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Abstract

In the framework of functional testing from algebraic speci�cations,

the strategy of test selection which has been widely and e�ciently ap-

plied is based on axiom unfolding. In this paper, we propose to extend

this selection strategy to a modal formalism used to specify dynamic and

reactive systems. Such a work is then a �rst step to tackle testing of

such systems more abstractly than most of the works dealing with what

is called conformance testing. We get a higher level of abstraction since

our speci�cations account for what is usually called underspeci�cation,

i.e. they do not denote a unique model but a class of models. Hence, the

testing process can be applied at every design level.

Keywords. Speci�cation-based testing, dynamic speci�cations, selection

criteria, unfolding, proof tree normalization, exhaustivity, coalgebras



Introduction

Speci�cation-based testing is a particular case of black-box testing. It consists
in executing the system under test on input data which have been selected from
a speci�cation. The aim is to show that the system behaviour is conformant
to its speci�cation. Using formal speci�cations (i.e. speci�cations given as a
formal text with a clear semantics) makes it possible to automate both test
case generation from selection criteria and evaluation of test executions as suc-
cessful or not. The evaluation of test executions, which consists in computing
a success or failure verdict, is then done by comparing system outputs with
the expected values de�ned by the speci�cation. This often requires to make
some restrictions on test cases so that they can be interpreted as successful or
not when executed by the system under test. For instance, in the framework
of testing from algebraic speci�cations, these restrictions consist in choosing as
test cases formulae only built over boolean connectives and ground equations
whose equality predicate is de�ned within the programming language used to
implement the system under test.

System correctness with respect to its speci�cation is then de�ned up to
these restrictions. This leads up to the notion of exhaustive set of test cases,
whose successful submission to the system under test would prove its correctness.
The problem is that the cardinality of an exhaustive set is usually too big
(often in�nite) to be fully submitted to the system. To manage the size of the
exhaustive set, the idea is to make a partition of it, corresponding to the various
cases described by the speci�cation. Then, by assuming the standard uniformity
hypothesis, meaning that each test case of each subdomain has the same power
to make the system fail, one test case for each subdomain is submitted to the
system. Hence, system correctness can be asymptotically reached by making an
increasingly �ne partition of the exhaustive set. This selection criterion leading
to a partition of the exhaustive set has been mainly and extensively applied for
speci�cations de�ned as theories of equational logic [1, 5, 4, 6, 7, 12] and more
recently of quanti�er-free �rst-order logic [2]. In these works, the partitioning
of the exhaustive set under consideration is made in an algorithmic way by
unfolding axioms. This axiom unfolding makes a case analysis of test purposes
de�ned as simple equations in [1] and quanti�er-free formulae in [2]. Test cases
are then extracted from speci�cations by building input data de�ned by ground
equations or formulae, matching the di�erent cases de�ned in the speci�cation.

In this paper, we propose to extend this selection criterion based on unfolding
of axioms to dynamic and reactive aspects. Therefore, the formalism de�ned in
this paper will manipulate modal formulae of the form

∧
i≤m

[mi]ti = t′i ⇒ [m]t = t′

where each mi and m are modalities and ti, t′i, t, t
′ are terms whose function

semantics depends on system states (see Section 1.1 for a complete de�nition
of this modal formalism). It then is a simple extension of a pre-post language
restricted to equations. Hence, we propose to de�ne a test selection method for
testing dynamic systems.

Such a work is then a �rst step to tackle testing of dynamic and reactive



systems more abstractly than most of the works dealing with the same sub-
ject [8, 9, 11, 16]. As a matter of fact, most of existing works deal with what
is called conformance testing. This consists in showing that an implementation
meets all the requirements of its speci�cation when they are both represented
by transition systems. The comparison is then made through behaviours, which
are expressed as execution traces, i.e. sequences of possible actions. Here, we
will go beyond by checking, as well as execution traces, properties on system
attributes represented by equations. Moreover we get a higher level of abstrac-
tion, since speci�cations account for what is usually called underspeci�cation,
i.e. they do not denote unique systems but collections of systems. Therefore,
the testing process can be applied at every design level. As far as we know, our
approach is the �rst one that proposes to test dynamic and reactive systems
with respect to a speci�cation expressed in modal logic.

The paper is organized as follows. In Section 1, we de�ne the formalism on
which we will de�ne the unfolding procedure. In order to be as self-contained as
possible, Section 2.1 adapts relevant de�nitions of [12] to our framework of test-
ing and de�nes selection criteria and their associated properties. In Section 2.2,
we will prove the important result of the existence of an exhaustive test set,
which allows to start the process of selecting test sets. Section 3 introduces
the unfolding procedure allowing us to de�ne a selection criterion for the class
of speci�cations in our dynamic formalism. This unfolding procedure performs
a case analysis on speci�cation axioms de�ning the attributes (i.e. functions
whose behaviour depends on system states) of the system under test. We will
see that our unfolding procedure makes a strategy for selecting proof trees and
then bounds the search space of proof trees. This is why it is de�nable in an
algorithmic way. We will then show that this strategy coincides with the full
derivability, i.e. performs at each step an adequate partition of the input do-
main insofar as it is a sound (no test is added) and complete (no test is lost)
selection criterion.

1 Preliminaries

1.1 A dynamic formalism

A (dynamic) signature Σ = (S, F, V ) consists of a set S of sorts, a set F equipped
with a partition Fd, Fa and Fm of function, attribute and method names, re-
spectively, each one equipped with an arity in S∗× (S∪{ε})1, and an S-indexed
set V of variables. In the sequel, a function, attribute or method f of arity
(s1, . . . , sn, s) will be written f : s1 × . . .× sn → s. If f ∈ Fd ∪ Fa, then s 6= ε,
otherwise s = ε. Functions are operations on data, attributes are operations
returning a value depending on the system state, and methods are operations
making the system state evolve without returning any value. Given a signature
Σ = (S, F, V ), TΣ(V ) and TΣ are both S-sets of terms with variables in V and
ground terms, respectively, freely generated from variables (resp. the empty set)

1ε stands for the empty word on S.



and function and attribute names in Fd ∪Fa and preserving arity of operations.
Finally, MΣ(V ) and MΣ are both sets of modalities with variables in V and
ground modalities of form m(t1, . . . , tn) with m : s1 × . . . × sn → in Fm and
(t1, . . . , tn) ∈ TΣ(V )s1× . . .×TΣ(V )sn (resp. (t1, . . . , tn) ∈ TΣs1× . . .×TΣsn). A
substitution is any mapping σ : V → TΣ(V ) that preserves sorts. Substitutions
are naturally extended to terms with variables. Σ-equations are sentences of the
form t = t′ where t, t′ ∈ TΣ(V )s for s ∈ S, and modal formulae are sentences of
the form [α1] . . . [αn]β where n ∈ N, for every i, 1 ≤ i ≤ n, αi ∈ MΣ(V ) and β
is a Σ-equation. A positive conditional formula is then any sentence of the form
ϕ1 ∧ . . .∧ϕn ⇒ ϕ where for every i, 1 ≤ i ≤ n, ϕi and ϕ are modal formulae or
Σ-equations. For(Σ) is the set of all positive conditional Σ-formulae. A (posi-
tive conditional) speci�cation Sp = (Σ, Ax) consists of a signature Σ and a set
Ax of positive conditional formulae often called axioms.

Given a signature Σ, a Σ-model M, so-called Kripke frame, is a triple
(W,A,R) where W is a non-empty set of states (or possible worlds), A is a
W-indexed family of algebras Aw over the algebraic signature (S, Fd ∪Fa) such
that for every w,w′ ∈ W, for every s ∈ S and for every f ∈ Fd, Aws = Aw

′

s

and fA
w

= fA
w′

, and R is a family of binary relations Rm(v1,...,vn) ⊆ W ×W,
where m : s1 × . . .× sn → ∈ Fm and (v1, . . . , vn) ∈ As1 × . . .× Asn , and such
that for every w ∈ W, the set {w′ | w Rm(v1,...,vn) w

′} is �nite.2 Mod(Σ) is
the category objects of which are Σ-models. Given a Σ-model M = (W,A,R),
we note _A : TFd → A the unique Σ-morphism that maps any ground term
f(t1, . . . , tn) to fA(tA1 , . . . , t

A
n ).3 A Σ-modelM is said reachable if _A is surjec-

tive. Given a Σ-model M, a Σ-interpretation in M is any mapping ι : V → A
such that for every s ∈ S, ι(Vs) ⊆ As. Interpretations are naturally extended
to terms with variables: given an interpretation ι and a state w ∈ W, we will
note its extension ιw : TΣ(V ) → A. M satis�es a Σ-equation t = t′ (resp. a
modal formula [α1] . . . [αn]β) for an interpretation ι and a state w ∈ W, noted
M |=ι,w t = t′ (resp. M |=ι,w [α1] . . . [αn]β), if and only if ιw(t) = ιw(t′)
(resp. for every w′ ∈ W such that wRιw(α1) • . . . • Rιw(αn)w

′,4 M |=ι,w′ β).
M validates a formula ϕ1 ∧ . . . ∧ ϕn ⇒ ϕ, noted M |= ϕ1 ∧ . . . ∧ ϕn ⇒ ϕ, if
and only if for every Σ-interpretation ι and every state w ∈ W, if for every i,
1 ≤ i ≤ n, M |=ι,w ϕi then M |=ι,w ϕ. Given Ψ ⊆ For(Σ) and two Σ-models
M and M′, M is Ψ-equivalent to M′, noted M ≡Ψ M′, if and only if we
have: ∀ϕ ∈ Ψ, M |= ϕ ⇐⇒ M′ |= ϕ. Given a speci�cation Sp = (Σ, Ax), a
Σ-model M is an Sp-model if for every ϕ ∈ Ax, M |= ϕ. Mod(Sp) is the full
subcategory of Mod(Σ), objects of which are all Sp-models. A Σ-formula ϕ is
a semantic consequence of a speci�cation Sp = (Σ, Ax), noted Sp |= ϕ, if and
only if for every Sp-model M, we have M |= ϕ. Sp• is the set of all semantic

2Such Kripke frames are said image-�nite (i.e. �nitely branching). This condition is needed
to get an exhaustive test set (see the proof of Theorem 1). However, it is not restrictive since,
as we will see in Section 2, software systems will be assimilated to Kripke frames, and such a
condition is sensible concerning systems.

3TFd is the restriction of TΣ to functions of Fd.
4• is the composition of binary relations, and if αi = m(t1, . . . , tn), then ιw(αi) denotes

m(ιw(t1), . . . , ιw(tn)).



consequences.
A calculus for positive conditional speci�cations is de�ned by the following

inference rules:

Ax ∈ Sp
Sp ` Ax

Ax
Sp ` t = t

Ref

Sp `
∧
i

ϕi ⇒ [α1] . . . [αk] t = t′

Sp `
∧
i

ϕi ⇒ [α1] . . . [αk] t′ = t
Sym

Sp `
∧
i

ϕi ⇒ [α1] . . . [αk]t = t′ Sp `
∧
i

ϕi ⇒ [α1] . . . [αk]t′ = t′′

Sp `
∧
i

ϕi ⇒ [α1] . . . [αk]t = t′′
Trans

Sp `
∧
i

ϕi ⇒ [α1] . . . [αk]t1 = t′1 . . . Sp `
∧
i

ϕi ⇒ [α1] . . . [αk]tn = t′n

Sp `
∧
i

ϕi ⇒ [α1] . . . [αk]f(t1, . . . , tn) = f(t′1, . . . , t
′
n)

Cong

Sp `
∧
i≤n

ϕi ⇒ ϕ

Sp `
∧
i

σ(ϕi) ⇒ σ(ϕ)
Subs

Sp `
∧
i

ϕi ⇒ ϕ

Sp `
∧
i

ϕi ∧ ψ ⇒ ϕ
Mono

Sp `
∧
i

ϕi ⇒ ϕ

Sp `
∧
i

[α]ϕi ⇒ [α]ϕ
Nec

Sp `
∧
i

ϕi ∧ ψ ⇒ ϕ Sp `
∧
i

ϕi ⇒ ψ

Sp `
∧
i

ϕi ⇒ ϕ
MP

1.2 Running example

We take here as a running example a cash machine, or ATM, that allows cus-
tomers to access their bank accounts in order to make cash withdrawals and to
check their account balances. The customer �rst inserts his card, then veri�es
his identity by entering a passcode (PIN for Personal Identi�cation Number).
Upon successful entry of the PIN, the customer may perform a transaction, that
is to check his account balance or to withdraw cash. If the number is entered
incorrectly three times in a row, the card is not given back to the customer. If
the customer asks for a withdrawal, he enters an amount that is checked not to
go beyond the authorised threshold for this account. If it is the case, the with-
drawal is not authorised, otherwise if the amount is available in the machine,
the customer is given the money he asked for.

The signature of such a machine may then be the following:
S = {Nat ,Bool}



Fd = {6= : Nat ×Nat → Bool
≤ : Nat ×Nat → Bool
> : Nat ×Nat → Bool
+ : Nat ×Nat → Nat
− : Nat ×Nat → Nat
PIN : Nat → Nat
Balance : Nat → Nat
Threshold : Nat → Nat}

Fa = {Card :→ Nat Code :→ Nat
Amount :→ Nat Attempts :→ Nat
Screen :→ Nat ATMamount : Nat → Bool

Fm = {card? : Nat → passcode? : Nat →
check? : → withdraw? : →
amount? : Nat → cardback? : →
balance! : → wrongcode! : →
cardkept! : → notes! : Nat →
notenough! : → threshold! : →

In function of a card number A, the ATM is able to know the passcode of
the card PIN (A), the account balance Balance(A) and the maximum amount
authorised for withdrawal Threshold(A).

The state of the machine is known through six observators: Card gives the
number of the inserted card if there is one, 0 otherwise; Code gives the entered
code if a passcode has been entered, and 0 otherwise; Amount gives the asked
amount if an amount has been entered, and 0 otherwise; ATMamount gives the
total amount available in the machine; Attempts gives the number of wrong codes
entered since a new card has been inserted; Screen gives the current display on
the screen, 0 if nothing is displayed. 5.

Like in the setting of input output automata (IOLTS for instance), the state
of the ATM evolves thanks to communications between the customer and the
machine, that are emissions and receipts through channels. To keep the usual
notations, although it does not have any e�ect on the semantics, method names
denoting receipts will end with an interrogation mark `?', while method names
denoting emissions will end with an exclamation mark ` !'.

• Receipts, from the ATM point of view, are actions performed by the cus-
tomer: the insertion of a card in the machine card?; the input of a code
passcode?; the request for checking the account balance check?; the request
for making a withdrawal withdraw?; the input of an amount to withdraw
amount?; the request for getting the card back cardback?.

• Emissions are then actions performed by the machine, that are mainly
messages to the customer, except the issue of notes: balance! displays the
account balance; wrongcode! tells the customer that the code he entered
is refused; cardkept! swallows the card after three attempts to enter the

5It is very simpli�ed here since the screen can only display a natural number. The use of
strings would just have made the example uselessly complicated.



right code; notes! gives the customer the money he asked for; notenough!
says that the machine does not have money enough to give the customer
the amount he wanted; threshold! tells the customer that he is not allowed
to withdraw the amount he asked because it goes beyond his authorised
threshold.

A speci�cation of this ATM in our formalism may be the following.6 Since
we are interested in testing system dynamics, we only give here the axioms
specifying attributes and methods, and suppose that functions of Fd have been
speci�ed separately, by using a classic algebraic formalism.
• Card = 0 ⇒ [card?A] Card = A
• Card = A ∧A 6= 0 ⇒ [card?C] Card = A
• [cardback?] Card = 0
• [cardkept!] Card = 0
• [card?A] Card = A⇒ [card?A] Code = 0
• Code = 0 ⇒ [passcode?c] Code = c
• Code = c ∧ c 6= 0 ⇒ [passcode?d] Code = c
• [cardback?] Code = 0
• Code 6= PIN (Card) ⇒ [wrongcode!] Code = 0
• [cardkept!] Code = 0
• [withdraw?] Amount = 0
• [cardkept!] Amount = 0
• [card?A] Card = A⇒ [card?A] Amount = 0
• Amount = 0 ∧ Code = PIN (Card) ⇒ [amount?M ] Amount = M
• Amount = M ∧M 6= 0 ⇒ [amount?N ] Amount = M
• [cardback?] Amount = 0
• Amount ≤ Threshold(A) ∧ Amount ≤ ATMamount ⇒ [notes!] Amount = 0
• Amount ≤ Threshold(A)∧Amount > ATMamount ⇒ [notenough!] Amount = 0
• Amount > Threshold(A) ⇒ [threshold!] Amount = 0
• Amount ≤ Threshold(A) ∧ Amount ≤ ATMamount

⇒ [notes!] ATMamount = ATMamount− Amount
• [card?A] Card = A⇒ [card?A] Attempts = 0
• Code 6= PIN (Card) ⇒ [wrongcode!] Attempts = Attempts + 1
• Attempts > 2 ⇒ [cardkept!] Attempts = 0
• [cardback?] Attempts = 0
• [card?A] Card = A⇒ [card?A] Screen = 0
• [withdraw?] Screen = 0
• Code = PIN (Card) ⇒ [check?][balance!] Screen = Balance(Card)

The speci�cation axioms give, for each attribute, the actions that modify it.
Not to make the speci�cation too heavy, all axioms expressing that an attribute
remains unchanged after some actions don't appear. In the case of the attribute
Amount for example, there should be the following four additional axioms:
• Amount = M ⇒ [passcode?]Amount = M

6Not to make the speci�cation too heavy, boolean functions are used as predicates. Obvi-
ously, a formula like c 6= 0 would have to be written (c 6= 0) = true.



• Amount = M ⇒ [wrongcode!]Amount = M
• Amount = M ⇒ [check?]Amount = M
• Amount = M ⇒ [balance!]Amount = M

2 Testing from formal speci�cations

The work presented in Section 3 comes within the general framework of testing
from formal speci�cations de�ned in [12]. Here, we succinctly introduce this
framework, then we instantiate it to the formalism we have just de�ned in
Section 1.1.

2.1 A general framework

Following previous works [5, 4, 6, 7, 12], given a speci�cation Sp = (Σ, Ax),
the basic assumption is that the system under test can be assimilated to a
model of the signature Σ. Test cases are then Σ-formulae which are semantic
consequences of the speci�cation Sp (i.e. elements of Sp•). As these formulae
are to be submitted to the system, test case interpretation is de�ned in terms of
formula satisfaction. When a test case is submitted to a system, it has to yield
a verdict (success or failure). Hence, test cases have to be directly interpreted
as �true� or �false� by a computation of the system. Obviously, systems can't
deal with formulae containing non-instantiated variables, so test cases have to
be ground formulae, that is formulae where all variables have been replaced with
actual values. These �executable� formulae are called observable. Then a test
case is any observable semantic consequence. If we denote by Obs ⊆ For(Σ) the
set of observable formulae, then a test set T is any subset of Sp• ∩ Obs. Since
the system under test is considered to be a Σ-model P , T is said to be successful
for P if and only if ∀ϕ ∈ T, P |= ϕ.

The interpretation of test cases submission as a success or failure is related
to the notion of system correctness. Following an observational approach [10],
to be quali�ed as correct with respect to a speci�cation Sp, a system is required
to be observationally equivalent to a model of Mod(Sp) up to the observable
formulae of Obs, that is, they have to validate exactly the same observable
formulae.

De�nition 2.1 (Correctness) P is correct for Sp via Obs, denoted by
CorrectObs(P,Sp), if and only if there exists a model M in Mod(Sp) such that
M≡Obs P .

7

A test set allowing to establish the system correctness is said exhaustive.
Formally, an exhaustive set is de�ned as follows:

De�nition 2.2 (Exhaustive test set) Let K ⊆ Mod(Σ). A test set T is ex-
haustive for K with respect to Sp and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P,Sp)
7Equivalence of Σ-models with respect to a set of formulae is de�ned in Section 1.1.



The existence of an exhaustive test set means that systems belonging to
the class K are testable with respect to Sp via Obs, since correctness can be
asymptotically approached by submitting a (possibly in�nite) test set. Hence,
an exhaustive test set is appropriate to start the process of selecting test sets.
However, such an exhaustive set does not necessarily exist, depending on the
nature of both speci�cations and systems (hence the usefulness of subclass K of
systems in Section 2.2), and on the chosen set of observable formulae. Among
all the test sets, the biggest one is the set Sp• ∩ Obs of observable semantic
consequences of the speci�cation. Hence, to start the testing process, we �rst
have to show that Sp• ∩ Obs is exhaustive. We will show it in Section 2.2,
assuming some conditions on systems, when Sp is a dynamic speci�cation and
Obs are all ground modal formulae over the dynamic signature.

The challenge of testing then consists in managing (in�nite) test sets. In
practice, experts apply some selection criteria on a reference test set in order to
extract a test set of su�ciently reasonable size to be submitted to the system.
The underlying idea is that all test sets satisfying a considered selection criterion
reveal the same class of incorrect systems, intuitively those corresponding to
the fault model captured by the criterion. For example, the criterion called
�uniformity hypothesis� postulates that any chosen value is equivalent to another
one.

A classic way to select test data with a selection criterion C consists in
splitting a given starting test set T into a family of test subsets {Ti}i∈IC(T )

such that T = ∪i∈IC(T ) Ti holds. A test set satisfying such a selection criterion
simply contains at least one test case for each non-empty subset Ti. Hence, by
assuming the uniformity hypothesis, all test cases in Ti are equivalent to reveal
incorrect systems with respect to the fault model captured by Ti. The selection
criterion C is then a coverage criterion according to the way C is splitting the
initial test set T into the family {Ti}i∈IC(T ) . This is the method that we will
use in this paper to select test data, known under the term of partition testing.

For instance, the selection criterion we will de�ne in the sequel of this paper
consists in splitting a test set into subsets according to speci�cation axioms. If
we come back to the ATM speci�cation of Section 1.2, the attribute Screen is
speci�ed by three axioms. Testing a formula like Screen = n consists in �nding
both input data and a state. Input data are given by a ground substitution
to apply to the formula in order to submit it to the system, and the state is
given by a path leading to a state where the formula has to be veri�ed. These
substitutions and paths have to bring into play at least once each of these three
axioms. Therefore, the set of test cases associated to Screen = n, where n is a
variable, can be split into three subsets:

1. The set of tests associated to the reinitialization of the attribute after
the insertion of a new card, that is, associated to the substitution n 7→
0 and the path card?A, coming from the axiom [card?A] Card = A ⇒
[card?A] Screen = 0.

2. The set of tests associated to the reinitialization of the attribute after the
request for a withdrawal, that is, associated to the substitution n 7→ 0 and



the path withdraw?, coming from the axiom [withdraw?] Screen = 0.

3. The set of tests associated to the display of the account balance after the
request for it, that is, associated to the substitution n 7→ Balance(Card)
and the path check?balance!, coming from the axiom Code = PIN (Card) ⇒
[check?][balance!] Screen = Balance(Card).

The process can be pursued on the �rst and the third subsets de�ned, respec-
tively, by formulas [card?A] Card = A and Code = PIN (Card).

De�nition 2.3 (Selection criterion) A selection criterion C is a mapping
P(Sp• ∩ Obs) → P(P(Sp• ∩ Obs)).8 For a test set T , we note |C(T )| =
∪i∈IC(T ) Ti where C(T ) = {Ti}i∈IC(T ) .

T ′ satis�es C applied to T , noted by T ′ < C(T ) if and only if:

∀i ∈ IC(T ), Ti 6= ∅ ⇒ T ′ ∩ Ti 6= ∅

A selection criterion consists of a mapping that splits test sets into families
of test sets. The selection criterion is satis�ed as soon as the considered test set
contains at least a test case within each (non-empty) test set of the resulting
family. To be pertinent, a selection criterion should ensure some properties
between the starting test set and the resulting family of test sets:

De�nition 2.4 (Properties) Let C be a selection criterion and T be a test
set.

• C is said sound for T if and only if |C(T )| ⊆ T ;

• C is said complete for T if and only if |C(T )| = T .

These properties are essential for an adequate selection criterion: soundness
ensures that test cases will be selected within the starting test set (i.e. no test
is added) while completeness ensures that we capture all test cases up to the
notion of equivalent test cases (i.e. no test is lost).

2.2 A reference exhaustive test set

Here, we are going to show that given a dynamic speci�cation Sp = (Σ, Ax), the
set Sp•∩Obs is exhaustive for a certain class K of systems when Obs is the set of
ground modal formulae {[α1] . . . [αn]t = t′ | ∀i, 1 ≤ i ≤ n, αi ∈MΣ ∧ t, t′ ∈ TΣ}.
The systems of K actually have to be reachable, as well as initial for modal
formulae occurring in premises of axioms of Ax. Roughly speaking, a system
will be said initial for a modal formula if it behaves like the speci�cation for this
modal formula.

8For a given set X, P(X) denotes the set of all subsets of X.



De�nition 2.5 (Initiality) Let Sp = (Σ, Ax) be a speci�cation. Let S =
(W,A,R) ∈ Mod(Σ) be a system. Let ϕ be a ground modal Σ-formula. S
is initial on ϕ if and only if we have:

∀w ∈ W,S |=w ϕ⇒
{
∃α1, . . . , αm ∈MΣ,∃w′ ∈ W, w′ Rα1 • . . . • Rαm w

∧ Sp |= [α1] . . . [αm]ϕ

In practice, ϕ is of the form f(v1, . . . , vn) = t where f : s1 × . . . × sn → s
is an attribute (e.g. Amount) which is necessarily provided with at least one
�modi�er� m : s1× . . .×sn×s→ (e.g. amount?). A state is then often reduced
to the �product� of signature attributes. The semantics of m(v1, . . . , vn, v) then
consists in modifying Aw and yielding the algebra Aw′

de�ned like Aw except
for f(vA

w

1 , . . . , vA
w

n ). For example, after an action like amount?M , the only
part of the state which is modi�ed is the attribute Amount. Hence, if S |=w

f(v1, . . . , vn) = v then we have Sp |= [m(v1, . . . , vn, v′)]f(v1, . . . , vn) = v, where
v′ is a function of v. Besides, the formula [m(v1, . . . , vn, v′)]f(v1, . . . , vn) = v is
often given like an axiom of the speci�cation. We have for example the axiom
Amount = 0 ∧ Code = PIN (Card) ⇒ [amount?M ] Amount = M .

Theorem 1 Let Sp = (Σ, Ax) be a speci�cation. The test set Sp• ∩ Obs is
exhaustive for any reachable system S initial on all ground instances of any
modal formula which occurs in premises of axioms of Ax.

Proof. Suppose that S |= Sp• ∩ Obs. Show that CorrectObs(S,Sp). First, let
us interpret the semantics of our modal logics into coalgebras. Given a dynamic
signature Σ = (S, F, V ), and an S-indexed set A, we can de�ne the functor
F(Σ,A) : Set → Set9 which to a set of states X, associates∏

f :s1×...×sn→s∈Fd∪Fa

A
As1×...×Asn
s ×

∏
m:s1×...×sn→ ∈Fm

Pfin(X)As1×...×Asn

A Σ-model M = (W,A,R), is then an F(Σ,A)-coalgebra (W, α) where α is
de�ned for every f ∈ Fd ∪ Fa and every m ∈ Fm by πf (α(w)) = fA

w

and
πm(α(w)) = (v1, . . . , vn) 7→ {w′ | w Rm(v1,...,vn) w

′}, πf and πm being both
projections of α(w) associated to f and m. The category CoAlg(F(Σ,A)) is then
isomorphic to the full subcategory of Mod(Σ), objects of which are all Σ-models
M = (W,B,R) such that B = A.
By a classic result, it is well-known that all functors that can be built from
polynomial functors (constant, identity, sum, product, and function space) and
the �nite powerset functor, have a �nal coalgebra [17]. Hence, CoAlg(F(Σ,A))
has a �nal coalgebra T . Another well-known result of the coalgebraic theory
expresses that for a functor F : Set→ Set, if CoAlg(F) has a �nal object then
each quasi-covariety (i.e. closed under coproduct and quotient) in CoAlg(F)
has a �nal object which is a sub-coalgebra of T .
Therefore, let us de�ne the set of ground modal formulae Th(S) = {ϕ | S |= ϕ}.

9Set is the category whose objects are sets and whose arrows are functions.



Let us note CoAlg(F(Th(S),A)) the full subcategory of CoAlg(F(Σ,A)), objects
of which are all Th(S)-models. It is easy to see that CoAlg(F(Th(S),A)) is
a covariety (i.e. a quasi-covariety which is furthermore closed under sub-
coalgebras). CoAlg(F(Th(S),A)) has then a �nal model. We note it T /Th(S).
CoAlg(F(Th(S),A)) being closed under sub-coalgebras, let us note T /S =
(W ′,A,R′) where W ′ = h(W) and h is the unique homomorphism from S
to T /Th(S). By construction, we have that S ≡Obs T /S . Actually, we have
a stronger result. Indeed, if we note q the homomorphism from S to T /S ,
then the set {(w, q(w)) | w ∈ W} is a bisimulation. Therefore, q is an ele-
mentary homomorphism, i.e. for every ground formula ϕ and every w ∈ W,
S |=w ϕ⇐⇒ T/S |=q(w) ϕ.
Let ϕ1 ∧ . . . ∧ ϕn ⇒ ϕ be a formula of Ax. Let ι : V → A be an inter-
pretation and let w be a state of T /S such that for every i, 1 ≤ i ≤ n,
T /S |=ι,w ϕi. As S is reachable and then so is T /S , there exists ψi and ψ such
that T /S |=ι,w ϕi ⇐⇒ T /S |=w ψi and T /S |=ι,w ϕ⇐⇒ T /S |=w ψ. By de�ni-
tion, T /S is a quotient of S and we saw that q is an elementary homomorphism.
Therefore, S |=w′ ψi for every w′ ∈ q−1(w). As S is initial for ϕi, there exists
α1
w′,ψi

, . . . , αmiw′,ψi
and there exists w′′ ∈ W such that w′′ Rα1

w′,ψi
•. . .•Rα

mi
w′,ψi

w′

and Sp |= [α1
w′,ψi

] . . . [αmiw′,ψi
]ψi. Therefore, Sp |= [α1

w′,ψi
] . . . [αmiw′,ψi

]ψ, and then
S |= [α1

w′,ψi
] . . . [αmiw′,ψi

]ψ. We deduce that T /S |= [α1
w′,ψi

] . . . [αmiw′,ψi
]ψ, and

then T /S |=w ψ. Consequently, we have that T /S |=w ϕ. 2

In the following, we will denote by T (Sp) the exhaustive test set Sp•∩Obs.

3 Test of attributes by axiom unfolding

In this section, we study the problem of test case selection for dynamic speci�ca-
tions, by adapting a selection criteria based on axiom unfolding which has been
widely and e�ciently applied in the algebraic speci�cation setting [1, 2, 4, 6, 7].

3.1 Input domain of attribute

Here, we are going to de�ne a test selection method aimed at making a partition
of T (Sp). This selection method takes inspiration from classic methods that split
the input domain of each signature function [1]. Here, because we are interested
in testing dynamic systems, the signature functions we are going to consider are
attributes.10

Succinctly, for a dynamic signature Σ = (S, F, V ) and an attribute f (i.e.
f ∈ Fa), our method consists in

1. splitting the input domain of f into many subdomains, called test sets for
f , and

2. choosing any input in each non-empty subdomain.

10We recall that the data part of the system has been speci�ed by classic algebraic speci�-
cations. So, testing this part can be done by using selection methods de�ned in [1, 2].



First, we have to de�ne what input domain and test set for attributes are.
The input domain of an attribute f is the projection of the reference test

set T (Sp) on f , that is, the subset of T (Sp) dealing with f . Obviously, it is an
exhaustive test set devoted to the test of f .

De�nition 3.1 (Input domain) Let f : s1 × . . . × sn → s ∈ Fa be an at-
tribute. The input domain of f , noted T (Sp)|f , is the set de�ned as follows:

T (Sp)|f ={ [ρ(α1)] . . . [ρ(αm)]ρ(f(u1, . . . , un)) = ρ(v) |
ρ : V → TΣ,
[ρ(α1)] . . . [ρ(αm)]ρ(f(u1, . . . , un))=ρ(v)∈Sp•∩Obs }

Note that [α1] . . . [αm]f(u1, . . . , un) = v may be any formula, not necessarily
in Sp•.

Example 1 The input domain of the attribute Amount, for example, contains
all possible ground modal formulae which are semantic consequences of the
speci�cation of Section 1.2 concerning Amount. For instance:

Amount = 20
[amount?50] Amount = 50
[amount?10] Amount = 20
[passcode?5438][wrongcode!][cardkept!] Amount = 0
[amount?20][notes!][cardback?] Amount = 0

belong to the input domain of Amount. 3

As we will see in the next section, axiom unfolding makes a partition of
the input domain, that is the initial test set, by replacing a modal formula
[α1] . . . [αm]f(u1, . . . , un) = v with sets of modal formulae, called constraints.
These constraints correspond to the premises of the various cases described by
the speci�cation, that are axioms whose conclusion is

[γ1] . . . [γq][α1] . . . [αm]f(u1, . . . , un) = v

(up to some substitutions). By construction, if all the constraints of a set
are satis�ed, so is the modal formula [γ1] . . . [γq][α1] . . . [αm]f(u1, . . . , un) = v.
Hence, test sets are subsets of the input domain, satisfying constraints.

De�nition 3.2 (Test set) Let C be a set of modal Σ-formulae called Σ-
constraints. Let f : s1 × . . . × sn → s ∈ Fa be an attribute, and let
∆ = α1, . . . , αm be a sequence of modal terms in MΣ(V ). A test set for f
with respect to C and ∆, noted Tf,(C,∆), is the set of ground Σ-formulae de�ned
by:
Tf,(C,∆) = {[γ1] . . . [γq][ρ(α1)] . . . [ρ(αm)]f(ρ(u1), ..., ρ(un))=ρ(v)|

γ1, . . . , γq ∈MΣ, ρ : V → TΣ,
∀ξ ∈ C,Sp |= [γ1] . . . [γq]ρ(ξ) }



Note that the input domain of an attribute f can be seen as a test set
with an empty path and f(u1, . . . , un) = v as the only constraint, that is C =
{f(u1, . . . , un) = v} and ∆ = _.

Unlike in the algebraic speci�cation setting where constraints are only equa-
tions, here, constraints are both modal formulae and a path, since formula
satisfaction depends on states. The path then gives us a state from which the
constraints are satis�ed.

We will then observe in the following section that the unfolding procedure
build, step by step, paths [γ1] . . . [γq][ρ(α1)] . . . [ρ(αm)] increasingly complete,
allowing to put the system in states in which observations f(ρ(u1), . . . , ρ(un)) =
ρ(v), where ρ is a ground substitution, are satis�ed.

3.2 Unfolding procedure

The unfolding procedure inputs are:

• a positive conditional speci�cation Sp = (Σ, Ax),

• an attribute f ∈ Fa, and

• a set Γ of couples (C,∆) where C is a Σ-constraints set and ∆ is a �nite
sequence of modal terms.

Test sets for attributes are naturally extended to sets of couples Γ as follows:

Tf,Γ =
⋃

(C,∆)∈Γ

Tf,(C,∆)

The �rst set Γ0 contains the unique couple (C0,_) de�ned by

C0 = {f(x1, . . . , xn) = y}

where for every i, 1 ≤ i ≤ n, xi and y are variables. �_� stands for the empty
sequence of modal terms. Then

Tf,Γ0 = Tf,({f(x1,...,xn)=y},_) = T (Sp)|f

is the initial test set.

This set will be split into test subsets thanks to the unfolding procedure,
expressed by the two following inference rules:11

Red
Γ ∪ {(C ∪ {[β1] . . . [βk]t = r},∆)}

Γ ∪ {(σ(C),∆)}
σ mgu of t and r

Unfold
Γ ∪ {(C ∪ {ϕ}},∆)}

Γ ∪
{( ⋃

c∈Tr(ϕ)

{Cc ∪ c},∆c

)}
where:

11The most general uni�er (or mgu) of two terms t and r is the most general substitution
σ such that σ(t) = σ(r).



• Tr(ϕ) for ϕ = [β1] . . . [βk]t = r is the set of Σ-constraint sets de�ned by:{{
[σ(γ1)] . . . [σ(γp)]σ(t[v]ω) = σ(r),

σ(ϕ1), . . . , σ(ϕm)

} ∣∣∣∣( ∧
1≤i≤m

ϕi ⇒ [γ1] . . . [γp]g(v1, . . . , vn) = v ∈ Ax

or∧
1≤i≤m

ϕi ⇒ [γ1] . . . [γp]v = g(v1, . . . , vn) ∈ Ax
)

σ(t|ω ) = σ(g(v1, . . . , vn)), and
p ≥ k,∀l, 1 ≤ l ≤ k, σ(βl) = σ(γ(p−k)+l), σ uni�er


⋃

{ {
[σ(γ1)] . . . [σ(γp)]σ(t) = σ(r[v]ω),

σ(ϕ1), . . . , σ(ϕm)

} ∣∣∣∣( ∧
1≤i≤m

ϕi ⇒ [γ1] . . . [γp]g(v1, . . . , vn) = v ∈ Ax

or∧
1≤i≤m

ϕi ⇒ [γ1] . . . [γp]v = g(v1, . . . , vn) ∈ Ax
)

σ(r|ω ) = σ(g(v1, . . . , vn)), and
p ≥ k,∀l, 1 ≤ l ≤ k, σ(βl) = σ(γ(p−k)+l), σ uni�er


• for every {[σ(γ1)] . . . [σ(γp)]σ(t[v]ω) = σ(r), σ(ϕ1), . . . , σ(ϕm)} (resp.
{[σ(γ1)] . . . [σ(γp)]σ(t) = σ(r[v]ω), σ(ϕ1), . . . , σ(ϕm)}) in Tr(ϕ), Cc is the
set {[σ(γ1)] . . . [σ(γp−k)][σ(δ1)] . . . [σ(δq)]σ(ε) | [δ1)] . . . [δq]ε ∈ C}, and

• ∆c is the sequence σ(γ1), . . . , σ(γp−k), α1, . . . , αq when ∆ = α1, . . . , αq.

The de�nition of Tr(ϕ) being based on the subterm relation and uni�cation,
this set is computable if the speci�cation Sp has a �nite set of axioms.

The Red rule eliminates tautologies from constraints sets. Intuitively, the
Unfold rule consists in replacing the formula ϕ with a set c of constraints,
which are what remains of the axiom after uni�cation, and in lengthening the
path ∆ with the path γ1 . . . γp−k given by the axiom.

Hence, given a modal formula ϕ, we have the selection criterion Cϕ that
maps any Tf,(C,∆) to (Tf,(C′

c∪c,∆c))c∈Tr(ϕ) if ϕ ∈ C, Tf,(C,∆) otherwise, where
C′ = C \ {ϕ}.

Example 2 We want to test the attribute Screen of the speci�cation of Sub-
section 1.2. The initial test set for Screen is its input domain T (Sp)|Screen

, that
is the test set TScreen,Γ0 where Γ0 = {(C0,∆0)} with C0 = {Screen = n} and
∆0 = _, as explained above. Then by applying the Unfold rule, we obtain the
set Γ1 = {(C1,∆1), (C2,∆2), (C3,∆3)} where:



• C1 = {[card?C] Card = C, [card?C] Screen = 0} and ∆1 = card?C,
which come from the uni�cation with the axiom [card?A] Card = A ⇒
[card?A] Screen = 0.

• C2 = {[withdraw?] Screen = 0} and ∆2 = withdraw?, which come from the
uni�cation with [withdraw?] Screen = 0.

• C3 = {Code = PIN (Card), [check?][balance!] Screen = Balance(Card)}
and ∆3 = check?balance!, which come from the uni�cation with Code =
PIN (Card) ⇒ [check?][balance!] Screen = Balance(Card).

A second step of unfolding is then possible for constraints in C1 and in C3.
The unfolding of constraints in C1 leads to the set Γ1

2 = {(C′1,∆′
1)} where

C′1 = {Card = 0, [card?C] Card = C, [card?C] Screen = 0} and ∆′
1 = card?C,

which come from the uni�cation of [card?C] Card = C with the axiom Card =
0 ⇒ [card?A] Card = A.

The unfolding of constraints in C3 leads to the set Γ3
2 =

{(C′31,∆′
3
1), (C′32,∆′

3
2)} where:

• C′31 = {Code = 0, [passcode?PIN (Card)]Code =
PIN (Card), [passcode?PIN (Card)][check?][balance!] Screen =
Balance(Card)} and ∆′

3
1 = passcode?PIN (Card)check?balance!, which

come from the uni�cation of Code = PIN (Card) with the axiom
Code = 0 ⇒ [passcode?c] Code = c.

• C′32 = {Code = PIN (Card),PIN (Card) 6= 0, [passcode?p]Code =
PIN (Card), [passcode?p] [check?][balance!]Screen = Balance(Card)} and
∆′

3
1 = passcode?p check?balance!, which come from the uni�cation

of Code = PIN (Card) with the axiom Code = c ∧ c 6= 0 ⇒
[passcode?d] Code = c.

The constraint [withdraw?] Screen = 0 of C2 can not be uni�ed with any
axiom, so the unfolding is �nished for this set.

We observe that each step of the procedure builds paths increasingly long
to reach states where Screen = n is satis�ed, under constraints on initial states
of paths.

As another example, if we wanted to test the attribute Attempts, the initial
test set, or input domain of Attempts, is TAttempts,Γ0 where Γ0 = {(C0,∆0)}
with C0 = {Attempts = n} and ∆0 = _. But Attempts can only take the
values 0, 1 and 2. The unfolding of Attempts = n will then lead to two kinds
of constraints: those where n < 3, that will become test cases since they are
consequences of the speci�cation, and those where n ≥ 3 that will not lead
to test cases. The unfolding procedure cannot distinguish between these two
kinds of constraints, however, before being submitted to the system, a ground
substitution ρ is applied to both elements of test sets and constraints. Since
by de�nition, the resulting ground formulae have to be consequences of the
speci�cation, constraints where n ≥ 3 will not be submitted as test cases to the
system. 3



We write Γ `U Γ′ to mean that Γ can be transformed into Γ′ by applying
Red or Unfold. An unfolding procedure is then a program that accepts in
input a positive conditional speci�cation Sp, and uses the above inference rules
to generate a sequence

Γ0 `U Γ1 `U Γ2 . . .

Termination of the unfolding procedure is unlikely, since it is not checked,
during its execution, whether the formula [β1] . . . [βk]t = r is a semantic con-
sequence of the speci�cation or not. Actually, this will be done during the
selection phase, either automatically when the speci�cation under consideration
is decidable or �by hand� otherwise. The aim of the unfolding procedure is to
make a partition of T (Sp) increasingly �ne. We can then observe that axiom
unfolding de�nes a proof strategy which enables to bound the search space for
proof trees (see the proof of Theorem 2). The idea is then to stretch further the
execution of the procedure in order to make increasingly big proof trees whose
remaining lemmas are constraints. If among remaining lemmas, some of them
are not true, then the associated test set is empty.

3.3 Soundness and completeness

Here, we prove the two properties that make the unfolding procedure relevant
for selection of appropriate test cases, i.e. that the selection criterion de�ned
by the procedure is sound and complete for the initial test set we de�ned.

The completeness result needs the following additional assumption: for any
Γ resulting of the unfolding procedure, any (C,∆) ∈ Γ, any ξ ∈ C and any
ϕ ∈ Ax, Var(ξ)∩Var(ϕ) = ∅.12 This is a very weak assumption since it su�ces
to rename variables at each iteration of the procedure to satisfy it.

Theorem 2 If Γ `U Γ′, then Tf,Γ = Tf,Γ′ .

Proof.
(Soundness) Let us prove that if Γ `U Γ′, then Tf,Γ′ ⊆ Tf,Γ.

If the last applied rule is Red, the result is obvious. If the last rule is
Unfold, by de�nition, what must be proved is that for each c ∈ Tr(ϕ), where
ϕ is the formula [β1] . . . [βk]t = r,

Tf,(Cc∪c,∆c) ⊆ Tf,(C,∆)

We are then going to prove that for each ground substitution ρ : V → TΣ

such that Sp |= ρ(ξ′) for each ξ′ ∈ Cc ∪ c, there exists ρ′ : V → TΣ such that
Sp |= [ρ′(γ1)] . . . [ρ′(γp−k)]ρ′(ξ) for each ξ ∈ C.

We assume that for each ϕ = [β1] . . . [βk]t = r ∈ C, each c ∈ Tr(ϕ) is of the
form:

{[σ(γ1)] . . . [σ(γp)]σ(t[v]ω) = σ(r), σ(ϕ1), . . . , σ(ϕm)}
12Var(ψ) is the set of all variables occuring in ψ.



with t|ω = g(v1, . . . , vn) and
∧

1≤i≤m

ϕi ⇒ [γ1] . . . [γp]g(v1, . . . , vn) = v ∈ Ax.

Let ρ : V → TΣ be a ground substitution such that Sp |= ρ(ξ′), for each
ξ′ ∈ Cc ∪ c, that is, in particular, Sp |= ρ([σ(γ1)] . . . [σ(γp)]σ(t[v]ω) = σ(r)) and
Sp |= ρσ(ϕi), for each i, 1 ≤ i ≤ m.

We then have the following proof tree, where Φi denotes the formula ϕi∧. . .∧
ϕm for each i, 1 ≤ i ≤ m, and γ1,p denotes the path γ1 . . . γp; [γ1] . . . [γp] is then
denoted by [γ1,p] and [σ(γ1)] . . . [σ(γp)] by [σ(γ1,p)], where σ is a substitution.

St1 St2
[ρσ(γ1,p)]ρσ(t) = ρσ(t[v]ω)

...
ψ

[ρσ(γ1,p)]ρσ(t) = ρσ(r)

where St1 is the following subtree:

σ(t|ω ) = σ(g(v1, . . . , vn))
ρσ(t|ω ) = ρσ(g(v1, . . . , vn))
ρσ(t) = ρσ(t[g(v1, . . . , vn)]ω)

[ρσ(γ1,p)]ρσ(t) = ρσ(t[g(v1, . . . , vn)]ω)

St2 is the following subtree:

Φ1 ⇒ [γ1,p]g(v1, . . . , vn) = v
ρσ(Φ1) ⇒ [ρσ(γ1,p)]ρσ(g(v1, . . . , vn)) = ρσ(v)

ρσ(Φ1) ⇒ [ρσ(γ1,p)]ρσ(t[g(v1, . . . , vn)]ω) = ρσ(t[v]ω)

...
ρσ(ϕ1)

ρσ(Φ2) ⇒ [ρσ(γ1,p)]ρσ(t[g(v1, . . . , vn)]ω) = ρσ(t[v]ω)

...
ρσ(ϕ2)

...
ρσ(Φm) ⇒ [ρσ(γ1,p)]ρσ(t[g(v1, . . . , vn)]ω) = ρσ(t[v]ω)

and ψ = [ρσ(γ1)] . . . [ρσ(γp)]ρσ(t[v]ω) = ρσ(r). Moreover, since for each l,
1 ≤ l ≤ k, σ(βl) = σ(γ(p−k)+l), then ρσ(βl) = ρσ(γ(p−k)+l), and the conclusion
[ρσ(γ1)] . . . [ρσ(γp)]ρσ(t) = ρσ(r) of the proof tree becomes

[ρσ(γ1)] . . . [ρσ(γp−k)][ρσ(β1)] . . . [ρσ(βk)]ρσ(t) = ρσ(r)

(Completeness) Let us prove that if Γ `U Γ′, then Tf,Γ ⊆ Tf,Γ′ .
By de�nition of rule Unfold, what must be shown is that

Tf,(C,∆) ⊆
⋃

c∈Tr(ϕ)

Tf,(Cc∪c,∆c)

We are then going to prove that for each ground substitution ρ : V → TΣ such
that Sp ` [ρ(γ1)] . . . [ρ(γp−k)]ρ(ξ) for each ξ ∈ C, there exists c ∈ Tr(ϕ) such
that there exists ρ′ : V → TΣ such that Sp ` ρ′(ξ′) for each ξ′ ∈ Cc ∪ c. To put
it in other words, we are going to prove that each [ρ(γ1)] . . . [ρ(γp−k)]ρ(ξ) where
ρ : V → TΣ, ξ ∈ C and γ1, . . . , γp−k ∈ MΣ, can be deduced from speci�cation



Sp if there exists c ∈ Tr(ϕ) and ρ′ : V → TΣ such that Sp ` ρ′(ξ′) for each
ξ′ ∈ C′.

Let us note �rst that the unfolding procedure de�nes a strategy which bounds
the search space for proof trees to a class of trees having a speci�c structure.
The unfolding procedure de�nes a proof search strategy which selects proof trees
where:

• no instance of transitivity occurs over instances of congruence, necessita-
tion, substitution and modus ponens;

• no instance of modus ponens occurs over instances of congruence and
substitution;

• no instance of congruence occurs over instances of substitution.

We then have to prove that there exists a proof tree having the structure we
just described and of conclusion [ρ(γ1)] . . . [ρ(γp−k)]ρ(ξ). We are actually going
to prove a stronger result: we are going to de�ne elementary transformations of
proof trees which allow to rewrite elementary combinations of inference rules,
then we are going to prove that the resulting global proof trees transformation is
terminating. We give here some examples of such elementary transformations.
The other combinations of inference rules follow similar transformations.

The case of modus ponens over necessitation:∧
i≤n

ϕi ∧ ψ ⇒ ϕ
∧
i≤n

ϕi ⇒ ψ∧
i≤n

ϕi ⇒ ϕ
MP

∧
i≤n

[m]ϕi ⇒ [m]ϕ
Nec

 

∧
i≤n

ϕi ∧ ψ ⇒ ϕ∧
i≤n

[m]ϕi ∧ [m]ψ ⇒ [m]ϕ
Nec

∧
i≤n

ϕi ⇒ ψ∧
i≤n

[m]ϕi ⇒ [m]ψ
Nec

∧
i≤n

[m]ϕi ⇒ [m]ϕ
MP

The case of necessitation over substitution:∧
i≤n

ϕi ⇒ ϕ∧
i≤n

[m]ϕi ⇒ [m]ϕ
Nec

∧
i≤n

[σ(m)]σ(ϕi) ⇒ [σ(m)]σ(ϕ)
Subs  

∧
i≤n

ϕi ⇒ ϕ∧
i≤n

σ(ϕi) ⇒ σ(ϕ)
Subs

∧
i≤n

[σ(m)]σ(ϕi) ⇒ [σ(m)]σ(ϕ)
Nec



The case of monotonicity over necessitation:∧
i≤n

ϕi ⇒ ϕ∧
i≤n

ϕi ∧ ψ ⇒ ϕ
Mono

∧
i≤n

[m]ϕi ∧ [m]ψ ⇒ [m]ϕ
Nec  

∧
i≤n

ϕi ⇒ ϕ∧
i≤n

[m]ϕi ⇒ [m]ϕ
Nec

∧
i≤n

[m]ϕi ∧ [m]ψ ⇒ [m]ϕ
Mono

The case of modus ponens over monotonicity:∧
i≤n

ϕi ∧ ψ ⇒ ϕ
∧
i≤n

ϕi ⇒ ψ∧
i≤n

ϕi ⇒ ϕ
MP

χ ∧
∧
i≤n

ϕi ⇒ ϕ
Mono  

∧
i≤n

ϕi ∧ ψ ⇒ ϕ

χ ∧
∧
i≤n

ϕi ∧ ψ ⇒ ϕ

∧
i≤n

ϕi ⇒ ψ

χ ∧
∧
i≤n

ϕi ⇒ ψ
Mono

χ ∧
∧
i≤n

ϕi ⇒ ϕ
MP

Considering proof trees as terms and using a recursive path ordering >rpo

to order proofs, de�ned from the precedence order:

Subs ∼ Sym ∼ Cong > Nec > Mono > MP > Trans

we prove that
∗
 ⊆ >rpo, and thus that  is terminating13.14

Since by hypothesis, Sp |= [ρ′(γ1)] . . . [ρ′(γp−k)][ρ′(β1)] . . . [ρ′(βk)]ρ′(t) =
ρ′(r), where [β1] . . . [βk]t = r ∈ C, and is not a tautology, there exists nec-
essarily an axiom

∧
i≤m

αi ⇒ [γ1] . . . [γp]g(v1, . . . , vn) = v, a position ω in ρ′(t)

or ρ′(r) and a ground substitution ρ such that ρ′(t)|ω = ρ′(g(v1, . . . , vn)) or
ρ′(r)|ω = ρ′(g(v1, . . . , vn)), and such that ρ′(βl) = ρ′(γ(p−k)+l) for each l,
1 ≤ l ≤ k.

Hence ρ′ is a uni�er of t|ω or r|ω and g(v1, . . . , vn), and of each βl and
γ(p−k)+l. So there exists a proof tree resulting of the global transformation
de�ned above, of conclusion [ρ′(γ1)] . . . [ρ′(γp−k)][ρ′(β1)] . . . [ρ′(βk)]ρ′(t) = ρ′(r),
and of the form:

Φ1 ⇒ [γ1] . . . [γp]g(v1, . . . , vn) = v
ρ′(Φ1) ⇒ [ρ′(γ1)] . . . [ρ′(γp)]ρ′(g(v1, . . . , vn)) = ρ′(v)

ρ′(Φ1) ⇒ [ρ′(γ1)] . . . [ρ′(γp)]ρ′(t) = ρ′(t[v]ω)

...
ρ′(ϕ1)

ρ′(Φ2) ⇒ [ρ′(γ1)] . . . [ρ′(γp)]ρ′(t) = ρ′(t[v]ω)

...
ρ′(ϕ2)

...
[ρ′(γ1)] . . . [ρ′(γp)]ρ′(t) = ρ′(t[v]ω)

...
ψ

[ρ′(γ1)] . . . [ρ′(γp)]ρ′(t) = ρ′(r)

where ψ = [ρ′(γ1)] . . . [ρ′(γp)]ρ′(t[v]ω) = ρ′(r). 2

13 ∗
 is the transitive closure of  .

14See [3] for a complete proof of
∗
 ⊆ >rpo.



Conclusion

In this paper, we have extended a selection criteria based on unfolding of for-
mulae to a dynamic formalism. As in the algebraic speci�cation setting, our
unfolding procedure consists in dividing the input domain into subdomains and
then in selecting test cases from each of these subdomains. We have then proved
that this unfolding is complete, that is test cases are preserved at each step of
the unfolding procedure. This last result has been obtained by showing that the
full derivability coincides with the derivability restricted to the class of proof
trees generated by the unfolding procedure. We have also proved that the set
of ground modal formulae satis�ed by a speci�cation Sp is exhaustive for every
reachable system which is initial. To show this property we have �rst translated
the semantics of our formalism into the coalgebras theory, and then to take the
advantage of the duality between algebraic and coalgebraic approaches to prove
this property of exhaustiveness.

We still have ongoing research concerning the extension of this unfolding
procedure for a larger class of speci�cation dealing with more general formulae
than positive conditional ones. Actually, our goal is to be able to propose a
framework of black-box testing for CoCasl speci�cations [15]. Our goal is
also to propose a framework of functional testing for speci�cation including
structuration primitives. This last work would take inspiration from [13, 14].
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