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Abstract

Telco services are evolving under several aspects: for
instance, services may combine different telecommuni-
cation features (messaging, multi-media, etc.) and may
be activated and controlled by applications deployed in
adrd party domain. Telco infrastructures are follow-
ing this trend by adopting Service Oriented Architec-
ture solutions, e.g. for composing services and for in-
troducing uniform interaction models among services.
In a SOA-based system, capabilities, requirements and
general features of services can be expressed in terms
of policies. Such policies are megotiated in order to
define a Service Level Agreement among the involved
parties. In this paper we show how to specify, nego-
tiate, and enforce policies for Telco services by using
a constraint-based model, the cc-pi calculus. This lan-
guage extends concurrent constraint programming with
synchronous communication and local names, and with
the notion of soft constraints, that generalise classical
constraints to represent preference levels. In cc-pi cal-
culus, policies are expressed as soft constraints and the
parties involved in the megotiation as communicating
processes. The model allows to specify complex scenar-
10s in which policy negotiations and validations can be
arbitrarily nested.

1. Introduction

A recent trend in Telecommunication is to adopt
Web services technologies to expose capabilities (e.g.
call control, sending/receiving messages, access infor-
mation on end users) implemented in a Telco network
to application deployed in 3rd party administrative do-
mains. In such a context, network operators and 3rd
parties have to define a Service Level Agreement on
Web services in order to monitor the access and usage
of Telco capabilities.
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In a Web Service scenario, polices are used to ex-
press preferences, requirements, conditions for the con-
trol, configuration and protection of capabilities and
end-users involved in a service execution. Upon ser-
vice subscription, the provider and the client negotiate
their policies. If the policy negotiation succeeds, the
two parties can conclude a contract specifying a cer-
tain SLA. In the simplest case, one of the two parties
exposes a contract template that the other party can
fill in with values in a given range. However, in general
the two parties may need a real negotiation in which
they pose arbitrary complex policies. Moreover, if the
parties fail to reach an agreement, they may substi-
tute their respective policies with less restrictive con-
ditions. During the service execution, the service usage
is checked for compliance with the SLA defined at sub-
scription time. In this work we show how to apply a
constraint-based model, the cc-pi calculus, for specify-
ing, negotiating, enforcing policies for Telco services.

The ce-pi calculus [5] is a simple model of contracts
for QoS and SLAs that also allows to study mecha-
nisms for resource allocation. This language is inspired
by two basic programming paradigms: name-passing
calculi (see e.g. [7]) and concurrent constraint pro-
gramming (cc programming) [10]. Specifically, the cc-
pi calculus combines synchronous communication and
a restriction operation a la process calculi with oper-
ations for creating, removing and make logical checks
on constraints.

In cc-pi, the parties involved in a policy negotia-
tion is modelled as communicating processes and the
SLA guarantees and requirements are expressed as con-
straints that can be generated either by a single process
or as a result of the synchronisation of two processes.
Moreover, the restriction operator of the cc-pi calcu-
lus can limit the scope of names thus allowing for local
stores of constraints, which may become global after a
synchronisation.

Our constraint-based model relies on the notion of
c-semiring. A c-semiring consists of a set equipped
with two binary operations, the product x for com-



bining semiring values and the sum + such that a + b
yields the worst value that is better than a and b.
C-semirings are very stable, since cartesian products,
functional spaces and powerdomains of c-semirings are
c-semirings. For this reason, c-semirings allow to model
networks of constraints for defining constraint satisfac-
tion problems (CSPs) [8], that is a well-established for-
malism, especially studied in the artificial intelligence
area, adequate to specify many kinds of real-life prob-
lems. A single constraint, or even a network of con-
straints, is a function which, given an assignment of
the variables to some domain D, returns a boolean, or
rather a value in a generic c-semiring in the case of
soft constraints. In fact it is easy to define c-semirings
expressing fuzzy, hierarchical, or probabilistic values.
Also, optimization algorithms work on the c-semiring
consisting of the reals plus infinity with the operations
of sum as x and min as +. Several efficient algorithms
defined for ordinary, crisp constraints, like local prop-
agation or dynamic programming, can be generalized
to c-semirings.

In this paper we consider a service called CallBySms
to show the applicability of our constraint-based model
for specifying policies for Telco Web Services and ne-
gotiation mechanisms. The CallBySms service allows
a mobile phone user to activate a voice call by sending
to a specific service number an SMS with the nickname
of the callee. The service is built on two Telco services
provided by a network operator, specifying the opera-
tions necessary respectively to set-up and control calls
and to receive/send SMS messages.

Several approaches for specifying SLA constracts are
emerging. SLAng [11] and WSLA [6] are XML-based
languages for defining SLAs at a lower level of abstrac-
tions. The elements of SLAng are also constraints on
the behaviour of associated services and service clients,
but their are specified in OCL. WSLA provides the
ability to create new SLAs as functions over existing
metrics. This is useful to formalise requirements that
are expressed in terms of multiple QoS parameters.
The semantics for expressions over metrics is not for-
mally defined, though.

2. Telco Architecture

The Telecommunication Services, i.e., the services
that are provided by a telecommunication infrastruc-
ture managed by a public network operator, are evolv-
ing by considering several aspects of convergence: (i)
convergence of media, i.e. the same service has to com-
bine different types of communications, including voice,
video, data streams; (ii) convergence of terminals, i.e. a
service should be able to be activated by heterogeneous

terminals (including PCs, mobiles, PDAs, TV SetTop-
Boxes, etc.) and telecommunication access networks
(e.g., ADSL, UMTS, GSM/GPRS), and the same ser-
vice session could involve different types of terminals;
(iii) convergence of service features, i.e. a service may
combine different telecommunication features, includ-
ing multi-media communication, messaging, and con-
tent access; (iv) convergence of Telco and Internet/Web
worlds, i.e. the distinction among the application con-
texts is disappearing, e.g. a telecommunication ser-
vice could be configured, activated, and controlled by
Web applications (such as chat applications enabling
the activation of phone calls), or an IT application
could integrate some Telco features (like fleet manage-
ment application integrating location features). In gen-
eral telecommunication services are created, executed
and managed by a Service Layer, which consists of a
set of systems implementing the functions needed for
the service delivery. Most of the current service lay-
ers are realized as a set of wvertical platforms, named
Silos, each of them specialized to provide services in-
volving a specific Telco Feature and a specific network.
Usually such platforms integrate in a single system the
service execution environments with the Telco features
and some supporting functions (e.g., payment, authen-
tication, profiles). Since the vertical systems deployed
in a service layer are in general loosely integrated, it
is quite difficult to share a function across different
platforms (i.e., to allow that a service deployed on a
platform A can access a function implemented on a
platform B) and the same functions are duplicated on
several platforms.
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Figure 1. Vertical Telco Architecture

2.1. Telco Architecture versus SOA

The vertical organization of a service layer intro-
duces several problems in dealing with the realization
of ‘converged’ services. In order to improve such situa-
tion, the service layer is evolving towards a horizontal



approach based on: (i) integration among systems for
service delivery which are deployed in the operator in-
frastructure; (ii) sharing of and interoperability among
functions, enablers and service capabilities. A possible
trend for the evolution of the service layer according
to a horizontal approach is the adoption of Web Ser-
vices and Service Oriented Architecture solutions. At
the moment, there are already several initiatives that
consider this possibility, such as the specification of
Web Services for controlling Telecommunication ser-
vices, e.g. Parlay X Web Services [2] jointly specified
by ETSI and 3GPP.

A possible model for the horizontal Service Layer is
depicted in figure 2. The model includes the following
macro-functions:

Service Execution: it contains functions for the de-
ployment and the execution of the business logic
of the services; typically the execution functions
are carried out by one or more execution environ-
ments/application servers based on several tech-
nologies (e.g. BPEL [1]).

Service Exposure: it provides functions for secure
and controlled interactions among applications de-
ployed in 3rd party domains and the exposed ser-
vices which are executed in the Service Execution.

Telco Web Services: it implements a uniform set of
APIs (e.g., based on an event/command interac-
tion model) that provide an abstract view of the
Network Control Functions and Service Enablers.
An example of Telco Web Services is provided by
the standard specification Parlay X. The Telco
Web Services may be used by service logic exe-
cuted in the Service Execution in order to inter-
act with the Service Enablers and Network Con-
trol Function and may be exposed to 3rd parties
through the Service Exposure Function.

Service Enablers: they are a set of functions that
enable the deployment and the delivery of ser-
vices based on features additional to the ‘basic’
connectivity/session control; examples of Service
Enablers are: communication enablers for multi-
media services (e.g., a conference server), user in-
teraction enablers for service-user/terminals inter-
action; messaging enablers to control messages ex-
change; info delivery enablers to control informa-
tion and content delivery to users via Web, WAP,
streaming; and context enablers for context data
processing (e.g. a location server).

In particular in this horizontal architecture the Web
Services/ SOA approach may be adopted. Figure 3
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highlights the main components that are necessary for
such an architecture:

Registry /Repository: directory of the services,
with all the relevant information useful for their
usage and management;

SOA Management: management of the SOA infras-
tructure (e.g., monitoring of WS usage);

SOA Bus: mediation functions for processing and
control on SOA messages, through Intermediaries
(e.g., policy enforcement, security checks, rerout-
ing, load-balancing, event notification);

Identity and Access Management: systems to
control the access to the services from applications
and the involvement of end-users (e.g., privacy);

Policy Decision and Management: handling of
policies to control that the usage of enablers
by applications fulfills the parameters defined
at subscription time, i.e. the SLA. The Policy
Decision and Management [3] is meant to sup-
port: (i) general purpose policies (enforced by
the SOA Bus by message intermediaries); (ii)
component service specific policies (enforced by
the component implementation); (iii) the possible
involvement of external decision points (e.g.,
end-user account management).

In the rest of the paper we will focus on the last
of the above components and we will address one
of the critical point of SOA in Telco Service Layer,
that is the specification of policies and policy enforce-
ment/negotiation mechanisms.

3. Policies for Telco Web Services

Telecommunication networks are adopting Web Ser-
vices technologies to expose capabilities, such as call
control, sending/receiving messages, access informa-
tion on users, to applications deployed in 3rd party
administrative domain. In a SOA-based system, capa-
bilities, requirements and general features of services
can be expressed in terms of policies. Such policies are
negotiated in order to define a Service Level Agreement
among the involved parties.

3.1. Telco Policy Description

The reference model of policies for Telco Web Ser-
vices is reported in Figure 4. The Policy Management
System resides in the network operator domain and it is
in charge of handling the policies between the 3rd Party

Application and the Telco Web Services that compose a
certain service, i.e. the policies defined for the specific
Parlay X Web Services involved in the service. The
policies may apply to the request/response flow or in
the notification case. The Policy Management System
can validate policies either on interception (the evalua-
tion is performed on the messages of request/response
of Web Services) or on invocation (the evaluation is
requested from the Web Service implementation).
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Figure 4. Reference Model for Telco Web Ser-
vice Policies

Different types of policies can be identified. Below
we give a possible categorisation of policies:

policies on authentication concern authentica-
tion mechanisms such as IP address, user-
name/password;

policies on authorisation include e.g.
subscription, charge/free access;

access on

policies on time range are used to verify if a web
service or an operation that is part of a web service
can be invoked on a certain moment;

policies on invocation frequencies specify, e.g.,
how many times an operation can be invoked in a
certain time range;

policies on end-users’ addresses are used to con-
trol the validity of the network addresses;

policies on hiding of end-users’ addresses
indicate if user network addresses can be explic-
itly passed or if they have to be hidden, e.g., by
mapping addresses and aliases;



policies on the session validity is meant to verify
whether a request or notification is within a cer-
tain session of usage. The session validity check for
an application is based on the relationship between
a generated session identifier and the application
for which the session identifier has been generated
(e.g. time validity of the session, number of invo-
cation of an operation in a session).

3.2. CallBySms: An Example of Telco Ser-
vices

We introduce a service scenario named CallBySms
that we will use in subsequent sections to show the
applicability of the constraint-based approach. The
service is built on the Parlay X Web Services and, in
particular, it uses ThirdPartyCall and ShortMessaging
services for specifying the operations respectively nec-
essary to set-up and control calls and to receive/send
short messages.

The CallBySms service allows a mobile phone user
to activate a voice call by sending an SMS message to
a specific service number. The SMS message must con-
tain a nickname of the person the user wishes to call.
The service is able to automatically find the number
associated with the nickname and to set up a third
party call between the user and the callee. In order to
keep privacy, the service does not know actual phone
numbers, but only opaque-id representing users. Fig-
ure 5 depicts a possible service scenario in which John
wishes to call Mary and he knows that Mary’s nick-
name is “sunshine”.

1. The Third Party application subscribes the ser-
vices of Parlay X WS that compose the CallBySms
service and signs a SLA contract with the Parlay
X WS;

2. The CallBySMS service is activated and the Third
Party application receives a service number, e.g.
11111;

3. Mary sends an SMS “REGISTER sunshine” to the
service number 11111;

4. The service associates “sunshine” to the opaque-id
of Mary;

5. John sends an SMS “CALL sunshine” to the ser-
vice number 11111;

6. The service retrieves the opaque-id associated to
“sunshine” and set-up a call;

7. John’s phone rings; John answers and gets the
ringing tone;

8. Mary’s phone rings; Mary answers;

9. John and Mary are connected.

Parlay X REGISTERsunshlne
smrwlessagmg "/
CALL
sunshine
P;an X
3rd Party ThirdParlycaIl
Application

Network Operator,
Domain

—_————— » Service subscription
Service execution

Figure 5. CallBySms Service Scenario

4. Modelling Policies

straints

through Con-

In this section we show how to specify the Telco poli-
cies in terms of c-semiring-based constraints. The most
interesting policies from the viewpoint of constraint-
based formalisations are those ones specifying ranges
of admitted values, possibly with different preference
levels, or arbitrary formulas, rather than single values.
In fact, the latter kind of policies can be trivially com-
bined into a contract and validated, thus not requiring
the c-semiring machinery. For this reason, in this work
we disregard token-based policies e.g. concerning au-
thorization, authentication or session validity.

Furthermore, in our approach we do not need to dis-
tinguish the policy types — as specified by the taxonomy
given in § 3 — according to the involved parties. In fact,
our model focuses on SLA contracts among arbitrary
service providers and clients, e.g. the Parlay X WS
offering certain Telco services and a 3rd party appli-
cation or the application providing a service, possibly
combining some Telco services, and an end-user.

We now give the basic definitions and properties
concerning c-semirings and named c-semirings. We re-
fer to [4] and [5], respectively, for a more comprehensive
treatment.



4.1. Semiring-based Constraints

C-semiring A constraint semiring (c-semiring) is a
tuple (A, +, x,0,1) such that: (i) Aisasetand 0,1 €
A; (i) + is commutative, associative, idempotent, 0 is
its unit element and 1 is its absorbing element; (iii) x
is associative, commutative and distributes over +, 1
is its unit element and 0 is its absorbing element.

Intuitively, the sum a + b chooses the worst con-
straint better than a and b, while the product a x b
combines two constraints. C-semirings are equipped
with a partial ordering <, which is defined as a < b iff
a+ b = b, and which means that a is more constrained
than b or, more interestingly, that a entails b, a F 0.

Typical examples are the c-semiring for classi-
cal constraints ({False, True},V, A, False, True), the
c-semiring for fuzzy CSPs ([0, 1], maz, min,0,1),
and the c-semiring for probabilistic =~ CSPs
([0,1], maz,-,0,1), and the c-semiring of weighted
CSPs ([0, ..., + oo],min,+, 0,4+ cc). Since the Carte-
sian product of two c-semirings is still a c-semiring, it
is also possible to model multicriteria optimization in
this framework.

Named c-semirings Named c-semirings are c-
semirings enriched with a notion of name equalities, a
permutation algebra structure that identifies the sup-
port supp(c) of every element ¢ of the c-semiring, i.e.
the (finite) set of names that are relevant for ¢, and
a hiding operator (v z.) that makes a name x local in
¢, in the style of process calculi. Assume a countable
set of names N, ranged over by z,y,2,.... Formally,
a named c-semiring C = (C,+, x,vx.,p,0,1) is a tu-
ple such that: (i) the name equalities =y € C; (ii)
(Cy+,x,0,1) is a c-semiring; (iii) (C,p) is a (finite-
support) permutation algebra; (iv) vaz. : C — C,
for each name x, is a unary operation. Furthermore,
named c-semirings satisfy a set of axioms ruling how
to combine with each other c-semiring operations, such
as +, X, v and p.

Given a named c-semiring (C,+, X, p, vz.,0,1), a
(named) constraint ¢ is an element of C. We write
c(x1,...,2y,) for a constraint ¢ with support supp(c) =
{z1,...,z,}. This notation allows to show the free
names of ¢ and to explicitly apply permutations to c. A
set of constraints C' = {¢1,...,¢,}, such that C' C C,
is consistent if (c; X ... X ¢,) # 0. Moreover, given
a constraint ¢ € C’, C entails ¢, written C + ¢, if
(c1 X...x¢cp) <ec

Soft CSP  Given a domain D of interpretation for NV,
and a c-semiring S = (A, 4+, x,0,1), a soft constraint
¢ can be represented as a function ¢ = (N — D) — A

associating to each variable assignment n = N — D a
value of A. Soft constraints can be combined by using
the c-semiring operations.

A named c-semiring for soft constraints Cso; can
be defined as the tuple Csors = (C,+', X', v 2., p, 0, 1)
such that: (i) C is the set of all soft constraints over
N, D and S; (ii) name equalities z=y are defined as
(x =y)n = 1if n(z) = n(y), (z = y)n = 0 otherwise;
(iif) (c1+ e2)n = cin+cam; (iv) (€1 X" e2)n = c1n X cam;
(v) (vz.o)n = Y 4ep (en[z]), where 3, ;, denotes
the c-semiring sum operator and the assignment 1[4/
is defined, as usual, as n[dz|(y) = d if x = y, n(y)
otherwise; (vi) (pc)n = i with 7j(x) = n(p(x)); (vii)
0'n=0and 1'p =1 for all 7.

Of course, Csoft can be instantiated by consider-
ing a specific c-semiring S. For instance, the choice
S = ({False, True}, V, A, False, True) leads to solutions
consisting of the set of tuples of legal domain values.
The notation z < a x b < gy, where =,y are names
in A and a,b are domain values in D, is a compact
way for representing the constraint ¢ of C' defined as
¢ = (N — D) — {False, True}, with n being an assign-
ment 7 = N — D, such that cnp = True if n(z) < a and
b < 1n(y), while ¢n = False otherwise.

4.2. Policies for CallBySms

We now show how to formalise and combine poli-
cies for Telco Web Services in terms of semiring-based
constraints by focusing on the CallBySms service in-
troduced in the previous section. Particularly, we
define two kinds of policies concerning time and fre-
quency. For simplicity, in the following we take the
reference constraint system to be a CSP by consid-
ering the named c-semiring Cyost Over the c-semiring
S = ({False, True}, V, A, False, True). However, such
constraint system can be easily generalised to soft con-
straints by replacing S with an arbitrary c-semiring.

Time policies Suppose the Parlay X Web Services
(ParX) guarantees to set-up third party calls at any
time in the initial time range [7,...,9] and final time
range [15,...,18]. This policy can be expressed by the
constraint cyime(, f) = (7 <4 < 9) x (156 < f < 18).
Similarly, the 3rd party application (3rdPA) requires
that phone calls are set-up at any time in the initial and
final time ranges [6, ..., 8] and [17,...,19]. This policy
can be represented by the constraint diime(, f) = (6 <
i <8) x (17 < f < 19). The result of combining these
policies is the intersection of the initial and final time
ranges. In terms of constraints this is given by the c-
semiring product e¢ime(?, f) = Ctime(i, f) X dtime (%, f) =
(7<i<8) x (17 < f < 18).



Frequency policies Suppose ParX wants to pose
a bound max_call on the number nc of phone calls
that can be set-up upon request of end users while
the CallBySms service is active. This condition can
be expressed by the constraint cpeq(nc) = 0 < ne <
max_call. On the other side, in order to ensure that
each registered user receives a maximum call_per_pers of
calls, 3rdPA requires a maximum max_call/call_per_pers
of registration requests nr. The above policy can be
represented by the constraint dgeq(nr) = 0 < nr <
max_call/call_per_pers.

The policies etime and cgeq are part of the SLA con-
tract among ParX and 3rdPA and they are validated
by the Policy Manager residing within the network op-
erator domain, while the policy dg.q depends on the
ParX parameter max_call but concerns the agreement
of 3rdPA with every end-user and it is checked by
3rdPA.

5. Negotiation and Enforcement in Cc-pi

In this section we employ a language based on c-
semirings, the cc-pi calculus [5], as a framework for
specifying, negotiating and validating Telco policies. In
this model, the parties involved in a policy negotiation
are modelled as communicating processes. First, we
outline the basic features of the calculus. We refer to
[5] for details.

Syntax Assume the set of names N, ranged over by
z,y,z,... and a set of process identifiers, ranged over
by D. We let ¢ range over constraints of an arbi-
trary named c-semiring C. The syntax of the calcu-
lus is specified in Table 1. The 7 prefix stands for a
silent action, the output prefix Z(y) for emitting over
the port x the message y and the input prefix z(y) for
receiving over = a message and binding it to y. Prefix
tell c generates a constraint ¢ and puts it in paral-
lel with the other constraints, if the resulting paral-
lel composition of constraints is consistent; tell c is
not enabled otherwise. Prefix ask c is enabled if ¢ is
entailed by the set of constraints in parallel. Prefix
retract c removes a constraint ¢, if ¢ is present. Pre-
fix check c is enabled if ¢ is consistent with the set of
constraints in parallel. Unconstrained processes U are
essentially processes that can only contain constraints
c in prefixes tell ¢, ask ¢, retract ¢, and check c.
As usual, 0 stands for the inert process and U |U for
the parallel composition. ), m;.U; denotes an external
choice in which some guarded unconstrained process
U, is chosen when the corresponding guard m; is en-
abled. Restriction () U makes the name z local in U.

A defining equation for a process identifier D is of the

form D(Z) U with |Z| = |y|. Constrained processes
P are defined like unconstrained processes U but for
the fact that P may have constraints ¢ in parallel with
processes. We simply write processes to refer to con-
strained processes.

Structural Congruence The structural congruence
relation = is defined as the least congruence over pro-
cesses closed with respect to a-conversion and satisfy-
ing the following rules. Note that the notion of free
names fn(P) of a process Pis extended to handle con-
straints by stating that the set of free names of a con-
straint ¢ is the support supp(c) of c.

P0 =P  PQ=QP (PIQIR = PlQIR)
U+V =V+U U+M+W = U+ (V+W)
()0 = 0 Pl(x)@ = (=)(P|Q) if x & n(P)

(@WP = W@P DG = [§/7U if D@ = U
These axioms can be applied for reduc-
ing every process P into a normal form
(1) ... (zn) (C|U), where C is a parallel com-
position of constraints and U is an unconstrained
process.

Reduction Semantics The reduction relation over
processes — is the least relation satisfying the infer-
ence rules in Table 2. In the table we adopt the fol-
lowing notations: C' stands for the parallel compo-

sition of constraints c;| ... |c,; C consistent means
(c1 X ...xen) #0, CF cif (ep X ... xXepn) < g
C—cstands forc1 | ... |ci—1|ciy1| ... | cn if c = ¢; for

some ¢, while C— ¢ = C otherwise.

The idea behind this reduction relation is to proceed
as follows. First, rearranging processes into the normal
form (z1) ... (x,) (C'|U) by means of rule (STRUCT).
Next, applying the rules (TELL), (ASK), (RETRACT),
and (CHECK) for primitives on constraints and the
rule (coM) for synchronising processes. Finally, clos-
ing with respect to parallel composition and restric-
tion ((PAR), (RES)). More in detail, rule (TELL) states
that if C'|c is consistent then a process can place ¢ in
parallel with C, the process is stuck otherwise. Rules
(AsK) and (CHECK) specify that a process starting
with an ask ¢ or, respectively, check ¢ prefix evolves
to its continuation if ¢ is entailed by C' or, respec-
tively, if ¢|C is consistent, and that the process is
stuck otherwise. By rule (RETRACT) a process can re-
move c if ¢ is among the syntactic constraints in C
e.g., the process x=y |y = z|retract © = 2. U does
not affect x = y|y = z. In rules (COM), we write



PREFIXES T on=

UNCONSTRAINED U

T | (@) | #() | tellc | ask ¢ | retractc

check c

0| UV | Somili | @V | D)

Table 1. Syntax

PROCESSES
CONSTRAINED P == U ’ c ’ P|P ’ (x)P
PROCESSES

(tav) C|7.U - C|U

)

(ask) C'lask c.U — C|U
(CHECK)
)

(com

(TELL) C'|tell c.U — C'|¢|U if C'|c consistent
if C + ¢ (RETRACT) C|retract c.U — (C— ¢)|U
C'|check c.U — C|U if C'|c consistent

Cl@@).U+ > mU) | ((0).V + 3,7 V;) — CUu{y=uw}|U[V

if |y| = |w|, C'|y = w consistent and C' + z =z

C'|m;.U; — P for some 14
c|y,m.Uy—P
P—P

() P — (z) P’

(sum)

(RES )

PP
(PAR) ————————
P|U— P'|U

P=P P —Q

P—qQ

Q=Q

(STRUCT)

Table 2. Reduction semantics

y = w to denote the parallel composition of fusions
1 = wi| ..., |yn = wy,. Intuitively, two processes
Z(y).P and z{w).Q can synchronise if the equality of
the names = and z is entailed by C' and if the paral-
lel composition C'|y = w is consistent. Note that it
is legal to treat name equalities as constraints c over
C, because named c-semirings contain fusions. Rule
(PAR) allows for closure with respect to unconstrained
processes in parallel. This rule imposes to take into
account all constraints in parallel when applying the
rules for constraints and synchronisation.

The present semantics does not specify how to solve
at each step the constraint system given by the paral-
lel composition of constraints C. However, in [9] it is
shown how to apply dynamic programming to solve a
CSP by solving its subproblems and then by combining
solutions to obtain the solution of the whole problem.
A visual representation of the problem is given by con-
sidering a graph where names are represented as nodes
and constraints as arcs connecting the names involved
in each constraint.

5.1. Modelling CallBySms

In Table 3 we show the formal specification in cc-
pi of the policy negotiation and service execution sce-
nario of CallBySms. On top of the table we recall

the time and frequency policies expressed in terms of
constraints. The negotation phase between 3rdPA and
ParX consists of the two parties placing their own con-
straints and trying to synchronise on port z in order
to export their local parameter plus two variables for
marking the beginning and conclusion of the service
execution. If the set of all such constraints, including
the name equalities induced by the synchronisation, is
consistent, the two parties have concluded a contract,
which is expressed by the c-semiring product x of all
constraints. The process Clocky is meant to simulate
the actual time by increasing of a certain amount a
time variable ¢ starting from the initial value T. We
assume this 4+ operation automatically resets the clock
by the end of the day. Upon an execution request,
ParX is ready to accept requests and to forward them
to 3rdPA.

An end-user intending to register to CallBySms tries
to synchronise with ParX on port z with its private
identity mary and nickname sunshine as parameters,
and waits for an acknowledgment on mary. ParX for-
wards this request to 3rdPA by sending on z the nick-
name and a private channel name ch, though not re-
vealing the user identity. 3rdPA checks whether the
number of registered users is within the agreed bound
and increases the respective counter (process Verifyr),
before accepting the request. Then, ParX notifies the



PoLicies
Ctime (7, f)

Creq(NC)

dime (i’ f7)

)

!
dfreq(nr, NC

3RDPA-PARX NEGOTIATION
ParX Neg(z, 2)
3rdPA Neg(x)

CLOCK
Clockr(¢)

SERVICE EXECUTION
ParX_Exn(z, z, 1, f, t, nc, beg)
3rdPA_Exg(z, beg’, nr)
HANDLING REGISTRATION REQUESTS
Regist_User(z, sunshine)

ParX_Acpt_Reqsty(z, 2, i, f,t, nc)

3rdPA_Acpt_Regstg(z, nr)

HANDLING CALL REQUESTS
Wait_Calls(mary)

Caller(sunshine)

ParX_Acpt-Cally(4, f, t, nc, id, nn, ch)

3rdPA_Acpt_Call(ch’)

TEST AND DECREASE
Testr (y)

SYSTEM

o

o

(i, f
G

retract (t =

<n
6 < i
<n

7<1

)
-/

9) x (15 < f < 18)
max_call
8) x (17 < f/ <19)

<

c<
<
r < nc’/call_per_pers

,nc, beg) (tell cuime(?, f) X Cireq(nc). @
fonc, beg’, nr) (tell diime(?, f') X dieq(nr, nc’).
(', f',nc, beg’).0)

beg().ParX_Acpt_Reqsty(z, 2, 4, f, t, nc)
beg’().3rdPA_Acpt_Reqstg(z, nr)

(i, f, nc, beg).0)

T).tell (¢t =T+ 1). Clockt41(t)

(mary) (Z(mary, sunshine). mary(). Wait_Calls)
(id, nn, ch)(z{(id, nn).T(nn, ch).id ().
ParX_Acpt_Regsty (z, 2,4, f, t, nc) |
ParX_Acpt-Cally(4, f, t, nc, id, nn, ch)))
(nn', ch’) (Testr(nr). x(nn', ch’).
(3rdPA_Acpt_Reqstg_; (z, nr) | 3rdPA_Acpt_Call(ch’)))

(cal
(john
(cal

check (0 <y < F).retract (0 <y <F).

)

)
(

") (mary{cal’y.cal’ (). Wait_Calls)

sunshine (john).john().0

check (i <t < f).Testy(nc).nn{cal).
ch().id(cal).ParX_Acpt_Cally_,(i, f, t, nc, id, nn, ch))
ch’().3rdPA_Acpt_Call(ch’)

tell (0 <y < (F—

(t,z, z, sunshine)(ParX_Neg(x) | 3rdPA_Neg(x) |
ParX Exmax_call (2, 2, 4, f, t, nc, beg, end) |

3I‘dPA—EXma\x_caII/caII_per_pers(ma begla end/a nep, nr) |

Regist_User(z, sunshine) | Caller(sunshine)
tell (t = 0). Clockg(t))

Table 3. CallBySms specification in cc-pi
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successful registration to the user.

A user who wants to call Mary but only knows her
nickname is specified by a process sending its private
name john on the public port sunshine and then waiting
to be connected with sunshine on port john. ParX
verifies that the request is within the legal time range
and that the number of calls that can be set-up is under
the bound max_call. In case of success, ParX send an
acknowlegment to 3rdPA and then forwards the name
john to the private port mary in order to connect the
two users.

The whole system S is given by the parallel com-
position of the processes specifying the policy negotia-
tion, the service execution, the initialised clock and the
two users. Note that our framework can be employed
to model more complex negotiation scenarios, e.g. in
which there is an arbitrary number of end-users or in
which 8rdPA and ParX may want to retract their
initial policies and replace them with less restrictive
constraints, in order to reach an agreement.

6. Concluding Remarks

In this paper we have applied the cc-pi calculus, a
constraint-based model for specifying SLA contracts,
to the Telecommnunication context. Specifically, we
have shown how to negotiate and enforce policies for
Telco Web services in cc-pi. This application could
benefit from further work on the calculus, such as the
development of an implementation and of a richer the-
ory of the calculus, e.g. the study of suitable mecha-
nisms for assuring transactional and security properties
of process executions. It would also be interesting to
compare our formalisation with specifications of Telco
policies in XML-based languages for defining SLAs, like
SLAng [11] and WSLA [6].
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