresponds to

a different behavior primitive, and gives the executed hand

trajectories grouped under that behavior primitive. Palm and

finger touch activation is shown with red and blue marks,

respectively.

The parameters of each discovered behavior primitive are

computed by taking the average of the parameters in the

corresponding cluster (Table I) and transferred to the next stage

along with their tactile signatures.

The discovered behavior primitives and parameters that

define these primitives have the following characteristics:

• The target is the offset from the object-center that deter-

mines which part of the robot’s hand makes contact with

the object. Using this parameter which is unique for each

behavior, the robot touches to the object with its palm in

grasp and release behaviors, and with its fingers in push

behavior.

• Close and open parameters are the time-points in ex-

ecution trajectory. The hand clenches into a fist with

grasp and release behaviors when it is close to the object

center, and wide-opens with release behavior at the end

of action execution. Push behavior does not change hand-

state unless the object is already in the robot’s hand. In

this case the hand wide-opens in the beginning.

• The end position is the offset from the object where the

robot brings its hand at the end of the behavior execution.

The start position is the offset from the object where the

robot places its hand prior to interaction. This parameter

is fixed and same for all behaviors. If the object to be

interacted is already in the robot’s hand, the start position

is set as the current position of the robot hand as there

is no need to re-position the hand.

As shown in the results (Fig. 8), meaningful behavior prim-

itives were obtained when the tactile trajectory is abstracted

from the timing details. One can argue that representing the

trajectories in this compact form is an explicit design choice

that manipulates the unsupervised behavior discovery process.

To confirm the generality of the results, we carried out a

cluster analysis in the raw trajectory space using Dynamic

Time Warping (DTW), which is a technique that aligns two

sequences by warping their temporal profile minimizing the

total distance between matching points [67]. DTW provides

a metric to compare two trajectories based on their optimal

alignment. When we used DTW as the distance metric in

clustering raw tactile trajectories, we have seen that the same

behavior primitives, namely no-touch, grasp, release and push

were obtained. In a different context, [68] also used DTW-like

warping in representing the observed action segments that are

split based on changes in touch relations.

Discussion: The discovered behavior primitives depend on

which clustering methods are used, the parameters of these

methods, and the particular feature channels that are being

used for clustering. Therefore, different aspects of this clus-

tering process should be analyzed to understand the potentially

different ways of behavior formation. In our analysis, we

applied the clustering method in different feature spaces, and

concluded that meaningful behavior primitives can emerge

when the tactile trajectories are used for clustering. In com-

paring clustering performances of different channels (such as

tactile, visibility and position), we used X-means method,

which does not require any parameter tuning (such as the

target number of clusters). Based the clustering analysis with

compact trajectory representation, we concluded that behavior

primitives emerge when the executions are grouped based on

tactile information which is abstracted from the timing details.

We further verified that this conclusion is not simply due to

the compact representation we chose but can be obtained via

a clustering on raw trajectories by using a distance metric that

takes into account temporal shifts (i.e. DTW). More complex

and noisy interactions require use of more advanced algorithms

such as longest common subsequence (LCSS) [69] or Hidden

Markov Models [70].

B. Results of Stage II

This section provides the results obtained in developmental

Stage II where the behavior primitives discovered in Stage I

are applied to a rich set of objects to learn object affor-

dances. In the previous stage, a search in target, open and

close parameters were performed and behavior primitives

with along with their parameters were discovered. In this
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stage, the end parameter of the behaviors are explored with

a set of objects that offer different affordances. The robot

executes each behavior primitive (except no-touch) on objects

of different sizes and shapes shown in Fig. 9. Depending on

the relation between their size and shape properties and the

executed behaviors, the objects offer different affordances such

as pushability, graspability, rollability, and disappearability, i.e.

drop-off-ability from the table).

Fig. 9: The objects used in the learning experiments.

Fig. 10 illustrates a number of exemplar snapshots taken

during the learning. The robot applies the push primitive in

the first two cases and the grasp primitive in the remaining

ones. As shown the robot was able to successfully grasp the

objects (according to the tactile profile of grasp) in (c) and

(d). The push executions were also successful based on the

experienced tactile profiles, however the observed effect in the

object features were different. While the object in (a) toppled

over, the ball was rolled out of the table. At the end of learning,

we expect the robot to learn to detect the affordances (e.g.

whether objects are graspable or not) and learn to predict the

effects (e.g. the change in object position or visibility) 5.

Fig. 10: Sample snapshots taken during learning. The robot

executes push primitive in (a) and (b), and grasp primitive in

(c) and (d). The link to the robot video is provided in Fig. 1.

1) Affordance detection results: We confirmed robot’s

affordance detection capability by analyzing the prediction

5In detecting whether a behavior primitive is afforded by the object or not,
all object features are utilized. On the other hand, prediction of object features
is performed only on position and visibility features of the object as
dimension and shape features cannot be reliably predicted with the current
encoding[9]. Therefore, for affordance detection and next state prediction, we
modify the formulation as follows:

aff
bi (f(all-features)) → {0, 1}

eff
bi (f(all-features), end) → f̂(visibility, position)

bj
effect

where all-features refers to (visibility, position, size, shape).
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(b) Grasp behavior

Fig. 11: The prediction accuracies of the affordance detectors

trained with increasing number of objects. Error bars on

prediction accuracies indicate the mean and standard deviation

of the classification results obtained with 50 different training

and test sets. Accuracy is given in %.

performance of aff() (Eq.( 4)) classifier. As release behavior

is very similar to grasp except the last ‘hand-opening’ phase,

(for example the graspable objects are also releasable), we

will present affordance detection results for push and grasp

behaviors in the rest of this section. As our object set in-

cludes different object categories with different affordances,

we expect to obtain an increasing prediction performance by

increasing size of the training set. Fig. 11 presents the predic-

tion performance. For each bar in the figure, we formed 50

random training sets with the corresponding number of objects,

and trained a classifier for each training set. Then we measured

the prediction performance of each classifier using the test

objects which are not included in training, and presented the

results in terms of mean and standard deviation. In general

we can conclude that the robot learned detecting graspability

and pushability affordances. The prediction performance of

grasp action is lower as it is more complicated to learn the

relation between object features, and the dynamics of the

finger interaction.

2) Effect prediction results: We analyzed the performance

of effect prediction for push and grasp behaviors, i.e. the

accuracy of the eff() regressors (Eq. (5)) trained with

different object sets. Here, the error in prediction corresponds

to the distance between predicted and measured final object

positions. As we aim to analyze the effect of training set

size, for each size, we generated 50 different training sets and

trained 50 regressors. Fig. 12 presents the effect prediction

error. As shown, predicting the final position of the object

with grasp behavior is more difficult both with low and high

number of training data compared to push behavior as grasp

behavior moves the object in 3 dimensional space. However,

prediction error in both cases drops below 5 cm. with relatively

small number of interactions.

We further analyzed the effect of behavior parameters in

effect prediction in detail. For this purpose, we used one

graspable and pushable object, and used the regressors for

both push and grasp behaviors with different end position

parameters. We sampled end positions to cover the complete

parameter space, with random magnitudes and directions.

Fig. 13 shows the predicted change in object position in

response to behaviors with different end position parameters.
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(b) Grasp behavior

Fig. 12: The error in effect prediction for push and grasp

behaviors with increasing number of training objects. The error

corresponds to the distance between actual and predicted final

positions. Error bars on prediction errors indicate the mean

and standard deviation of the classification results obtained

with 50 different training and test sets. Error is given in cm.

With grasp behavior, the fingers are enclosed over the object,

thus the robot can carry the object to any position defined

by the end parameter. This is correctly predicted as shown in

Fig. 13(a), where predicted final positions of the objects are

consistent with the direction and magnitude of the end position

vector. On the other hand, push behavior can only move the

object in the front-left direction as the wide-open hand always

approaches from the right side of the object, pushing it to

the front with the thumb or to the left with the four fingers.

Fig. 13(b) shows that the hand-object dynamics during push

behavior is also learned and correctly predicted. As shown,

the movement of the object (the ‘x’-‘o’ vector) is consistent

with the end parameter (arrow) only if the end position is

towards front-left direction. For other end directions, the object

is predicted to move in small amounts with a contact, but this

movement is correctly predicted not to be consistent with the

end direction. Note that if the object was a large or spherical

object, it would not afford grasp or push actions, respectively.

In this section, we showed that the robot can detect

various affordances (pushability, rollability, graspability) and

can predict the next perceptual state in real world. With

these learned mechanisms, given a goal state (directly or

through observation), the robot can generate plans which

involve parametric behaviors through multi-step prediction.

In our previous work [9, 71, 72, 73] we already studied

how goal-satisfaction, multi-step planning and goal emulation

can be achieved using learned affordances. The generalization

performance of the affordance prediction [44], the behavior

parameter’s effect in prediction and execution [71], and goal

emulation through planning [9] were analyzed in detail. There-

fore, we do not further analyze the developmental system for

planning capabilities. Instead, we show how this system can

be further developed to enable complex multi-object imitation

with motionese in the next section.

Discussion: While the low-level features are fixed in the

current setting, the internal representation of the objects pro-

gressively enriches through learning. After learning in Stage II,

when encountered with objects, the robot sees them as a set of

affordances (e.g. rollable, graspable) along with the low-level

initial features. We believe that the progressive organization of

−0.3 −0.2 −0.1 0 0.1 −0.5
0

0.50

0.1

0.2

Frontal

Predicted changes in object position with different grasps

Lateral

V
e
rt

ic
a
l

(a) Grasp behavior

−0.3 −0.24 −0.18 −0.12 −0.06 0
−0.05

0

0.05

0.1

0.15

0.2

Predicted changes in object position with different pushes

Lateral

F
ro

n
ta

l

(b) Push behavior

Fig. 13: The robot predicts how object position changes

in response to different grasp (a) and push (b) behavior

executions applied to a medium sized box which is graspable

but non-rollable.. The initial position of the object is shown

with the red ’o’ marker. Being grasped or pushed in different

directions, the object is predicted to be moved to different

final positions that are shown with ’x’ markers. Behavior’s

end position parameter encodes the direction and magnitude

of the robot hand movement after reaching the target position,

i.e. contacting the object. Thus, each end parameter is shown

with an arrow in the figure, and placed next to the position

that the object is predicted to be moved with that parameter.

Note that for the illustration purposes, the magnitude of the

arrows are scaled down and they, are shifted to point the

predicted final positions of the object. (a) shows the predicted

final object positions for the grasp behavior where the object

can be carried to various positions in the space, in the same

direction and proportional to the magnitude of end parameter

of the behavior. The predictions show that the robot was able

to learn that the object can be carried to various locations with

the grasp behavior. The robot also learned that it can only push

the object in front-left direction as the hand approaches from

right and the hand is not flexed to be afford the pull-back of

the object.
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Fig. 14: The tasks used in imitation learning in Stage III.

sensory space based on the action effects provides functionally

valid new high-level features, i.e. concepts. Note that the

features we used in the beginning were not high-level, and

indeed resemble to shape and topological feature detectors that

can be found in the primate brain, e.g. orientation and depth

selective neurons in the parietal cortex [74, 75].

C. Results of Stage III

In this section, the experimental results of developmental

stage III will be provided where the robot uses the discovered

behavior primitives and learned affordances to imitate demon-

strations. As described in Section III-D, the robot observes the

demonstration and extracts the initial and goal states, as well

as the intermediate states (encoded as subgoals) by detecting

pauses which may be introduced by a motionese engaged tutor.

If no pause can be detected, then an arbitrary intermediate state

would be picked up as the subgoal state in the experiments6

The aim of this experiment is to investigate whether the

proposed imitation and goal emulation framework is intuitive

and suitable for naı̈ve tutors in robot teaching setups. For

this purpose, 3 subjects who have engineering backgrounds

but have no knowledge about this research were recruited as

tutors.

We provided the following guideline to the subjects: “The

task of the tutor is to teach the robot how to bring the

objects to a desired arrangement from an initial arrangement

through demonstration. The tutor starts by showing the initial

arrangement of the objects, then performs the same action

sequence to bring the objects to the goal arrangement, and

finally moves the objects back to their initial positions. He/she

is allowed to move only one object a time (similar to one-

armed manipulation). The subjects were told that this robot

developed itself like a baby by interacting with objects prior

to this experiment. We further explained that the robot can

push, grasp and release objects, and additionally it can find and

execute the behaviors to bring an object to a demonstrated goal

position. The robot’s lack of experience with multi-objects was

also explained to the tutor.”

We defined three imitation tasks that involve movement

of one object in environments with one or two objects. The

first task is used to introduce the subjects a typical robot-

teaching scenario, where the subjects watch an expert moving

one object to the left, and the robot imitating the demonstrated

6The aim of introducing an intermediate state is to provide feedback to
the tutor about the failed imitation attempt of the robot, and provide some
indirect hint about the observation mechanisms of the robot. In the current
implementation, this state is selected randomly; however this selection can be
guided by other type of motionese cues such as extrema of the movement
trajectory or by the features extracted from infant robot directed speech.

(a) The first teaching attempt, fast short-path demonstration

(b) Before the last teaching attempt, triangle shaped paused demonstration

(c) The last teaching attempt, rectangular shaped paused demonstration

Fig. 15: Snapshots from naı̈ve tutor’s demonstration to

teach Task 3. (a) shows the first trajectory and (b) and (c)

show the last two trajectories. These demonstrations took 4,

7 and 9 seconds respectively. As shown, there is significant

difference in the speed of demonstration as well as shape and

size of trajectories between initial attempt and final attempt

of the demonstrator. The trajectories are roughly displayed

with dashed and solid lines that correspond to horizontal and

vertical movements, respectively. The link to the robot video

is provided in Fig. 1.

action (Fig. 14(a)). After familiarizing to the robot-teaching

scenario, the subjects were asked to teach Task 2 and Task

3 to the robot. Similar to the previous task, in Task 2, an

object is to be moved to the left, but this time next to another

object as shown in Fig. 14(b). Finally in Task 3, an object is

to be brought to the other side of the other object, as shown in

Fig. 14(c). Tasks 1 and 2 have the same complexity as pushing

the object to the left satisfies the goal, whereas Task 3 is more

complicated as a simple push-left of the object on the right

dislodges the other one, failing the objective.

The subjects cleared Task 2 in their first trial by simply

moving the object to the left, and the robot imitated this

demonstration successfully as there was no ‘obstacle’ on the

way. However, Task 3 was challenging so the tutor was

required to teach the robot a sequence of behaviors where the

object on the right is brought to the other side of the small

object while the position of the small object is kept intact. The

tutor needed to find out how to teach this behavior to the robot,

similar to teaching to a baby, by observing how the robot fails

while trying to imitate the tutor’s demonstrations. The tutor

attempted to teach Task 3 several times, and the experiment

finished when the tutor was able to teach this task.

The tutors performed a number of trials (14, 20 and 18)



ARTICLE ACCEPTED, TAMD, 2015 16

(a) Perception of demon-
stration

(b) Start imitation (c) Start of grasp (d) Grasp up (e) Grasp left (f) Release

Fig. 16: (a) Snapshots from robot’s perception taken during final demonstration of the naı̈ve tutor who learned what type of

motionese cues robot uses for imitation. (b-f) The robot’s imitation of the square-shaped demonstration observed and segmented

in (a).

in total where they started teaching in appropriate way after

9th, 14th and 13th trials, respectively. A number of snapshots

from the initial and the final teaching trials of one tutor are

provided in Fig. 15. The perception and imitation performance

of the robot for the last trial is given in Fig. 16.

The interpretation of tutors’ performance in Task 3 is as

follows:

• First, the tutor moved the object around the small one in

an arc closer to his own body and the table (Fig. 15a). He

observed that while the robot was imitating this action,

its arm hit the object in the middle and moved it as well.

So, he quickly adapted to this failure and did not try this

trajectory again.

• As all tutors started with high speeds without any pauses,

the robot failed to extract the important points in the

trajectories, and to imitate properly. Observing the way

the robot failed, after several unsuccessful attempts, all

tutors started slowing down their demonstration. Fig. 17

shows how the durations of demonstrations increase by

time. While the subjects 2 and 3 tried to find the most

compact (and the best timing) for the imitation, the

subject 1 exaggerated the duration as well to (probably)

see a clear imitation performance.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

Demonstration No

D
e

m
o

n
s
tr

a
ti
o

n
 D

u
ra

ti
o

n
 (

s
e

c
.)

 

 

subject−1

subject−2

subject−3

Fig. 17: Evolution of the duration of the demonstrations during

teaching attempts for 3 subjects.

• We analyzed one of the tutor’s performance (subject 3) in

detail. Fig. 18 shows the evolution of the demonstration

trajectory. We can clearly see that although the demon-

Fig. 18: Evolution of the trajectories that are demonstrated by

the subject 3.

stration is small in scale and circular in shape initially,

it gradually gets bigger and sharper. In the final two

demonstrations, the subject fine-tuned the demonstration

by ‘checking’ the robot’s limits (by reducing the size

while maintaining the rectangular shape).

• We further quantitatively analyzed how the curvature of

the demonstrated trajectories change by time. For this

purpose, a curvature value is computed for each point by

taking derivative of the slope around the corresponding

point. Fig 19 gives the median curvature values of each

demonstration. As shown, the trajectory is more curved in

the initial demonstrations, and it becomes more straight

towards the final demonstrations where the tutor starts

being successful in teaching the task. Towards the end,

the tutor probably understands that the robot perceives

and imitates the demonstrations based on its actions

that can only move the objects in straight trajectories.

The curvature of the trajectory decreases significantly

in demonstration no 14 as shown in Fig. 19. The cor-

responding trajectory, shown in Fig. 18, suggests that

demonstration no 14 might indeed refer to the moment

that tutor starts understanding the imitation strategy of

the robot.

• Next, we analyzed the pauses inserted by the tutor during

his demonstrations. Fig 20 gives the number and the

duration of the pauses that are inserted by the tutor during

his successive demonstrations. In order to detect the

pauses in the very noisy trajectory, the speed trajectory is
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Fig. 19: Evolution of the curvature of the demonstrated

trajectories. Each bar corresponds to the median curvature of

the demonstrated trajectory where curvature in each point is

computed by taking the derivative of the slope (tangent vector)

at that point. As shown, demonstration becomes less curved

(on average) after demonstration no 14. Please see Fig. 18 for

the corresponding trajectories.

computed and smoothed with mean filter. Next, the local

minimum points in the speed trajectory are detected and

labeled as pauses. As shown, the tutor increased both

the duration and the number of pauses, especially after

demonstration no 14.

Discussion: In the imitation experiments, it was expected

that the subjects would modify their task demonstrations

over several trials, however “how” they would modify their

demonstrations in terms of shape, speed and amplitude was not

trivial to predict. While we designed trajectory segmentation

mechanism based on the detected pauses, our results go

beyond whether pauses can be exploited by the tutors to

teach the robot, and reveal that the demonstrated trajectories

change ‘progressively’ in a non-trivial way: The naı̈ve subjects

demonstrated the task more slowly (Fig. 17), made bigger

and sharper movements (Figs. 18 and 19), and inserted more

and longer pauses between movements (Fig. 20) in the later

demonstrations. After each demonstration, our robot tried

to imitate the observed action using its action primitives.

This trial of imitation allowed the subject to recognize how

the robot interpreted their demonstrations and what it could

generate to reproduce the interpreted actions. Therefore, the

evolution of the subjects’ demonstrations indicates how they

recognized the robot’s ability. A recent study, which analyzed

caregiver’s task demonstration to infants, also showed that

non-successful imitation of infants significantly influenced

caregivers’ subsequent demonstration. The caregivers empha-

sized the parts or aspects of their demonstrations depending

on infant failures [76]. Our results show a similar effect but

provide better insights into the underlying mechanism of task

demonstration.

V. GENERAL DISCUSSION

We believe that our study may be advantageous in robotics

research in unstructured environments compared to the design-

based approaches. In general, robot behaviors are either man-

ually designed or taught via demonstration, with no regard
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Fig. 20: Evolution of the number and the duration of the

pauses inserted in successive demonstrations. Each bar corre-

sponds a pause whose duration is given by the height. The

tutor starts inserting two pauses after demonstration number

14. Please see Fig. 18 for the corresponding trajectories.

on how similar/different they are in the perceptual view of

the robot. Our study provides a more embodied method for

creating a repertoire of primitive behaviors, whose categories

are autonomously decided to the extent the robot can differen-

tiate with its own sensors. Classical robotic studies rely on the

kinematic/dynamic and sensory models of the robot to infer

the consequences of its interaction with the environment. Such

model based approaches may fail to capture the details of the

dynamic interactions of the robot with the environment due to

modeling errors. Our study proposes a data-driven approach

towards modeling the interactions of the robot in its own

perceptual space.

With such a data-driven approach, we showed that the robot

can discover complex sensorimotor skills starting from simple

initial perceptual and motor capabilities. The developed skills

are grounded within robots initial capabilities and hardware,

i.e. sensor and actuation modalities. We can argue that station-

ary robots with similar tactile and depth perception capabili-

ties, and anthropomorphic hand-arm systems would undergo

similar development if the same techniques are used. However,

slight changes in these capabilities would generate different set

of behavior primitives, affordances, thus different imitation

capabilities. For example, a robot that cannot differentiate

the tactile difference between palm and fingers, either cannot

discover the four behavior primitives, or requires different

exploration strategies to form similar primitives. Or if the

speed of the hand is very high during the initial swipe action,

the objects are pushed away before getting enclosed inside

robots hand, therefore grasp and release primitives cannot be

discovered. Therefore, despite a number of parameters that

are set experimentally (such as the speed of the hand), the

progressive use of tactile, visual and social cues are applicable

to different manipulator robot systems. We can also argue that

while the features and methods used for behavior formation

are specific to manipulator robot systems, the principles used

in Stage II and Stage III can be applied even to mobile

robots, which can learn object affordances and prediction
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skills through exploration; and imitate complex actions with

sequential subgoal emulation.

While our study provides hints about how sensorimotor

development can be achieved in robots, realizing a truly devel-

opmental system with life-long learning capabilities still stands

as a big challenge. In order to realize such a development in

a real robot, we took a number of shortcuts, and initiated the

perception and motor system from a state where it is assumed

that some learning has taken place. We enumerate a number of

assumptions that we made in designing the initial capabilities

of our system, and refer to other studies that have investigated

the learning of such capabilities.

• First of all, our robot has the built-in capability of detect-

ing objects in the environment. Alternatively, object con-

cept can be learned autonomously through exploration. In

[77], a manipulator robot explores the environment with

grasp actions, monitors motion of entities, and discovers

objectness by relating visual and haptic cues. Similarly,

in [78], a mobile robot discovers object instances by

tracking spatio-temporal clusters in its sensory experi-

ence, and forms object classes based on shapes and effects

generated with different actions.

• In our setup, the robot manipulates and observes single

objects therefore, we did not need to equip the robot

with an attention system (e.g. [79]), which limits our

framework to work with single object trajectories. Our

system can be integrated with an attention system such as

[80], where the robot discovers an attentional landscape

that is modulated by its own body and motor programs.

• In our work, we started the developmental progression at

the stage where hand-eye coordination and basic reach-

ing capability exist. The basic reaching capability can

also be autonomously learned either by acquiring visuo-

motor maps or by learning the kinematic structure in a

developmental way [81, 82, 41, 83].

The experiments indicated that through staged clustering,

classification and regression, which are applied to different

dimensions of the sensorimotor space, meaningful perceptual

and motor categories can be obtained. These categories and

the learned predictors can be further used to bridge the gap

between self-discovered structures and demonstrated tasks. By

using generic non-parametric methods such as X-means and

SVMs, we mitigated the emphasis placed on particular meth-

ods and parameters, and we focused on how to explore the vast

search space. While we explicitly designed the means of search

(clustering in Stage I, classification and regression in Stage II,

segmentation in Stage III), in real biological systems the search

of exploration space is guided by biological constraints of the

self (e.g. infants start with limited visual perception, or cannot

explore the whole environment because of the limitations in

their locomotion capabilities), or scaffolded by the parents.

In robot development settings, what/how to explore next can

be further guided by Intrinsic Motivation [84, 58], which we

currently study for emergence of development order of simple-

to-complex affordances in [85].

VI. FUTURE WORK

The biological systems learn different skills simultaneously,

and in a life-long ongoing process. As we discussed in Section

II, infants focus on learning of particular skills in different

stages of development, where the transition between the stages

emerges automatically in a seamless manner [13], and is

probably a natural consequence of changes in representations

[86]. It is also suggested that humans start from a reduced set

of degrees of freedoms in the initial stages, and later gradually

lift all restrictions [87]. Our system, on the other hand,

simplifies skill development by separately learning different

skills in different stages, and freezing the development of the

previously learned skills while learning new ones. The staged

approach (specifically freezing the results of a stage before

moving on the next one) was a choice, due to the simplification

of the construction and analysis of competences acquired at

the end of each stage. Although using on-line and incremental

machine learning methods would allow the robot to keep all

stages plastic, the stability of the whole system as well as the

interaction between the simultaneous activities of these stages

posed a greater challenge that went beyond the context of

this study. The limitation of freezing skill development can

be relaxed by progressively activating skill learning modules,

and letting the robot to continue developing all the skills in

parallel in the future implementations. Having said this, [88]

suggests that a strategy, which adaptively alternates freeing

and freezing degrees of freedom, can cope better with en-

vironmental perturbations. We also believe that an approach

that adaptively alternates skill development can cope better

with the large spaces of learning and exploration. In the

future, we plan to study how the proposed approach can scale

up to support complex tasks that include manipulation and

interaction of multiple objects with the increasing multiplicity

and diversity of real-world datasets [89]. Mechanisms like

alternating skill development [88], structural bootstrapping

[90, 91, 92], transfer learning [93], and intrinsic motivation

[94, 85] should be utilized to cope with the complexity of the

learning in such large sensorimotor spaces.

The challenge the robot faces for learning complex skills

such as inserting one object into another is two-fold. It needs

to learn both action related properties (lift, move, drop),

and object related properties (e.g. the object below should

be concave and its hole should be larger than the object

being dropped). In learning action related properties, we

discuss that even the robots which only know about single-

object affordances can acquire multi-object actions through

imitation that is coupled with tutor’s scaffolding. After the

robot obtained the basic strategy (lift, move, drop), it should

further explore the action parameters (height of lifting action,

movement trajectory depending on relative size and shapes

of objects, force feedback during insertion, etc.) and adapt

the new ‘insert’ primitive accordingly as we discuss in the

next paragraph. Regarding the second problem, i.e. learning

of ‘relational affordances’, we recently showed that the robot

can benefit from a hierarchical structure where pre-learned

basic affordances are (re-)used as inputs of complex affordance

predictors, bootstrapping the learning of complex affordances



ARTICLE ACCEPTED, TAMD, 2015 19

[92]. In the same study, we also showed that (re-)using pre-

learned basic affordances in active selection of objects to

explore next also speeds up learning of complex affordances.

Moldovan and Raedt [95] also studied learning of relational

affordances, re-using pre-learned affordance models, where the

focus was on modelling the spatial configuration of objects

with generative methods in a probabilistic relational setting.

Our work employs discriminative approaches to make sense

of the sensorimotor world, however as we discussed in Sec-

tion II-B, generative methods have also significant potential

to capture the underlying structure of the world. It is left as

a future work to address to what extent these two approaches

should coexist in a developing cognitive system, or whether

one has definite advantage over the other and thus only one

should prevail.

At the motor side, our object-based imitation, which uses

learned effect prediction and sub-goal emulation mechanisms,

resides between full trajectory level imitation and goal emula-

tion. The demonstrated behavior is assumed to be learned

if the robot successfully achieves the goal. In the robot’s

world, the learned new behavior corresponds to the behavior

sequence, where parameters of each behavior are set based on

the initial/final position of the object being acted. This learning

corresponds to acquisition of one instance of a behavior class,

and requires further exploration with additional parameters. In

our example scenario, the robot learns to move one object to

the other side of another object. However, the learned behavior

representation does not include any parameter related to the

object that acts as an obstacle in our case; and the robot cannot

successfully execute the learned action if the height or position

of the obstacle is different from the learned configuration.

Therefore, we require stronger behavior representations for

complex behaviors, in order to learn coupling parameters of

motor control with object features in a flexible and natural

way. To exhibit the full-range of imitation and movement

capabilities that can be expected from a general purposes

robotic system, our framework should incorporate more flexi-

ble motion representation frameworks such as Dynamic Motor

Primitives (DMPs) [96, 97], and perform learning with these

representations. One approach might be to learn DMPs from

robot’s own action trajectories, and adapt DMP parameters

based on object features. Stulp et al. [98], for example,

uses Reinforcement Learning to adapt DMP parameters while

learning from sequences of motion primitives. Our robot that

observes several demonstrations of different actions (such as

inserting-into-container or moving-over-obstacle) should also

be equipped with such chunking [98] and abstraction [58]

mechanisms, in order to develop higher-level of conceptual

knowledge.

Finally, our system detects pauses in the demonstration

trajectory and finds the sub-goals based on the detected pauses.

We set the fixed pause threshold to one second and the

naı̈ve tutors were able to learn in this setting; however more

experiments with different thresholds and a more thorough

analysis are required to exactly understand the role of pause

and how it effects the learning curve of the naı̈ve subject.

Motionese displayed by the real caregivers, on the other hand,

is accompanied by additional and richer set of scaffolding

signals including social signals such as gaze and speech. In

our robotic experiments, we did not utilize such social and

gaze signals, and possibly due to this, adaptation of the naı̈ve

tutors to the imitation mechanism of the robot was slow. It is

a future work to augment the sub-goal detection system with

other types of motionese and social signals such as gaze and

speech.

VII. CONCLUSION

In this study, we have realized a staged developmental

system, where the robot achieves higher level cognitive skills

by organizing its continuous sensorimotor space incrementally.

We focused on three levels of skill acquisition in robots,

following a developmental timeline, similar to those of in-

fants’. First, we studied how a robot can discover meaningful

discrete primitives by self-organizing its continuous behavior

parameter space. Next, we studied how further exploration

with the discovered behavior primitives can lead the robot

to learn object affordances and associated predictors that can

quantitatively anticipate the effects that can be created with

these primitives. Finally, we studied how discovered behaviors

and learned affordances can be used in bootstrapping the

imitation system of the robot. We showed that affordance

based goal-emulation ability, together with motionese, enables

the robot to imitate demonstrated complex actions that are not

directly represented in its behavior repertoire.

The main contributions of this paper can be summarized as

follows:

• From the robotics point of view, this study realized

staged learning of a wide range of skills (behavior primi-

tives, affordances, emulation, imitation) in an integrated

framework. Throughout the development, the structures

emerged from the previous sensorimotor experiences are

directly used as the sole building blocks in the subsequent

stages, facilitating the development of demonstrated com-

plex cognitive capabilities.

• Learning a large variety of skills through interaction in

the real world is a difficult challenge taking into account

the fragility of the robotic systems. Different from our

previous work, and many other developmental robotics

studies summarized in Section II-B, development of the

complete system was achieved in the real world on the

physical hardware.

• In our robotic system, we showed that the use of simple-

to-complex perceptual skills, i.e. first tactile, then visual

and finally social cues, was necessary and sufficient for

the progressive development of the targeted sensorimotor

skills. This is in accordance with the characteristics of

infant development [62], and thus we may speculate that

the mechanisms we used in our implementation can be

considered as a possible model for those mechanisms in

the human infant

• We showed that while the necessary mechanisms for goal

emulation can be acquired by self-interaction, in order

to bootstrap learning of more complex behaviors in a

feasible time, the robot needed to leave self-exploration

strategy and engage in observational learning by in-

teracting with tutors. This developmental order is also
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consistent with infant development as we discussed in

detail in Section II-A.

• In human infants, the development of goal-emulation

ability precedes the skill of object-directed imitation; but

the underlying mechanism is widely unknown. In this

work, we utilized goal-emulation ability for generating

chunks of movements that are sequentially chained to

bootstrap imitation capability on our robot. This robotic

solution can be seen as a prediction for the mechanism

of imitation development in infants.

• We showed that motionese can be used to bridge the gap

between the interacting agents with different movement

capabilities, such as the human tutors and the arm-

hand robot we employed in this study. Furthermore, our

experimental data indicated that naı̈ve tutors who are not

informed about the imitation mechanisms of the robot,

changed their teaching strategy, and started displaying

motionese even in the absence of explicit feedback from

the robot.

While our study provides hints about how development can

be achieved in artificial embodied agents towards forming

symbols, realizing a truly developmental system with life-

long learning capabilities still stands as a big challenge. The

robots need to learn progressively higher level concepts that

are suitable for high-level reasoning and planning, which

could be based on symbols formed via a developmental

progression we realized. These concepts should be trans-

ferred to other domains and re-used in boostrapping learning

of other concepts. In our work, the sensorimotor space of

the robot is organized to enable simple manipulation (and

understanding) of the environment in single-object settings.

The robot acquired conceptual knowledge by discovering

action categories like ‘push’ and ‘carry’ and object categories

like ‘rollable’, ‘pushable’. On the other hand, with richer

set of behavior primitives and exploration environment, we

believe that progressive learning of such knowledge can enable

the robot to acquire more complex high-level concepts and

other operations such as mental rotation following the same

methodology. In our recent work [99], the robot develops

other concepts such as ‘unstable’, ‘insertable’, ‘stackable’ by

exploring the effects of a richer set of behavior primitives.

It discovers high-level object categories, effect categories and

logical rules, that are used to encode world state and domain

description, later enabling symbolic planning. Current work

is underway for modifying the proposed approach to support

complex tasks that include manipulation and interaction with

multiple objects leading to complex and rich symbol formation

that can support development of further cognitive abilities.
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