
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/8566/

Published paper
Zhang, Y. and Rockett, P.I. (2009) Application of multiobjective genetic
programming to the design of robot failure recognition systems. IEEE
Transactions on Automation Science and Engineering, 6 (2). pp. 372-376.
http://dx.doi.org/10.1109/TASE.2008.2004414

eprints@whiterose.ac.uk

http://eprints.whiterose.ac.uk/8566/
http://dx.doi.org/10.1109/TASE.2008.2004414

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Application of Multiobjective Genetic Programming
to the Design of Robot Failure Recognition Systems

Yang Zhang and Peter I. Rockett

Abstract— We present an evolutionary approach using
multiobjective genetic programming to derive optimal feature
extraction pre-processing stages for robot failure detection.
This data-driven machine learning method is compared both
with conventional (non-evolutionary) classifiers and a set of
domain-dependent feature extraction methods. We conclude
MOGP is an effective and practical design method for failure
recognition systems with enhanced recognition accuracy over
conventional classifiers, independent of domain knowledge.

Note to Practitioners— Detecting failures in robotic systems
is critical to their autonomous operation since it allows miti-
gating/compensating control strategies to be brought into play.
In this paper we employ multiobjective genetic programming
to derive (near-)optimal feature extraction stages for failure
detection which we demonstrate to yield significantly better
detection performance than a range of comparator methods
on benchmark datasets. Our approach requires no domain
knowledge.

Index Terms— Feature extraction, Autonomous robots, Failure
recognition, Multiobjective genetic programming.

I. I NTRODUCTION

SINCE it is one of the key problems in autonomous robots,
the design of failure recognition systems has been studied

previously by a number of authors, for example [1]–[3].
Machine learning methods are invaluable for acquiring the

complex knowledge associated with robotic tasks, especially
fault detection and diagnosis [4]. Lopes & Camarinha-Matos
[4] demonstrated that suitable transformations of the sensor
measurements can improve prediction accuracy – a result
which is well-established in the machine learning literature
– although they used hand-crafted transformations based on
domain knowledge. Their attempts at using the SMART+
algorithm [5] and oblique decision trees to construct new,
linear features were generally unsuccessful.

As far as we are aware, all previous work on failure
recognition has employed domain-specific knowledge which
is probably sub-optimal and susceptible to inadvertent omis-
sion [4]. The principal contribution of the present paper is the
application to robot failure detection of a generic, domain-
independent machine learning methodology for automatically
constructing (near-)optimal features to maximally separate the
failure classes. Our main focus is on constructing new, more

Manuscript received June 9, 2008.
Yang Zhang is with the Laboratory for Image and Vision Engineering, De-

partment of Electronic and Electrical Engineering, The University of Sheffield,
Mappin Street, Sheffield, S1 3JD, UK.{email: hegallis@gmail.com }

Peter Rockett is with the Laboratory for Image and Vision Engineering,
Department of Electronic and Electrical Engineering, University of Sheffield,
Mappin Street, Sheffield S1 3JD, UK.{email:p.rockett@shef.ac.uk }

discriminatory features to be used within a classifier, hence
our emphasis onfeature extractionbut it would be equally
valid to regard this work as evolving (near-)optimalclassifiers.
We treat the recognition of failure in a robot as a multi-class
classification problem.

As in [4] (and many others), the raw input to our classifier
is a series of time-interval sampled sensor readings arranged
into vectors. We confine ourselves to the generic task offailure
detection, not the subsequent use of that information to failure
recovery. Nonetheless, a number of critical issues need to be
addressed:
• Firstly, a large number of robot sensors may need to be

sampled over some time interval. The dimensionality of
the raw input vector can thus be very high and selecting
the optimal subset of features is a key sub-problem, both
to improve recognition rates and to minimize detection
latencies.

• Second, only limited ‘experience’ is available to the
inductive learner which may leave the system prone to
over-fitting, especially where sparse, high-dimensional
data are concerned.

• Third, to meet the need to work in ‘real time’, we wish
to design the most compact recognition system possible,
subject to acceptable accuracy.

Like [4], we utilize feature extraction to improve classifica-
tion accuracy but rather than using pre-defined – and probably
suboptimal – transformations divined from domain knowledge,
we propose explicitlyoptimizing the pre-processing stages
to give the greatest attainable classification accuracy. We
apply a generic feature extraction method [6], [7] which uses
multiobjective genetic programming.

Genetic programming (GP) as an evolutionary computation
technique has been applied to many fields including classifier
design [8] and robot behavior design [9]. GP is an evolutionary
technique in which each potential solution (orchromosome)
in a population is generally represented as an acyclic directed
graph. These graphs are interpreted as parse trees to yield
a sequence of operations (or a program); internal nodes
in the trees are mathematical functions while the terminal
(leaf) nodes represent the input values of the problem. As
in all evolutionary methods, members of the population are
stochastically selected for breeding, biased in a measure of
their performance on the problem; offspring are generated
which can improve on the performance of the parents. GP has
been described in a number of books; see [10], for example.

In this paper we present what we believe to be the first report
of applying multiobjective genetic programming (MOGP) to
the design of a robot failure recognition system. We evolve

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

domain-independent (near-)optimal feature extraction stages
where the ‘optimal’ feature extractors learned during the train-
ing phase map the input patterns to a new, one-dimensional
decision space in which the discriminability among classes is
explicitly optimized. Classes can be optimally separated by a
simple thresholding step in this 1D space. Since we are dealing
here with multiple failure types, this basic method has been
extended and details are presented in Section II.

This paper is organized as follows: We describe the evolu-
tion of feature extractors using MOGP in Section II together
with the multi-class extensions used in this work. Experiments
on the benchmark “Robot Execution Failures” datasets [11] are
reported in Section III along with comparisons with previous
studies on the same problem. Discussion of the extracted fea-
tures and the optimized MOGP trees is also given. Conclusions
to this work are presented in Section IV.

II. MOGP FEATURE EXTRACTION

Evolutionary algorithms are not guaranteed to find a true
mathematical optimum. We use the term “optimal” without
the “(near-)” qualifier in the sense that it is widely understood
in the evolutionary computing literature, to denoteapproxi-
mately optimal solutions. Notwithstanding this, evolutionary
algorithms can produce demonstrably better solutions than
other available methods.

The evolutionary strategy used here is an adaptation to
genetic programming of the steady-state Pareto Converging
Genetic Algorithm [12] and where the population comprises
GP trees. We have used this evolutionary paradigm since
it appears to give superior solutions to current competitor
approaches [13].

A 2-class MOGP classifier can be derived by evolving a GP
tree which maps the input variables into a 1D decision space;
individual patterns are assigned a label by thresholding in this
1D space. Further, the distance between the point in the 1D
space to which a pattern maps, and the threshold is a measure
of confidence in the label assignment.

Our objective here is to identify a series of transformations
that map the collected robot sensor data into a set of new,
one-dimensional decision spaces in which the separation be-
tween the different failure types (i.e. classes) is maximized.
The previous multiobjective MOGP approach [6], [7], [14]
implements a 2-class classifier and our approach for dealing
with the presentq-class problem has been to decompose this
into a series of 2-class problems.

Bailey [15] has discussed various strategies for decompos-
ing a q-class problem into a series of 2-class problems. For
MOGP, we have concluded that hierarchical decomposition
gives the best results [16]. Givenq failure types, we select
one type,ωi; i ∈ [1 ∙ ∙ ∙ q] and evolve a classifier to separate
this class from the remaining(q − 1) classes. We then select
one of the remaining(q − 1) classes and evolve a further set of
feature extractors to separate that class from the other(q − 2)
types. And so on. See [16] for further details.

Hierarchical decomposition requiresq, 2-class classifiers.
For example, to separate three classes:A, B andC, we first
classify A versus (B ∧ C). Next we separateB from C.

Finally, we classifyC from all the other classes. This final
q-th step is required because, if in separatingB andC, we
regard everything which is not aB as aC we will produce a
large number of errors – any instances ofA misclassified by
the firstA versus(B ∧ C) stage will be incorrectly assigned
to classC by default.

One of the noted difficulties with decomposing multi-class
problems into a series of 2-class problems is that some patterns
are assigned no label at all. Error correcting codes have
been used to resolve labeling ambiguities although here, we
have used the normalized distances between the projection of
each pattern into the 1D decision spaces, and the decision
thresholds. Since this distance is a measure of confidence in a
label, we have given unlabeled patterns the class corresponding
to the closest approach to the relevant decision threshold – that
is, the class to which they missed being assigned by the small-
est margin. Subject to the assumption of mono-modal class-
conditioned densities in the decision spaces, this approach can
be interpreted as maximizing the posterior probability [16].

Importantly, no assumptions have been made about the
statistical distributions of the original sensor data.

In terms of optimizing the pattern separability in the 1D de-
cision spaces, we ‘minimize’ (see below) a three-dimensional
vector of fitness objectives comprising:

1) Tree complexity measurement:The node count of the
tree is used as the measure of solution complexity. Unless
inhibited from doing so, trees in GP have a tendency to grow
without limit, a phenomenon termedbloat. Bloat is undesir-
able for a number of reasons: Firstly, overly complex trees
tend to generalize poorly, a manifestation of the well-known
overfitting effect found in machine learning. Minimizing tree
complexity accords with Occam’s Razor. The second objection
to bloated trees is that they require large evaluation times
which slows the evolution (and any subsequent use online).
It has been shown [17] that minimizing the tree node count in
a multiobjective setting can effectively suppress tree bloat.

2) Misclassification error:For a given training set/step in
the hierarchical decomposition, all the (n-dimensional) input
patterns are projected into a 1D decision space in which there
will inevitably be some class overlap. Within the evolutionary
loop we use Golden Section search [18] in the 1D decision
space to locate the optimum decision threshold by minimizing
the number of training patterns misclassified by that particular
feature transformation. Golden Section search is terminated
when there is no further reduction in the error. The result-
ing misclassification error(fraction of misclassified training
patterns) is the second of our three fitness objectives.

3) Bayes Error:Appropriate fitness functions are critical to
the success of evolutionary algorithms and this has motivated
our use of the third objective – an estimate of the Bayes
error. Our feature mapping projects all patterns of the training
set into the 1D decision space where they will form two,
class-conditioned PDFs. We estimate the Bayes error – a
fundamental lower bound on classification performance – by
calculating the overlap between the histograms of the two
class-conditioned PDFs; clearly we aim to minimize this
quantity since it is a measure of class separability.

The reason for the apparent duplication of the misclassifi-

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

cation error (see 2, above) stems from the fact that using the
misclassification error alone usually results in very slow (or
no) convergence. The misclassification error objective alone
seems unable to exert sufficient selective pressure at the
start of the evolutionary optimization when almost all of the
randomly-created individuals in the population have very high
misclassification errors; selective pressure is thus rather weak
and the optimization proceeds slowly. The Bayes error, on the
other hand, appears able to differentiate between individuals of
slightly greater promise in the initial phases and its inclusion
greatly speeds (or indeed facilitates) convergence [8]. (Con-
versely, using the Bayes error on its own can lead to poor
generalization [7]. We have found that both misclassification
error and the Bayes error are needed to produce good results.)

Each individual is evaluated against these three fitness
objectives, each of which we wish to simultaneously minimize.
In practice, minimizing all three is not possible since they
are implicitly coupled – for example, individuals with large
numbers of nodes tend to give lower (training set) misclassifi-
cation error. In the past, such multiple objective optimization
has been carried out by linearly weighting the three objectives
but this inevitably biases the solution – there is no principled
way of aggregating non-commensurable objectives. We thus
‘minimize’ the 3-vector of objectives usingPareto optimality
which invokes a notion of vector dominance [19]. Given
two N -dimensional vectors of objectives,x and y, within a
minimization problem,x is said todominatey that is,x ≺ y:

x ≺ y iff ∀xi 6 yi, i ∈ [1 . . . N] ∧ ∃xj < yj , j ∈ [1 . . . N]

This Pareto dominance relation can be used for comparing
and ranking solutions, and hence is the basis for selection for
breeding on the grounds of fitness within the MOGP.

What results from this MOGP optimization is aset of
solutions, each member of which is equivalent in the sense
that although each of the elements of the objective vector
have different values, no solution in this set can be considered
superior to any other. The members of this so-calledPareto
set all represent ‘optimal’ solutions since for any member,
it is not possible to reduce the value of any one objective
without simultaneously increasing the value of at least one of
the other objectives. In the field of pattern recognition, we
are principally concerned with obtaining the lowest possible
misclassification error and so here, we adopt the solution
which has the best score on this attribute. Nonetheless, the
other two objectives play a critical role in guiding the search
for the ultimately selected solution.

The MOGP parameters used in this work are summarized
in Table I. The initial population was randomly created with
half the trees of full depth (here, 5) and half of random depth
in the range[1 . . . 5] although thereafter, there was no explicit
limitation on the depth to which trees could grow other than
that implicitly imposed by the tree complexity objective.

III. E XPERIMENTS AND RESULTS

To verify our proposed method, we have applied it to the
real-world robot failure recognition datasets described in [4],
[11]. The data comprise three force sensor measurements

TABLE I

GP SETTINGS

Terminalset
90 dimensional sensor vectors
Floating point numbers∈ [0.0. . .1.0]

Functionset
sqrt, log, pow2, - (unary minus),sin
-, +, ×, ÷, max, min,xor
if-then-else

Populationsize 250
Original population Half full trees, half randomtrees
Original max. tree
depth

5

Stoppingcriterion 10,000 function evaluations

(fx, fy, fz) and three torque sensor measurements(tx, ty, tz)
each sampled at fifteen regularly-spaced time intervals, con-
catenated into (6× 15 =) 90 dimensional pattern vectors.
Each pattern vector thus comprises a labeled instance of
a multivariate time profile of force and torque values. The
recognition task is to identify the particular failure associated
with each sensor measurement profile.

There are five separate datasets:

• LP1: 88 instances from 3 failure types and normal type
(failures in approach to the grasp position)

• LP2: 47 instances from 4 failure types and normal type
(failures in the transfer of a part)

• LP3: 47 instances represent 3 failure types and normal
type (position of part after a transfer failure)

• LP4: 117 failures from 2 failure types and normal type
(failures in approach to the ungrasp position)

• LP5: 164 instances from 4 failure types and normal type
(failures in motion with a part)

We applied seven conventional classifiers to the datasets as
well as the MOGP-generated classifier. The implementations
of the seven comparator algorithms employed were all taken
from the Weka machine learning system1 [20] and the default
parameter settings were used except where noted below. The
classifiers used were:

• RBF: Radial Basis Functions, a normalized Gaussian ra-
dial basis function network using thek-means clustering
algorithm. We estimated the ‘optimal’ number of clusters
(k) for each problem by randomly splitting each dataset,
using one partition as a training set and the other as a
validation set. For that dataset we adopted the value ofk
which gave the lowest validation error.

• MC: MultiClass Classifier, a multinomial logistic regres-
sion model using a ridge estimator as the base classifier.
Handles multi-class problems with 2-class classifiers and
error correcting output codes for increased accuracy.

• NNge: nearest neighbor algorithm using non-nested gen-
eralized exemplars.

• BN: BayesNet, Bayes network classifier using the K2
learning algorithm.

• IB1: instance-based learning algorithm. The distance
measures are used to find the training instance closest to
the test instance and predict the same class as the training
instance.

1See: http://www.cs.waikato.ac.nz/ ∼ml/weka/ . We have
used Version 3.4.5 of Weka in this work.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

• SMO: sequential minimal optimization algorithm to train
a support vector classifier.

• C4.5: the well-known decision tree algorithm (referred to
as “J48” in Weka.)

Conventionally classifiers have been compared withN -fold
cross-validation on a dataset followed by at-test to determine
the statistical significance of the differences in the observed
error rates. This, however, is unsound [21], Consequently we
use an empirical 5× 2 cv F -test due to Alpaydin [21], [22]
at the 95% confidence level.

The mean percentage errors averaged over 10 folds for each
dataset are shown in Table II for every classifier considered
here (the seven conventional classifiers and the MOGP classi-
fier) using the 90D raw pattern data. It is noteworthy that the
MOGP-derived classifier returns the smallest error value on
every dataset (LP1-5) although the statistical significance of
this needs to be established separately using the 5× 2 cv F -
test. The set of pairwise statistical comparisons between the
MOGP classifier and each conventional comparator is sum-
marized in Table III; a tick indicates that MOGP is superior
whereas a dash indicates that there is no discernible difference.
From Table III, MOGP is statistically superior on 34 of the
35 comparisons and yields statistically identical results only
on the RBF/LP1 pairing; notably the RBF classifier yields
variable results on the other datasets – see Table II. The
benefits of the MOGP approach are therefore obvious.

The evolved feature extracting trees are typically rather
simple transformations – the largest tree is shown in Fig. 1
– and typically of depth around four. MOGP is thus able
to produce feature transformations which directly address
requirement for low latency classification. Similarly, due to
the parsimony pressures in the algorithm, the MOGP trees
typically use a modestly-sized subset of the 90 possible inputs,
in the range[1 . . . 7] raw attributes, again directly addressing
the latency requirements.

TABLE III

F -TEST COMPARISONBETWEEN MOGP AND CONVENTIONAL

ALGORITHMS FOR THEFIVE DATASETS. SEE TEXT FOR DETAILS.

Datasets MOGP
RBF MC NNge BN IB1 SMO C4.5

LP1 - � � � � � �
LP2 � � � � � � �
LP3 � � � � � � �
LP4 � � � � � � �
LP5 � � � � � � �

The datasets used here were previously studied by Lopes
& Camarinha-Matos [4] who investigated the effects on
classification accuracy of five hand-crafted feature extraction
methods, referred to as S1 to S5. S1 uses the measured force
and torque values as raw features without preprocessing giving
90D input vectors; S2 includes the amplitudes of forces and
torques in the orthogonal planes in 3D space in addition to
the raw measurements giving 210D input vectors; S3 extracts
summary features into 72D vectors; S4 extracts the amplitudes
of the Fourier transforms of the time series samples to yield
48D input vectors; S5 jointly uses all the features mentioned

above concatenated into 490D vectors. Full details can be
found in [4]. In Table IV we reproduce the classification results
of [4] alongside the MOGP results although we stress these
two sets of figures are notdirectly comparable. In [4] the
authors assessed performance using a leave-one-out method;
that is, for a dataset withn data,n classifiers were trained on
(n− 1) data and each tested on the omittedn-th datum. The
error is returned as the average overn repetitions of training.

Here our MOGP validation errors have been estimated from
the average over ten, 50-50 splits of the datasets, training on
only n/2 data. Thus if all other things are equal, the errors
obtained by Lopes & Camarinha-Matos should be significantly
lower since their classifiers were trained on almost twice as
many data (n−1 vs.n/2) although quantifying this advantage
is difficult. (Repeating the leave-one-out methodology here for
direct comparison with [4] is problematic since to separateq
classes requiresq, 2-class classifiers. Thus to obtain the leave-
one-our error estimate for, say, LP1 would require88 data×
4 classes= 352 classifier trainings. To process all the datasets,
LP1-5 would require the training of around two thousand 2-
class classifiers which is impractical.)

Although the error values in Table IV from MOGP and
from [4] are not directly comparable due to the difference in
methodologies, the results in [4] are trained on twice as many
data and should therefore be more accurate. Apart from the
LP1/S3 combination, the errors are not that much smaller and
possibly not by any statistically significant amount. Indeed for
the LP2 dataset, MOGP returns the lowest error by around a
factor of three. The conclusion we draw is that despite being
trained on half the data, MOGP is a more consistent performer,
with error rates close to the best obtained in [4] for all datasets.
Pre-processing strategy S3 gives the best overall results of the
hand-crafted approaches but also returns the second worst error
rate (49%) on LP2. MOGP, on the other hand is ranked either
first, second or in one case, third for each dataset. Additionally,
we reiterate that our MOGP approach requires no domain
knowledge.

TABLE IV

MEAN PERCENTAGEERRORS FORLP1-5 FOR THEFEATURE EXTRACTION

METHODS IN [4] AND MOGP. LOWEST ERRORS SHOWN IN BOLD TYPE.

S1 S2 S3 S4 S5 MOGP
LP1 22 20 4 15 11 9.09
LP2 55 43 49 32 36 15.30
LP3 51 25 13 15 17 16.67
LP4 35 40 5 23 17 6.77
LP5 31 37 28 51 23 26.82

IV. CONCLUSIONS

In this paper we have hierarchically applied multiobjec-
tive genetic programming (MOGP) to optimize the feature
extraction stages of a robot failure recognition system. Our
domain-independent framework has demonstrated its superi-
ority (or, at worst, statistical equivalence) to seven popular
conventional classifiers over the five investigated datasets by
displaying consistently smaller misclassification errors. Com-
pared to the results from hand-crafted feature construction

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

TABLE II

5× 2 CV MEAN PERCENTAGEERRORCOMPARISONSOF CLASSIFIERS ON THEFIVE DATASETS. (SMALLEST ERRORS SHOWN IN BOLD FACE.)

Dataset Classifier
RBF MC NNge BN IB1 SMO C4.5 MOGP

LP1 9.09 40.91 52.27 20.46 11.36 54.55 27.27 9.09
LP2 56.52 60.87 60.87 43.48 65.22 60.87 47.83 15.30
LP3 37.5 37.5 37.5 58.33 50.00 37.5 45.83 16.67
LP4 27.12 28.81 30.51 8.48 22.03 25.42 25.42 6.77
LP5 32.93 56.10 40.24 40.24 42.68 63.41 56.10 26.82

Fig. 1. Evolved GP tree for the ‘normal’ type for the LP2 dataset

stages of Lopes & Camarinha-Matos [4], our results are highly
competitive although differences in methodology mean that
direct comparison is not possible; the performance figures in
[4] were obtained using almost twice as much training data
although the expected improvement in misclassification error
is not great. More particularly, our method uses no domain
knowledge. MOGP feature extraction is thus confirmed as a
highly promising approach to the design of failure detection,
and potentially other, robotic sub-systems.

Since our MOGP framework requires no human intervention
(other than providing a labeled training set), if additional
data become available then the failure detection system can
be ‘refined’ by continuous evolution, possibly executing as a
background process. If superior feature extraction stages are
identified they could be ‘switched’ into use, thus upgrading
system performance. This extension, however, requires a care-
ful study of incremental learning in multiobjective GP which
will be the subject of future research.

ACKNOWLEDGMENT

Yang Zhang would like to thank for the financial support of
a Universities UK Overseas Research Student Award Scheme
(ORSAS) scholarship and the Henry Lester Trust.

REFERENCES

[1] C. Ferrrell, “Failure recognition and fault tolerance of an autonomous
robot,” Adaptive Behavior, vol. 2, no. 4, pp. 375–398, 1994.

[2] B. Lussier, R. Chatila, F. Ingrand, M.-O. Killijan, and D. Powell, “On
fault tolerance and robustness in autonomous systems,” in3rd IARP-
IEEE/RAS-EURON Joint Workshop on Technical Challenges for De-
pendable Robots in Human Environments, Salford, UK, 7-9 September
2004.

[3] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. S. Sukhatme, “Fault
detection and identification in a mobile robot using multiple model
estimation and neural network,” inIEEE International Conference on
Robotics and Automation (ICRA’00), San Francisco, CA, 22-28 April
2000, pp. 2302–2309.

[4] L. S. Lopes and L. M. Camarinha-Matos, “Feature transformation strate-
gies for a robot learning problem,” inFeature Extraction, Construction
and Selection: A Data Mining Perspective, H. Liu and H. Motoda, Eds.
Boston: Kluwer Academic Publishers, 1998, pp. 375–391.

[5] M. Botta and A. Giordana, “SMART+: A multi-strategy learning tool,”
in 13th International Joint Conference on Artificial Intelligence, Cham-
brey, France, 28 August - 3 September 1993, pp. 937–943.

[6] Y. Zhang and P. I. Rockett, “Feature extraction using multi-objective
genetic programming,” inMulti-Objective Machine Learning, Y. Jin,
Ed. Heidelberg: Springer, 2006, pp. 75–99.

[7] ——, “A generic optimal feature extraction method using multiobjective
genetic programming,” Submitted toApplied Soft Computing, 2007.

[8] T. Loveard and V. Ciesielski, “Representing classification problems
in genetic programming,” inCongress on Evolutionary Computation,
Gangnam-gu, Seoul, Korea, May 2001, pp. 1070–1077.

[9] K. J. Lee and B. T. Zhang, “Learning robot behaviors by evolving genetic
programs,” in26th International Conference on Industrial Electronics,
Control and Instrumentation (IECON-2000), Nagoya, Japan, 22-28
October 2000, pp. 2867–2872.

[10] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,Genetic Pro-
gramming - An Introduction. On the Automatic Evolution of Computer
Programs and Its Applications. San Francisco, CA: Morgan Kaufmann,
1998.

[11] S. Hettich and S. D. Bay, “The UCI KDD archive,” Department of
Information and Computer Science, University of California, Irvine, CA.
http://kdd.ics.uci.edu, 1999.

[12] R. Kumar and P. I. Rockett, “Improved sampling of the Pareto-front in
multiobjective genetic optimizations by steady-state evolution: A Pareto
converging genetic algorithm,”Evolutionary Computation, vol. 10, no. 3,
pp. 283–314, 2002.

[13] Y. Zhang and P. I. Rockett, “Comparison of evolutionary strategies for
multi-objective genetic programming,” inIEEE Systems, Man Cybernet-
ics Society Conference on Advances in Cybernetic Systems (AICS2006),
Sheffield, UK, 7-8 September 2006.

[14] ——, “Evolving optimal feature extraction using multi-objective genetic
programming: A methodology and preliminary study on edge detection,”
in Genetic and Evolutionary Computation Conference (GECCO 2005),
Washington, DC, 25-29 June 2005, pp. 795–802.

[15] A. Bailey, “Class-dependent features and multicategory classification,”
Ph.D. dissertation, Department of Electronics and Computer Science,
University of Southampton, Southampton, UK, 2001.

[16] Y. Zhang and P. I. Rockett, “Domain-independent approaches to optimize
feature extraction for multi-classification using multi-objective genetic
programming,” Submitted toPattern Analysis and Its Applications, 2007.

[17] A. Ekárt and S. Z. Ńemeth, “Selection based on the Pareto nondomi-
nation criterion for controlling code growth in genetic programming,”
Genetic Programming and Evolvable Machines, vol. 2, no. 1, pp. 61–73,
2001.

[18] M. T. Heath,Scientific Computing: An Introductory Survey. New York:
McGraw-Hill, 1997.

[19] C. A. C. Coello, “An updated survey of GA-based multiobjective
optimization techniques,”ACM Computing Surveys, vol. 32, no. 2, pp.
109–143, 2000.

[20] I. H. Witten and E. Frank,Data Mining: Practical Machine Learning
Tools, 2nd ed. Morgan Kaufmann, 2005.

[21] T. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,”Neural Computation, vol. 10, no. 7,
pp. 1895–1923, 1998.

[22] E. Alpaydin, “Combined 5× 2 cv F-test for comparing supervised
classification learning algorithms,”Neural Computation, vol. 11, no. 8,
pp. 1885–1892, 1999.

