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Abstract agnoser involves determinization in general, thus caneot b
done in polynomial time.)

Fault diagnosis consists in synthesizing a diagnoser that  The usual assumption in this setting is that the set of ob-
observes a given plant through a set of observable eventsservable events is fixed (and this in turn determines the set
and identifies faults which are not observable as soon asof unobservable events as well). Observing an event usually
possible after their occurrence. Existing literature ofisth  requires some detection mechanism, i.eseasorof some
problem has considered the casestaticobservers, where  sort. Which sensors to use, how many of them, and where to
the set of observable events does not change during exeplace them, are some of the design questions that are often
cution of the system. In this paper, we considgnamic difficult to answer, especially without knowing what these
observers, where the observer can switch sensors on or offsensors are to be used for.
thus dynamically changing the set of events it wishes to ob-

serve. We define a notion of cost for such dynamic Observer%ynamic Observers. Dynamic sensors’ selectioronsist
and show that) the cost of a given dynamic observer can jy"sejecting the sensors to switch on after each new obser-
be computed andid) an optimal dynamic observer can be 4ion thus dynamically changing the set of events to ob-

synthesized. serve. A device that chooses the set of events to observe
dynamically is adynamic observer We are interested in
synthesizing a dynamic observer in the hope that not all the
observable events are always needed to diagnose a DES.

1. Introduction This problem is interesting since observing an event can
be costly in terms of time or energy: computation time must

Fault Diagnosis. Discrete-event systems (DES) can be be spent to read and process the information provided by

formalized by using finite automata over a seobgervable ~ the sensor, and power is required to operate the sensor (as

eventss, plus a set ofinobservablevents [8, 10]. well as to perform the computatllons). It is then e§§entlal
Fault diagnosis consists in observing a DES and detect-that the sensors used really provide useful informatiois. It

ing whether a fault has occurred or not. We follow the DES &/S0 important for the computer to discard any information
setting of [9] where the behavior of the plant is known and 91Ven by @ sensor that is not really needed. In the case of

a model of it is available as a finite-state automaton over & fixed set of observable events, it is not the case that all
2 U {, f} where¥. is the set of observable eventsrep- sensors always provide useful information and sometimes

resents the unobservable events, dnig a special unob-  €Nergy (sensor operation and computer treatment) is spent

servable event that corresponds to the faults. Cheaking OF nothing. For example, to diagnose a fault in the system
agnosability(whether a fault can be detected) for a given described by the automatds Figure 1, a diagnoser only
plant and afixed set of observable events can be done in Nas to watch event, andwhena has occurredto watch

polynomial time [9, 11, 5]. (Notice that synthesizing a di- eventb: if the sequenca.b occeurs, for sure a fault_has oc-
curred and the diagnoser can raise an alarm. It is then not
*Work supported by the project CORTOS, a program of the freyueh useful to switch on sensérefore am has occurred.
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challenging problem which is to synthesize an optimal ob- ¥*. ¥t = ¥* \ {¢}. Given two wordsp, p’ we de-

server, in the sense that the cost of diagnosing a DES withnote p.p’ the concatenation gf andp’ (which is defined

such an observer is minimal. in the usual way). |p| stands for the length of the word
p and|p|, with A € ¥ stands for the number of occur-

Related work. In the case oftatic observers where the rences ofA in p. Given¥; C ¥, we define theprojection

set of observable events is fixed a priori some papers haveT s, : ©* — X7 by: w5, () = ¢ and fora € ¥, p € X%,

already considered optimization problems. NP-hardness@ /s, (a.p) = a.7 /5, (p) if a € ¥1 andm /5, (p) otherwise.

of finding minimum-cardinality sets of observable events

so that diagnosability holds under the standard, projeetio 2.2. Finite Automata

based setting has been previously reported in [11].

The complexity of finding “optimal” observation masks, Let f ¢ X° be a fresh letter that corresponds to the fault
i.e. a set that cannot be reduced, has been considered in [Biction. Anautomator4 is a tuplé (Q, qo, X7/, —) with Q
where it was shown that the problem is NP-hard for gen- a set of statesy, € Q is the initial state~C Q x 35/ x Q
eral properties. [6] also shows that finding optimal observa is the transition relation. If) is finite, A is afinite automa-
tion masks is polynomial for “mask-monotonic” properties ton. We writeg A ¢ if (¢, )\ q) e—.Forqge Q,enq)is
where increasing the set of observable (or distinguishable the set of actions enabledatA run p from states in Ais a
events preserves the property in question. D'agnosab'“tysequence of transitiong s s; 22 sy - 5,1 2 s
is a mask-monotonic property. Computing an optimal ob- st A € ¥ andsy = s. We lettgt(p) = s,. The

servation masks is not the same as fmd_mg a MINIMUM-get of runs froms in A is denotedRungs, A) and we de-
cardinality mask. We have recently considered this Iatterﬁne Rung4) — Rungqo,A). The trace of the runp

problem in [1] and prc_)ved it, is NP-complete. . denotedtr(p), is the word obtained by concatenating the
In [4], the authors investigate the problem of computing symbols); appearing irp, for those),; different frome.

a minimal-cost strategy that allows to find a subset of the Given a setR C RungA), Tr(R) = {tr(p) for p € R} is
set of observable events s.t. the system is diagnosable. I{ e set of traces of the r’uns . A run pis k-faulty if
is assumed that each such subset has a known associatqure is somd < i < n st /\_' — fandn—i > k
cc_Jst, as wg!l as a known a-priori probability for achieving Faulty. , (A) is the set_ofc-faulty runs ofA. A run isfgulty
diagnosability. ) if it is k-faulty for somek € N and Faulty(A) denotes
Tq our knowledge, dynamic observers have not beeny . <ot o faulty runs. It follows thefaultys , ., (4) <
considered up to now. Consequently, the problem of Syn'FauIty>k(A) C ... C Faulty.(A) = Faulty(A). Finally
thesizing optimal-cost dynamic observers for diagnoggbil NonFéuIt)(A)_: Ru_n$A) \IE?:\uIty(A) is the set omon-

purposes, have not been addressed previously in the "tera}‘aulty runs of A. We IetFauIt)}gk(A) = Tr(Faulty, ,(4))

ture. In a _recent paper [2], we have adres_sgd th_e pro_ble_m %%hnd NonFaulty (4A) = Tr(NonFaultfA)) be the sets of
synthesizing dynamic observers. No optimization criterio
traces of faulty and non-faulty runs.

is used in this work. The present paper is a follow-up of [2] A word w is acceptedby A if w — tr(p) for some

and _exten.ds it by co_nmdermg optimization problems. A full » € RungA). Thelanguagel(A) of A is the set of words
version with proofs is available as a research report [1]. accepted byl

We assume that each run df of lengthn can be ex-

Organisation of the paper. In Section 2 we fix notations  (anded into a run of length + 1. This is required for tech-
and introduce finite automata with faults to model DES. In ica| reasons and can be achieved by addifapp transi-

Section 3 we introduce dynamic observers and define thegjgns 1o each deadlock state 4f Notice that this transfor-
cost of a dynamic observer. We also show how to cOmputemation does not change the observations produced by the
it. In Section 4, we address the problem of computing an pjant, thus, any observer synthesized for the transformed
optimal observer. plant also applies to the original one.

2. Preliminaries 2.3. Product of Automata

2.1. Words and Languages LetA; = (Q1, ¢k, T1, —1) andAy = (Qa, g2, Sa, —2).

o The productof A; and A, is the automatom; x A; =
Let X be a finite alphabet anfl® = X U {¢}. %* (Q, g0, =, —) where:

is the set of finite words oveX and containg which is
also the empty word A languageL is any subset of e ) =Q1 X Q2

1We uses both for the unobservable event and the empty word as the  2In this paper we only use finite automata that generate petdsed
type is always clear from the context. languages, hence we do not need to use a set of final or aastutes.



e g0 = (g}, 4), Definition 1 (Observer) An observer Obsover ¥ is a
deterministic labeled automato®bs = (S, so, %, 4, L),

o X=X, UXy, where S is a (possibly infinite) set of stategy € S is the
) _ " ) initial state, X is the set of observable events,Sx¥ — S
e —C @ x X x Qisdefined by(q1,g2) — (g1, g3) if: is the transition function (a total function), ard: S — 2%
) " is a labeling function that specifies the set of events that th
— eithero € X; \ ¥3-; andg; —; ¢; andg;_,; = observer wishes to observe when it is at staté/e require
q3—i OF for any states and anya € ¥, if a ¢ L(s) thend(s,a) = s:
— 0 e NSy andg, S g fork =1,2. this means the observer does not change its state when an

event it chose not to observe occurs. We use the notation
L . d(s0,w) to denote the state reached by reading the word
3. Sensor Minimization & Dynamic Observers ., and 1,(s(so, w)) for the set of eventshs observes after
w. |
In this section we introducdynamic observersTo il-
lustrate why dynamic observers can be useful consider th
following example.

eAn observer implicitly defines &ransducerthat consumes
an input eventt € ¥ and, depending on the current state
s, either outputs: (whena € L(s)) and moves to a new
stated (s, a), or outputs nothing of, (whena ¢ L(s)) and
remains in the same state waiting for a new event. Thus,
an observer defines a mapping Obs frBfmto >* (we use

Example 1 (Dynamic Observation) Assume we want to
detect faults in automatoBf of Fig. 1. A static diagnoser
that observe& = {a, b} works, however, no proper subset ,
of ) can be used to detect faults B Thus the minimum  the same name “Obs” for the automaton and the mapping).
cardinality of the set of observable events for diagnoging  GIVen a runp, Obs s (tr(p))) is the output of the trans-

is 2 i.e. a static observer will have to monitor two events ducerorp. Itis called theobservatiorof p by Obs. We next
during the execution of the DES. If we want to use a mask,Provide an example of a particular case of observer which
the minimum-cardinality for a masksas well. This means ~ Can be represented by a finite-state machine.

that an observer will have to be receptive to at least two in-

puts at each point in time to detect a faultff One can b a a

think of being receptive as switching on a device to sense R
an event. This consumes energy. We can be more efficient 0 a 1 b 9 b

using a dynamic observer, that only turns on sensors when \

needed, thus saving energy. In the cas&pthis can be L0)={a} L)={b} L(2)=0

done as follows: in the beginning we only switch ondhe

sensor; once am occurs thea-sensor is switched off and Figure 2. A Finite-State Observer Obs

the b-sensor is switched on. Compared to the previous di-

agnosers we use twice as less energy. Example 2 Let Obs be the observer of Fig. 2. Obs

maps the following inputs as follows: Qbsab) =
ab, Obgbababbaab) = ab, Obgbbbbba) = a and
.4(1"4"0 £ Obgbbaaa) = a. If Obs operates on the DESof Fig 1 and

f
/ B generatesf.a.b, Obs will have as input /. (f.a.b) = a.b
X .

—>0

with ¥ = {a,b}. Consequently the observation of Obs is

e Oby7 5 (f.a.b)) = a.b.

3.2. Fault Diagnosis with Dynamic Diagnosers
Figure 1. The automaton B
Definition 2 ((Obs k)-diagnoser) Let Obsbe an observer
overX. D : ¥* — {0,1} is an(Obs k)-diagnosefor A if
(4) Vp € NonFaultyA), D(Obg /5 (tr(p)))) = 0 and (i)

3.1. Dynamic Observers
y ¥p € Faulty, , (A), D(Obsm 5(tr(p)))) = 1. n

We now formalize the above notion of dynamic obser- A is (Obs k)-diagnosable if there is afObs k)-diagnoser
vation. The choice of the events to observe can depend orfor A. A is Obs-diagnosable if there is sorhesuch thatA
the choices the observer has made before and on the obis (Obs k)-diagnosable.
servations it has made. Moreover an observer may have If a diagnoser always selecisas the set of observable
unboundednemory. events, it is a static observer afi@bs k)-diagnosability



amounts to the standal(@, k)-diagnosis problem [9]. In
this cased is (X, k)-diagnosable iffr /s (Faulty? , (.4)) N
7 /ss(NonFaulty (4)) = 0.

As for X-diagnosability, we have the following equiva-

lence for dynamic observerst is (Obs k)-diagnosable iff
Obs(w/E(FauIt)gk(A))) N Obg7 5 (NonFaulty (A4))) =
(). This follows directly from definition 2.

If an observer is given as a finite state automaton we can

state the following problem:

Problem 1 (Finite-State Obs-Diagnosability)
INPUT: A, Obsa finite-state observer.
PROBLEM:

(A) Is A Obsdiagnosable ?

(B) If the answer to (A) is “yes”, compute the minimum
such thatd is (Obs k)-diagnosable.

As proved in [1] Problem 1 can be solved in polynomial

time. To solve it we build groductautomatof A ® Obs
such that: A is (Obs k)-diagnosable «<— A ® Obs
s (X, k)-diagnosable. A, k)-diagnosability can be
checked in polynomial time and ® Obs has polynomial
size in the size ofd and Obs the result follows.

The automatom ® Obs= (Q x S, (qo, 50), 25/, —) is
defined as follows:

1. (q,9) 2, (¢',s)iff INe Xs.t.q 2, q,s =0(s,\)
andg = A if A € L(s), 8 = € otherwise;

2. (g, 9) 2, (¢',s)iff INe {e, f} sit.q 2, q.

Example 3 Let A be the DES given in Fig. 3 an@bsthe

observer of Fig. 2. The produgt @ Obsis given in Fig. 4.

Using an algorithm for checking-diagnosability ofA ®

Obswe obtain that it is(X, 2)-diagnosable (an@ is the

minimum value). Hencd is (Obs 2)-diagnosable witi2
the minimum value.

.4a>04b>00 9

Ak

o e

Figure 3. The automaton A

We are going to define a notion of cost for observers.

This notion is inspired byveighted automata

SWe use® to clearly distinguish this product from the synchronous

productx.

%04».4»0 €
N

o e

Figure 4. The automaton A4 ® Obs

—

3.3. Weighted Automata

The notion of cost for automata has already been defined
and algorithms to compute some optimal values related to
this model are described in many papers. We recall here the
results of [7] which will be used later.

Definition 3 (Weighted Automaton) A weighted automa-
tonis a pair (A, w) s.t. A = (Q,qo,X%,9) is a finite au-
tomaton andw : Q — N associates a weight with each
state. ]

An

Definition 4 (Mean Cost) Letp = ¢y = ¢; —% --- 2%
¢ be arun ofA. Themean cosbf p is

1
= D i) -
wlp) = 7 Bisowlai)
]
We remind that the length of = gy ~5 ¢1 > -+ < g,

is |p| = n. We assume that is complete w.r.t> (andX #
() and thus contains at least one run for any arbitrary length
n. LetRung (A) be the set of runs of lengthin RungA).
The maximum mean-weighdf runs of lengthn for A is
v(A,n) = max{u(p) for p € Rung(A)}. Themaximum
mean weighof A is v(A) = limsup,,_,., ¥(A,n). Ac-
tually the valuev(A) can be computed using Karp’s maxi-
mum mean- We|ght cycle algorithm [7] on weighted graphs.
Ife=s9 2 5 2 ... 20 g, |sacycle0fA| €.50 = Sp,
the mean weighof ¢ is u(c) = - X qw(s;). The
maximum mean-weight cyctd A is the valuez/ (A4) =
max{u(c) forcacycle ofA}. K As stated in [12], for
weighted automatay(A) = limsup,,_, . v(4,n) =
lim,,, v(A,n) = v*(A). Karp’s maximum mean-weight
cycle algorithm [7] on weighted graphs is explained in Ap-
pendix A.

3.4. Cost of a Dynamic Observer

Let Obs = (S, s0,%,0,L) be an observer and =
(Q, q0, X5, —). We would like to define a notion afost
for observers in order to select an optimal one among all
of those which are valid, i.e. s is (Obs k)-diagnosable.
Intuitively this notion of cost should capture the fact tte
more events we observe at each time, the more expensive it
is.



Definition of Cost. There is not one way of defining a no-

tion of cost for observers and we first discuss two different ¢

notions:

¢ the first one is to define the cost of a wardyenerated
by the DES w.r.t. to Olgv):

D=6 L(6(s0, Obsgw)(i)))|

Cost (w) = i

with n = |Obgw)|. Using the observer of Fig. 5, we
obtain thatCos§ (b".a) = 142 = 1. And this regard-
less of the value of.

the second one is to define the costuofv.r.t. tow
itself:
I L(0(s0, w(i)))]

Cost(w) = i

with n = |w]|. Using the observer of Fig. 5, we obtain

Cosp(b".a) = 248 = 242 And by simple arith-

metic, it is true thaCosk (b".a) < Cost(b"*1.qa).

The example of Fig. 5 shows that the two notions are differ-
ent. In the sequel we will use the second @ust because
Cost also captures the notion of thiemewe have been ob-
serving a set of events. Indeed, if the word ! occurs, we
have been observing the skf0) n + 1 times in a logical
time. It is natural that this is more expensive than observin
L(0) n times. ThusCost is more satisfying than abstract-
ing away the length of the input word as@ost; .

a
a
Figure 5. The Finite-State Observer Obs

Cost of an Observer. We now show how to define and

compute the cost of an observer Obs operating on a DEST

A.
Given a runp € RungA), the observer only processes
m /5 (tr(p)) (¢ and f-transitions are not processed). To have

a consistent notion of costs that takes into account the log-

Definition 5 (Costofa Run) Given a run p =
G Y g, € Rungd), et
w; = Obgm, x(tr(p(i)))),0 < i < n. The costof
p € RungA) is defined by:
1 n
COSE(p,A,ObS) - TL—H ! ; |L(6(807w1)|
]

We recall thatRung(A) is the set of runs of length

n in RungA). The cost of the runs of length of A
is Cosk(n,A,0Obs = max{Cost(p, A,Obg forp €
Rung (A)}. The cost of the pair(ObsA) is
Cost(4,0bg = limsup,,_,., Cost(n,A,p). Notice

that Cost(n, A, Obg is defined for eachh because we
have assumed generates runs of arbitrary large length.

To computeCost(n, A, Obg we consider that and f
are now observable events, let's sgybut that the observer
never chooses to observe them.

Let Obs™ = (S, sp, X%, ', L) whered’ is § augmented
with u-transitions that loop on each state= S. Let A™
be A wheres and f transitions are renamead Let AT x
Obs'" be the synchronized product dft and Obs. A+ x
Obst = (Z,2,%%, A) is complete w.r.t. 2% and we let
w(q,s) = |L(s)| so that(A+ x Obs", w) is a weighted
automaton.

Theorem 1 Cost (4, Obg = v*(A+ x Obs").

Proof: The proof follows easily from the definitions. Let
p be a run ofA. There exists a rup in AT x Obs' s.t.
Cost(p, A, Obg = u(p). pis obtained fronp by replacing
¢ and f transitions by some transitions. Conversely for
any rung in AT x Obs' there is arurp in A s.t. u(p) =
Cost(p, A, Obs). [ |

We can compute the cost of a given pgait, Obs): this
can be done using Karp’s maximum mean weight cycle al-
gorithm [7] on weighted graphs. This algorithm is polyno-
mial in the size of the weighted graph and thus we have:

heorem 2 Computing the cost ¢f4, Obs) is in P.

Proof: The size ofA* x Obs' is polynomial in the size of

A and Obs. [ |
Notice that instead of the valugs(s)| we could use any

mapping from states of Obs #and consider that the cost

ical time elapsed from the beginning, we need to take into of observing{a, b} is less than observing

account one way or another the numbestepsof p even
if some of them are non observable. A simple way to do
this is to consider that and f are now observable events,

Example 4 We give the results for the computation of the
cost of two observers for the DE&given in Fig. 3. LeD;

let's sayw, but that the observer never chooses to observebe the most powerful observer that obserjes} at each

them. Indeed we assume we have already checkeditisat
(Obs k)-diagnosable, and the problem is now to compute
the cost of the observer we have used.

step, and); be the observer given in Fig. 2.

The automatad* x O and A+ x OF are givenin Fig. 6
and Fig. 7. The weight function is pictured above each state.



Notice that to compute* (At x O;) we do not need the | o | 1 | 2 | 3] 4]°35

labels of the transitions as we are dealing with weighted Dy 1 —00 | —00 | —00 | —o0 | —o0
graphs: if two transitiongs, a, s’) and(s, b, s’) arein A* x Dy | —o] 2 [ 0] —0 | 2 2
Oj we only need one of them. For instance in Fig. 3 one of Dy || —o0 | =0 3 PN 3 3
the transitiong0, a,4) and(0, b, 4) is redundant. We apply D; | = | —00 | —0 | 4 4 4
the algorithm of Appendix A. The valuBg (v) andmin(v) Dy | —o0 | —0 | —0 | 4 5 5
for each state of AT x O are givenin Table 1 and Table 2.

. i ) . Dy ||—oo|—oo|—oo| 4 | 6 | 6
The maximum mean-weight valugis the maximum value -

m1n||—oo|—oo|—oo|0|1|1

max, min(v) for v ranging over the set of states df" x

+ ; _ _
O;". We obtain Cos{(A, O,) = 2 and Cost(A,O;z) = 1. Table 2. Iterations for A+ @ O;“

b ,@ u (A). Is there an observedbss.t. A is (Obsk)-diagnosable
and Cost(Obg < c¢?
(B). If the answer to (A) is “yes”, compute a witness opti-
mal observeObswith Cost(Obs) < c.
Before dealing with Problem 2 we recall some results
from [1].
4.1. Most Permissive Observer
b w =20
'@C)u For an observeO = (9,s0,%,d,L) andw € %*

we let L(w) be the setL(d(so,w)): this is the set of
eventsO chooses to observe on input Given a word
p € w/x(L(A)), we recall thatO(p) is the observa-
tion of p by O. AssumeO(p) = ap---ar. Letp =
L(eg).e.L(ag).ag. - - - L(O(p)(k)).ax i.€.p contains the his-
tory of whatO has chosen to observe at each step and the
events that occurred after each choice.

LetO : (2% x 25)F — 22" 0 is the most permissive
observer foi( A, k) if the following holds:

0= (5,80,2,5,1))

Do I | —00 | —00| —00 | =0 is an observer and <= Vw € X _
Dy || mo0| 4 —0 |~ | 4 Ais (0O, k)-diagnosable L(8(s0,w)) € O(w)
Do —0 | —00 6 —00 6
D3 || —o0 | —00 | —00 8 8 The definition of the most permissive observer states that:
D, —00 | —00 | —0 10 10

: e any good observer Obs (one such tHats (Obs k)-
m1n||—oo|—oo|—oo|2|2

diagnosable) must choose a set of observable events in

Table 1. lterations for At @ Of O(w) on inputw;

e if an observer chooses its set of observable events in
O(w) on inputw, then it is a good observer.

4. Optimal Dynamic Diagnosers _ . .
Theorem 6 of [1] establishes that there is a most permis-

sive observefr,4 in caseA is (X, k)-diagnosable and it can
be computed in exponential time in the size Afand &,
doubly exponential time inXx|, and has size exponential
in A andk, and doubly exponential if:|. Moreover the

In this section, we focus on the problem of computing a
best observer in the sense that diagnosing the DES with it
has minimal cost. We address the following problem:

Problem 2 (Bounded Cost Observer) most permissive observér, can be represented by a finite
INPUT: A, k € Nandc € N, state machin€r, = ({0,2--- ,1}U({1,3,---,2l'+1} x
PROBLEM: 2¥),0, % U 2%, §) which has the following properties:



e even states are states where the observer chooses a set ~ strategy to ensure théitn sup,, ., =~ > w(e;) <

of events to observe; v; this value can be computed ®(|V|? x |E| x W)
) whereW is the range of the weight function (assum-
e 0dd stateq2i + 1, X) are states where the observer ing the weights are in the intervat 1..17]). Note that

waits for an observable event i to occur; deciding whether this value satisfies< ¢ for e {=

H 2
o if (21, X) = (2¢' + 1, X) with X € 2, it means that <, >} for c € Q can be done ID(|V[* x | E| x W).

from an even statéi, the automatorb -, can select

a setX of events to observe. The successor state is
an odd state together with the s€tof events that are
being observed,;

e there are optimal memoryless strategies for both
players that can be computed @ (|V|* x |E| x
log(|E[/|V]) x W).

To solve the Problem 2, we use the most permissive ob-
server we computed in section 4.1. Givdnand F4, we
build a weighted graph gam@(A, F4) s.t. the value of
the game is the optimal cost for the set of all observers.

o if 5((20 +1,X),a) = 2¢’ with a € X, it means that
from (2¢ + 1, X), S, is waiting for an observable
event to occur. When some occurs it switches to an

even state. Moreover an optimal observer can be obtained by taking an
By definition of F4, any observeiO st. A is (O,k)-  OPtimal memoryless strategy Gi(A, Fa). _
diagnosable must select a set of observable events in To build G(A,F4) we use the same idea as in sec-
Fa(tr(w)) after having observed € 5 (L(A)). tion 3.4: we replace andf transitions inA by « obtaining

AT. We also modifyF,4 to obtain a weighted graph game
Example 5 For the automatond of Fig. 3, we obtain the  (F,w) by adding transitions so that each state+ 1 is
most permissive observét, of Fig. 8. For odd states we complete w.r.tX*. This is done as follows:
have not mentionned the componéhthat has last been
picked up by the observeX is the label of the unique in- e from each(2: + 1, X) state, create a new even state
coming transition. In the even states, the observer chooses ~ I-€- pick some2i’ that has not already been used. Add
what to observe and in the odd states it moves according ~ transitions((2i + 1, X),¢,2i’) for eacho € X* \
to what it observes. When the system starts, it can choose ~ €N(2i + 1, X). Add also a transitior{2i’, X, (2i +

either {a,b} or {a}. Once ana has been observed it can 1, X)). This step means Tf{‘t if 4 produces an event
choose any subset containihg When ab has been ob- and it is not ObserVam&—A Just reads the event and
served the observer can choose to observe the empty set. makes the same choice again.

We point out that from an odd stafei + 1, X ), outgo-
ing transitions are labeled by elementsXf This does not
mean that the DES un_der.observauon cannot do other ac-The automatotF | obtained from# 4 is depicted on Fig. 9.
tions from state2; + 1: it might be able to do so but there The gameG(A, ) is thenA*t x fX- This way we can

are unobservable for the observer. obtain a weighted graph gani®G (A, F4) by abstracting
) ] away the labels of the transitions. Notice that it still en-
4.2. Optimal Dynamic Observers ables us to convert any strategyWiG (A, F4) to a strat-
egy inF4. A strategy inWG(A, F4) will define an edge
To compute an optimal observer, we use a result by (2; (2i’ 4 1, X)) to take. As the target vertex contains the
Zwick and Paterson [12] oweighted graph gamésee Ap-  set of events we chose to observe we can define a corre-
pendix B for Zwick and Paterson algorithm). These are sponding strategy itF 4.
graphs(V, E)) with the set of nodes partitioned into two By construction ofG(A, ) and the definition of the
sets: V4 for Player 1 and/; for Player 2. In aV; state it value of a weighted graph game, the value of the game is the
is Player i's turn to play. There is weightfunction that  gptimal cost for the set of all observess.t. A is (O, k)-
associates with each edgehe weightw(e). The players diagnosable.
build pathse;. - - - .e, by choosing an edge when itis their  AssumeA hasn states andn transitions. From [1] we
turn to play. The goal of the game is for Player 1 to maxi- know thatF, has at moso(2n2 « 2k « 22‘2‘) states and

i 1 3 1 n . "
mize the valuéim inf, . > ;_; w(e;) and for Player 2 O(2n2 ok s 927 2k m) transitions. Hence
G(A, Fa) has at mosD(n x 27" x 2% x 22™) vertices

to minimizelim sup,,_, ., >, w(e;). One of the results
andO(m x on’® x 9k x 927! edges. To make the game

by Zwick and Paterson [12] is that:
e there is a valuer € Q, called thevalue of the complete we may add at most half the number of states and
games.t. Player 1 has a strategy to ensure that henceW G(A, F4) has the same size. We thus obtain the
liminf, _ o % > w(e;) > v and Player 2 has a  following results:

¢ the weight of a transitio2:, X, (2¢' + 1, X)) is | X|.



{a,b}

Figure 8. Most Permissive Observer for the Automaton A of Fig. 3

Figure 9. The Automaton F;



Theorem 3 Problem 2 can be solved in tin@®(|X| x m x
on’ x 2k x 2271,

We can even solve the optimal cost computation problem:

Problem 3 (Optimal Cost Observer)

INPUT: A, k € N.

PROBLEM: Compute the least value: s.t. there ex-
ists an observelObss.t. A is (Obsk)-diagnosable and
Cost(Obg < m.

Theorem 4 Problem 3 can be solved in tin@®(|X| x m x
on® x 2k x 2271,

A consequence of Theorem 3 is that the cost of the optimal

observer is a rational number (see Appendix B).

Example 6 For the exampled of Fig. 4 andF | of Fig. 9,
using Zwick and Paterson’s algorithm (Appendix B) we ob-
tain that the optimal cost i$ and the optimal strategy is to
use the observedbsof Fig. 2.

5. Conclusion & Future Work

In this paper we have addressed sensor optimization
problems in the context of fault diagnosis, using dynamic
observers. We have defined a suitable notion of cost for
such observers. Then we have proved that, given such ob- [7]
server, we could compute the cost of diagnosing a DES.
This is done by reducing this problem to the computation of
a maximum mean-weight cycle in a weighted graph. Hence

we can solve it in polynomial time. We have also solved

the optimal observer synthesis problem i.e. compute an ob-

server of optimal cost by reducing it to an optimization on
weighted graph game.

Further work will include:
¢ finding the exact complexity class of Problems 2 and 3;

e dealing with more realistic examples. This requires
an implementation of our algorithms and of the algo-
rithms described in Appendix A and B.
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A. Karp’s Maximum Mean Cycle Algorithm

VerticesV; are Player i's vertex. A weighted graph game
is a turn based game in which the turn alternates between

In this section, we recall Karp’s maximum mean cycle Player 1 and Player 2. The game starts at a vergex V;.

algorithm [7]. The original algorithm works for weighted

Player 1 chooses an edge = (vg,v1) and then Player 2

graph where the weights are on the edges. We give a versiorthooses an edge, = (v1,v2) and so on and they build

where weights are on vertices.

Definition 6 (Weighted Graph) A weighted directed
graphis a pair (G, w) s.t. G = (V, E) is a directed graph
andw : V — R. We assume that each vertexc V is
reachable from a uniqusourcevertexsg. ]

Definition 7 (Mean Weight of a Cycle) Let ¢ = (v1, va,

- ,v;) be a sequence of vertices s.t. edohv;y1) €
E,1 <i <k —1whichis acycle i.ev; = v,. Themean
weightof cis p(c) = & - S8 w(v;). |

Letr* = max. u(c) wherec ranges over all directed cycles
in G. A cyclecwith u(c) = v* is amaximum mean-weight
cycle

Let D(v) be the weight of a most expensive path from
so to v and Di(v) be the weight of a most expensive path

which has exactly: edges (if there is no such path, (v) =
—00).
Assume|V| = n. Karp’s algorithm is based on the fact

that
D, (v) — Dg(v)

v* =max min
veV 0<k<n—1 n—k
The valuesD, (v) can be computed iteratively:
Do(so) = w(so) 1)
Doy(v) = —oo for w#sg (2)
Dia(v) = max {Diw) +w()}  (3)

Thus for each vertex we can compuigin(v) =

ming<p<p 1 22W=Lelv) and then compute the value
max,cy min(v) to obtainv*. This algorithm runs in

O(n.m) where|V| = n and|E| = m. Improvements [3]

an infinite sequence of edges. Player 1 wants to maximise
liminf,, o %'2?21 w(e;) and Player 2 wants to minimize
limsup,, oo = - > i w(e;).

One of the result of [12] is that there is a rational value
v € Q s.t. Player 1 has a strategy to enslifeinf,, . . % .
>, w(e;) > v and Player 2 has a strategy to ensure that
limsup,, ., = - Y1 w(e;) < v. vis called the value of
the game.

Letn = |V|. To compute/, proceed as follows ([12]):

1. Letyy(v) =0forv € V. Forv € V andk > 1, vi(v)
is defined by:

v (1) o maX(v,w)EE{w(va U)) + kal(w)} ifveln

b ming, wyep{w(v, w) + vp_1(w)} if v € V3

This is the equivalent of th®(v) values for Karp’s
algorithm using a min max strategy depending on
which player is playing;

2. for eachv € V, computer/ (v) =
4-n3-W.

vp(v)/k for k =

3. for each vertex, the value of the game frenis the
only rational number with a denominator at maghat
lies in the intervallv'(v) — a, v/ (v) + of with o =
2n(n—1)"

The value of the game is = v(vy) whereuy is the initial
vertex.

To compute an optimal strategy for Player 1, proceed as
follows:

can be made to this algorithm still the worst case run-time 1. compute the valueg(v) for eachv € V;

is O(n.m).

B. Zwick and Paterson’s Algorithm

In this section we give an overview of some results

of [12]. AssumeG = (V, E) is a weighted graph as in

definition 6 except that the weight function is defined on

edgesw : E — {-W,--- ,0,--- , W} assigns an integral
weight to each edge af with W € N. We assume each
vertex has at least one outgoing transition.

Definition 8 (Weighted Graph Game) A weighted graph
gameG = (V,E) is a bipartite weighted graph with
V=ViuVaandE = E,UEFEy, E; C Vi x V5 and
E>, C Ey x E;. We assume the initial vertex of G be-
longs toV]. [ |
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2. if all the vertices ofi; have outgoing degreg there
is a unique strategy and it is positional and optimal,

3. otherwise, take a vertex € V; with outgoing degree
d>2. Remove[%] edges fromv leaving at least one.
Recompute the valugu, for eachv. If m, = v(v),
there is an optimal positional strategy which uses the
remaining edges from. Otherwise there is a posi-
tional strategy that uses one of the removed edges.

We can iterate the previous scheme to find an optimal strat-
egy for Player 1.



