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Abstract

The WS-BPEL language has recently become a de facto
standard for modeling Web-based business processes. One
of its essential features is the fully programmable compen-
sation mechanism. To understand it better, many recent
works have mainly focused on formal semantic models for
WS-BPEL. In this paper, we make one step forward by in-
vestigating the verification problem for business processes
written in BPEL-like languages. We propose a set of proof
rules in Hoare-logic style as an axiomatic verification sys-
tem for a BPEL-like core language containing key features
such as data states, fault and compensation handling. We
also propose a big-step operational semantics which incor-
porates all these key features. Our verification rules are
proven sound with respect to this underlying semantics. The
application of the verification rules is illustrated via the
proof search process for a nontrivial example.

1. Introduction

The Internet is now developing at a high speed supported
by the web technology. As a result, many web-based appli-
cations, such as Web services, begin to flourish and play
a more and more significant role in various application ar-
eas. Web services boost a new approach to the construction
of business processes where many basic functions are en-
capsulated and provided as individual services on the web,
which later may be composed to form complex services ac-
cording to diverse clients’ demands. To cater for the de-
scription of Web service composition, researchers and in-
dustrial practitioners have proposed several Web service or-
chestration languages such as XLANG [17], WSFL [11],
StAC [4], and WS-BPEL [2, 3].

Among these orchestration languages, WS-BPEL has
now become a de facto standard. One important feature
of WS-BPEL, as well as some other similar languages, is
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its mechanism for supporting long run transactions (LRTs).
In any single step of an LRT, a fault may occur and appro-
priate compensation actions may be required. To address
such demand, WS-BPEL provides a set of scope-based fault
handling and compensation mechanisms to deal with faults
and potential undoing of some already completed business
activities. The compensation mechanisms are fully pro-
grammable, and thus allow users to define any application-
specific compensation rules. Nevertheless, these mecha-
nisms, despite very flexible and powerful, also bring intri-
cacies into the WS-BPEL language specification. As a re-
sult, it becomes a challenging issue to formalize and reason
about WS-BPEL processes.

Many recent works focused mostly on the formal seman-
tics for WS-BPEL, e.g. [15, 14, 16, 10, 20]. These pioneer-
ing works are very important for reducing possible ambigu-
ity in the language specification and also for better under-
standing of the language. In this paper we will target at an
orthogonal but equally important problem, the partial cor-
rectness of WS-BPEL processes. To make the presentation
simple, we shall focus on a subset of WS-BPEL. However,
our core language will take into account most of the impor-
tant language features of WS-BPEL, including data state,
fault handling and compensation mechanism. We will de-
sign a concise yet novel operational semantics for our lan-
guage, and propose a Hoare logic style verification system
on top of it, which will be proven sound with respect to
the underlying semantics. Due to the complexity of web-
based business processes, the correctness of such programs
remains as a challenge. Our verification system for BPEL-
like language makes one step forward towards tackling this
challenging problem. To the best of our knowledge, this is
the first axiomatic verification system for a language with
data states, scope-based fault and compensation handling
mechanisms. The main contributions of this paper can be
summarized as follows:

e We propose a concise yet novel operational seman-
tics for a BPEL-like core language. Although there
are some semantic works with similar topics, our se-
mantics is interesting in that it integrates features like



scopes, data states, fault handling and compensation in
a very simple way.

e We design an assertion language for specifying certain
safety properties for BPEL-like processes, and also
propose a set of axioms and inference rules in Hoare
logic style to form an axiomatic verification system for
the language. The pre- and postconditions are formu-
las expressed in our assertion language.

e We state and prove the soundness of our axiomatic ver-
ification system with respect to the semantics. That is,
provable specifications are all semantically valid. A
nontrivial example is presented to illustrate the appli-
cation of the verification rules.

The remainder of this paper is organized as follows. Sec
2 introduces our language BPEL™ which is a core subset
of WS-BPEL. A new operational semantics for BPEL" is
then presented in Sec 3. Sec 4 is devoted to the Hoare logic
style verification system for BPEL*. Sec 5 deals with the
soundness of our verification system, while Sec 6 gives a
nontrivial example proof using our verification system. Re-
lated work and concluding remarks follow afterwards.

2. The BPEL" Language

To concentrate on the main aim of this study, we take
into account a core subset of the WS-BPEL language, called
BPEL", which comprises not only the important fault and
compensation handling mechanisms but also data states of
WS-BPEL processes.

The abstract syntax of BPEL* is given in Figure 1. Note
that a program written in BPEL™ is called a business process
(denoted as BP) which may contain an activity A and a fault
handler F. We may sometimes use the general term process
to refer to an activity A, a compensation handler C, or a fault
handler F.

BP = {A:F|[ (business process)

A = skip (do nothing) | x := e (assignment)
| rec ay (receive) | invazy (invoke)
| rep a x (reply) | throw (throw a fault)
| A; A (sequence) | A || A (flow)
|if bthen Aelse A (conditional)
|n:{A?C:F} (scope)

C,F == An(compensation) | ... (similarasA)

Figure 1. The Syntax of BPEL"

In Figure 1, x and y stand for variable names, e repre-
sents arithmetic expressions, b is for boolean expressions,
and n for scope names. A denotes a general activity, while
C and F are for compensation and fault handlers, respec-
tively. It is worth noting that the compensation activity n
can only appear in these two constructs. Note that in a scope

n:{A?7 C:F}, A is the normal activity, C is the compen-
sation handler, and F is the fault handler.

In BPEL*, we assume all names for variables defined
in a business process are distinct, so are the scope names.
This is just for simplicity and does not lose generality as
we can easily achieve this by a pre-processing step. Under
such assumptions, we can refer to a variable or a scope sim-
ply by its name, with no need of mentioning its enclosing
context. We also assume that the processes under consid-
eration have been statically checked to meet certain basic
well-formedness conditions. For instance, the compensa-
tion activity In will only occur in the immediate enclosing
scope of the scope n.

To focus more on the novel aspects of WS-BPEL, in-
cluding the fault and compensation handling, we restrict the
parallel composition (flow) construct so that links between
its components (i.e. additional control-flow restrictions) are
disallowed in BPEL*. We can do so because this issue is al-
most orthogonal to our focus in this paper and it has already
been well investigated by researchers, eg. [18, 19].

3. Dynamic Semantics

In this section, we propose a big-step operational seman-
tics for BPEL". The semantics not only serves as a runtime
model for the language, but also acts as a reference seman-
tics in the soundness proof for our axiomatic verification
system. In what follows, we will define the runtime states
used for the semantics and then depict the semantic rules.

3.1. Runtime States

The nontrivial business processes need often to support
long-running transactions (LRTs), where the exceptional
faults are unavoidable, and as a result the partially com-
pleted tasks may need to be revoked accordingly. This kind
of processes are hard to describe without language sup-
port. WS-BPEL deals with this necessity with its scope
and compensation mechanism, which can be invoked to re-
verse some partially completed transactions. Since a fault
may happen from time to time, the WS-BPEL specification
advocates to keep records of state snapshots for the suc-
cessfully completed scopes, as the associated compensation
handlers may refer to such completion states when the com-
pensation is invoked. Our semantics will record those suc-
cessfully completed scope snapshots in the runtime state,
similar to the way used in Qiu et al. [15] for recording com-
pensation closures. To facilitate the handling of faults, we
also instrument the runtime state with a boolean value to in-
dicate whether the current state is a normal state or a faulty



state. The formal notations we use are as follows:

f € Status =4 {fail,norm}

s € Val =g Var — Value
a, [9,..,0] € CPCtx =4 seq CPCl
9, (n,s,a) € CPCl =4 ScopeN x Val x CPCtx
o, (f,s,a) € B =4 Status x Val x CPCtx

In the semantic model, a runtime state o = (f, s, ) is com-
posed of three elements, where f indicates whether the cur-
rent state is normal (f = norm) or of a fault (f = fail), and
the s records current snapshot for the values of all variables
in the process. The third element « is the compensation
context used to record the state snapshots and relative com-
pensation information for successfully completed scopes.

When a compensation activity n runs, the code to be
executed (i.e. the compensation handler defined in scope
n) is statically determined. However, the behavior of the
compensation will depend on not only the scope snapshot
of n, but also the dynamic execution of the normal activ-
ity in scope n that yields the state snapshot. This is due
to the fact that (1) the current compensation may invoke
compensation handlers from the immediate sub-scopes of
n, so its behavior will depend on whether or not each of
the sub-scopes has completed successfully (thus the asso-
ciative handler has been installed) and (2) such informa-
tion is determined dynamically during the execution of the
normal activity of scope n. To record such information
along with the scope snapshot, we define the compensa-
tion context v as a (possibly empty) sequence of compen-
sation closures [01, 02, . . ., d,], whereby compensation clo-
sure §; = (n, s, ;) is a nested structure which records the
state snapshot s for scope n (i.e., the data state at the end of
the normal execution of scope n). The third element o is
the compensation context accumulated during the execution
of the normal activity of scope n. Itincludes all the compen-
sation closures for those normally completed immediately-
enclosed sub-scopes. When the compensation handler of n
is invoked, both the scope snapshot s and the enclosed con-
text a; are passed on.

We do not record the handlers in the context as such in-
formation can be statically determined for a given business
process. Instead, we assume the availability of a mapping
to fetch the corresponding handlers:

C : ScopeN — P

where ScopeN is the set of scope names. For a valid scope
name n € dom(C), C(n) € P is the compensation handler
defined in scope n.
We will make use of standard sequence operators given

below (where oy = [d1, .., 0] and ay = [01, .., 0L, ]):

60 o = [607 617 LR 6m]

hd(al) = (51

t|(a1) = [(52, ,6m]

a1 Qg = [(51, ey 6m; (51, oy 6;1,]

We define a membership relation as follows:
false if a=1]
dEa =4 { true if hd(a) =0
detl(a) else
(5¢O¢ =4f —|(6€a)
Based on it we can define the following similar relation:
nea =4 Is,0q ® (n,s,01) €
n¢a =4 ~(n€a)
where n is a scope name and « is a compensation context.
Informally, n€a indicates that the compensation handler for

the scope n has been installed (and hence n’s scope snap-
shot appears in «).

3.2. Operational Semantics

In this subsection, we present the semantic rules for the
processes in BPEL*. The big-step operational semantics for
BPEL” is defined by a set of rules of the form:

(A, o) ~ o'

where A is a process, while o and ¢’ denote the initial and
final states, respectively.

When a fault has occurred, the process to be executed
will do nothing but propagate the fault. The rule below de-
scribes this scenario:

o = (fail, s, @)
(A, o)~ 0

The following rules define the behavior of skip, assign-

ment, and throw activities from normal states:

(skip, (norm, s, a)) ~> (norm, s, )
(x :=e, (norm,s,a)) ~ (norm,s & {z—s(e)}, )
(throw, (norm,s, a)) ~ (fail, s, )

where s @ s’ is a state formed by s and s':

when z € dom s’
otherwise

e = {10

When synchronized communication inv a z y succeeds,
the received value is assigned to y; while failed communi-
cation also makes the process fail.

(invazy, (norm,s,a)) ~ (norm,s & {y—v},a)
(invazy, (norm,s, a)) ~ (fail, s, a)

where v is the value achieved through the communication.
The rules for the one-way communications rec a y and
rep a x are as follows:

(recay, (norm,s,a)) ~ (norm,s & {y—v}, )
(recay, (norm,s,a)) ~ (fail,s, a)

(repaz, (f,s,a)) ~ (f,s, )



Note that the one-way communications provide an invoca-
tion mechanism for external Web services. The rec a y is
used to retrieve parameters from other Web services. Its ef-
fect is to update variable y using the value received from the
external Web service. On the contrary, the rep a z replies to
other external Web services with the value of x. Thus its
effect is just like a skip to the current process.

Rules for sequence and conditional activities are routine:

<A17 (norm,s,a)) e (flasl,al)
<A27 (fl:s17a1)> ~r (fQ:s2’a2)
(AI;A27 (norm,s, Ol)> ~ (f2,S2,OéQ)

s(b) = true (A, (norm,s,a)) ~ (f,s1,01)
(if bthen A else A, (norm, s, a)) ~ (fi,s1,01)
s(b) = false (As, (norm,s,a)) ~ (fi,s1,01)
(if bthen A else A, (norm, s, a)) ~ (fi,s1,01)

The rule for the parallel composition is as follows:

(s1,52) = split(s, Var(Ay), Var(As))
(A1, (norm,s1,[])) ~ (fi, 51, 1)
<A27 (norm,sQ, [ ])> ~ (vasIQa a2)
=AM, s =51Usy o =interleave(ay, asz)~a
<A1 ||A27 (norm,s, a)> e (fl’slaal)

where for f; and f,, f; Af; is defined as

norm, if f; = norm and f;, = norm;
fail, otherwise.

Si Nfa =ar {

The initial sub-states s; and so are obtained from the overall
state s via a splitting operation whose definition is straight-
forward given that A; and A, do not share variables, i.e.,
Var(A1) N Var(Ay) = 0. The function interleave(ay, az)
returns a merged sequence of o1 and as by arbitrarily in-
terleaving elements of oy and ao.

The execution of a scope n : {A 7 C: F} may result in
two different situations: the execution of A may complete
successfully or raise a fault. For the former, the compen-
sation handler will be installed by adding the compensation
closure into the compensation context. For the latter, the
fault handler is invoked instead.

(4, (norm,s,[])) ~ (norm,s1, 1) " =s1]vn)

(n:{A?C:F}, (norm,s,a)) ~ (norm, sy, (n,s’, a1) - )

(A, (norm,s,[])) ~ (fail,s1, 1)
(F, (norm,si, 1)) ~ (fy, 82, as)
(n:{A?C:F}, (norm,s,a)) ~ (fy,s2,q2)

Here V' (n) denotes the set of local variables of scope n,
and s1 |y () takes the part of state local to n, which is the
snapshot of scope n when it completes execution.

Note that the scope is the only part in the model to deal
with faults. Once a fault is propagated from an activity A

to its enclosing scope, it will be caught by the relevant fault
handler F. If the fault handler of the immediately enclosing
scope of A throws the fault again rather than completes the
handling, the fault continues its propagation to the next fault
handler, or meets the end of the process. This is elaborated
in the rules defined above.

Next comes the definition of compensation. Accord-
ing to the WS-BPEL Specification [2], our compensation
looks for the installed compensation closure of correspond-
ing scope, removes it from the compensation context and
runs its handler. If the closure is not installed, the invo-
cation behaves like a skip. Since we have actually accu-
mulated the compensation contexts, it turns out simple to
execute the handler as below:

né¢ o
(n, (norm,s,a)) ~ (norm, s, a)

o = (norm, s, a;~[(n,s', B)]~as)
<C(n)7 (norm,s@s’,ﬂ)) ~ (flaslafy)
(In, o) ~ (fi,s1,a1~a2)

Note that n ¢ «, defined in last section, means that the com-
pensation handler for n is not installed (hence the closure
for n does not appear in ).

The rules for the whole business process are as follows:

(A, o) ~ (norm, sy, 1)
({lA:F, o)~ (norm,si, )

(A, o) ~ (fail,s1,a1) (F, (norm,si,aq)) ~ (fy, 52, a2)

{A:F, o)~ (f)52,00)

There is no top-level compensation handler in the business
process because no one could invoke it if there were any.

4. An Axiomatic System for BPEL"

As a first step to support mechanized verification for
BPEL* processes, we propose in this section a set of in-
ference rules in the style of a Floyd-Hoare logic.

4.1. Assertion Language

To specify properties for BPEL* processes, apart from
the usual logical operations, we shall make use of some
logical constructs that are specific for compensation related
reasoning. The syntax for the assertion language Assn is:

P € Assn

P ::= true | false | normal | z&e | ~P | P, | P|v |
Pin | P_y | Pin| Pin | P|P| PxP | PxP |
—P| PAP | PVP | P=P

Note that z, e and n denote a variable name, an expression
and a scope name, respectively. The & denotes a relational
operator in {=, <,>, <, >}.



In the axiomatic system, each assertion is viewed as a
set of states that satisfy the assertion. The semantics for all
assertions are given in Figure 2.

[true] =% [false] = 0

[z]le = 0.2(x) [normal] = {0 | 0.1 =norm}
[e]lc = o0.2(e) the evaluation result of e under state o
[zee] = {o][z]oe[e]o}, where & has the

semantics of the relational operator
[ {(-0.1,0.2,0.3) | o € [P]}
[ {(0.1,0.2,[]) | 0 € P}
[Plv] = {(0.1,02]v,0.3) | 0€[P]}
|[ {(0'1, 0-27 (na U'2J V(n)» Ug)) | o€ |[P]|}
[ {(0.1,0.2,a) |oc € [PJNa =
before(n, 0.3)~after(n,c.3)}

[Pin] = {o|o€[P] An€o.3}
[Pen] = {firstof(n,o) | o€[P] A n€c.3}
[PIO] = {(c.1A0'1,0.2U0c".2,a)|c€[P]A

o'€[Q] N a=interleave(c.3,0'.3)}
P*Q]| = {(0'1.1,0'1.2,01.3f\0'2.3) | O'1€|[P]| A 02€|[Q]|}
P+xQ] = {(01.1,01.2,02.3) | o1 €[P] A 02€[0]}
2\ [P] [PAQ] = [PIN]Q]
o] = [pPlulal [P=0] = [-PV Q]

Figure 2. Semantics for Assertions

:T::
<=
I

To facilitate the description, we use here (and below) o.i
to denote the i-th element of tuple o. For instance, given
o= (f,s,a), we will have 0.1 =f, 0.2 =5 and 0.3 = a.
In the definition, n€c.3, defined in last section, denotes
that the compensation handler for scope n is installed. We
also use three operations to extract information w.r.t. scope
n from compensation context «: Operation firstof(n, o)
extracts from a = 0.3 the first state snapshot for n, and
merges it with 0.2:

firstof(n, o) =4 (norm,0.2 & s, 3)
if0.3 =ai1~[(n,s,B)]~axs A n ¢ oy

When n ¢ 0.3, firstof(n, o) is undefined. before(n, c) re-
turns the largest prefix of @ which contains no closure for
scope n, and after(n, ) returns the sub-sequence of « after
the first closure for scope n, or the empty sequence when
no such closure in . We omit their formal definitions here.

Among the semantics for the assertions, some relating to
flow, scope, and compensation are worth illustration.

The assertions P|y and P|Q are used in verification of
flow constructs. In the first one, V' is a set of variables and
P|y restricts the domain of variable mapping ¢.2 (where
o € [P]) to V. For example, (z>0Ay<0)]s,y = 2>0.
The second one, P|Q, enumerates all possible interleaving
cases of compensation contexts of states in [P] and [Q], re-
spectively.

Assertion P, extracts each state o from set [P], sets its
compensation context to the closure (n, 0.2]v- (), 0.3), and
forms a new set with all of these states.

As its form suggests, P_,, performs an “elimination” of
scope name n “from” the elements in [P]. It extracts first
the compensation context o from each state of [P], then
finds the first compensation closure with name n, and re-
moves it to form a new context . If there is no such closure
found, then @ will be the original context. The semantics of
P_,, is the set of states with these newly formed «.

What P, does is, informally, to “restrict” [P] to the set
of states in which the compensation context contains a clo-
sure with name n, P,, “locates” the first occurrence of the
closure with name n in each state in [P], and forms a set of
states from these closures.

PxQ and P+Q are for compensation contexts concatena-
tion and replacement between assertions, respectively.

An assertion is modeled as a set containing all the states
which satisfy it, thus we define,

o ':P:dfO' S |[P]|

A specification in our system takes the ordinary form
{P} A {Q}, where P,Q € Assn and A € IP is an activity.

One thing notable is that a business process may com-
municate with external processes via activities inv, rec and
rep. As a result, whether a business process behaves in a
desired way might depend on the external processes being
interacted with. Hence, a business process is more like an
open system which makes the verification problem rather
challenging. Our proposal is to verify each business pro-
cess separately according to certain dependency order in the
first step. We assume that specifications for communication
activities are available in the verification of one business
process. When all relevant business processes have been
verified separately, we can then check the consistency of all
the assumptions made on communication activities. In this
paper, we focus only on the verification of individual busi-
ness processes.

For a given business process, we assume that a set of
specifications {P} ¢ {Q} are known, where each ¢ is of the
form inv a x y, rec a y, or rep a x, representing a commu-
nication that might be executed by the process with the en-
vironment. We will use 7" to denote a set of such specifica-
tions and pass 7' as a context to the verification rules. For
a specification {P} ¢ {Q} € T, the precondition P acts as
an assertion imposed on the current process to ensure that
information sent out via c satisfies the requirement of the
environment, while Q acts as an assumption made on the
environment: the result sent back by the environment would
satisfy Q.

The proof rules in our verification system are of the form
C,TF {P} A {Q}, where C, defined earlier, is the mapping
from scope names to associated compensation handlers, T
is the set of specifications defined above. We shall now
present the syntax-directed proof rules in our logic.



4.2. Consequence Rule

The only structural rule in our axiomatic system is the
consequence rule for precondition weakening and postcon-
dition strengthening:

C.TH{PYA{Q) Q=0
C.T+ {PYA{Q}

P=P

(conseq)

4.3. BPEL*-specific Rules

The rules for skip and assignment are simple:

C, T+ {P} skip {P} (skip)
C,TF {normal A Ple/z]} x := e {P} (assign)

The rule for throw is clear too:
C,TF {P} throw {-normal A (P \V ~P)} (throw)

Here we do not need to care whether the pre-condition is
normal, because the type of fault is not in the range of our
current consideration.

For the basic communication activities, the rules need to
use their assumed specifications in 7. For the convenience
of description, we assume the variable names in the pre-
and postconditions are correspondent with those used in the
invocations. Meanwhile, as is stated in former section, in
the verification of the process, a triple {P} A {Q} in T can
also be used to verify a triple whose pre- and postcondition
have the same denotation of compensation contexts, such
as {PxR} A {OxR}. And in this situation it must be guaran-
teed that the denotations of compensation contexts in both
pre- and postcondition are the same.

If the environment can be modeled as a subset of normal,
then rec sets the variable’s value to what the specification
denotes. Or it just propagates the fault.

{normal} recay {Q} € T —normal = Q
C,TF {true} recay {0}

(rec)

Because of its similar behavior as skip, rep’s rule is also the
same.
C,TF {P}repax {P}(rep)

The semantics of two-way invocation is simple:
{P}invazy {Q}eT
C,TH{P}invazy {0}

Note that these rules depend on 7" — the set of specifications
assumed on communication activities.
The rules for control structures are as follows.

(inv)

—normal A P = Q
C,T+ {normalAP}A{R} C,T+ {R}B{0}
C, T+ {P}A; B{Q}

(seq)

-normal AP=Q C,TF {normal APAb} A {Q}
C,TF {normal A P A —b} B {Q}

C,TF {P}if bthen A else B {Q}

where b is an boolean expression of the form x&e.
Since we assume that the different parallel flows share
no variables, the rule for the parallel structures is given as

(i)

—normal A P = (Q,|05)*P
C,THAPv,} A{0Q:} C.TH{Pc|v,} B{Q:}
C,TH{P} A||B{(Q:1Q2)*P}

where V7 and V5 are disjoint variable sets and A and B only
modify variables in V; and V5, respectively.

Now we present the two most significant rules, which
reveal the essential features of our language. The rule for
scopes is as follows:

(flow)

—normal AP = Q
C,TF {normal A P.} A {R}
(normal A R) 1 nxP = Q
C,T+ {~(—normal AR)} F {Q}

C,TH{P}n:{A?C:F} {0}

(scope)

Note that the rule (scope) captures two cases. One stands
for the scenario where a fault occurs in A. In that case the
control transfers to the fault handler, and the compensation
handler for scope n is not installed. The other is for the nor-
mal completion of A and the concatenation of this scope’s
compensation context to the process state.

Then the most intricate rule in our system, the named
compensation, comes as follows:

—normal AP =Q -P,AP=Q

C,TF{P} In {0}

In this rule, the behavior of a named compensation is de-
picted with the relevant compensation handler. If the pre-
condition does not entail a scope name n, the post-condition
must be automatically satisfied. Otherwise, the snapshots’
set (as the pre-condition for the compensation handler) is
extracted and the post-condition is a combination of the
fault and variable mapping states after the handler’s exe-
cution, and the compensation context with the elimination
of the first compensation closure named 7.
At last is the rule for the whole business process:

C,TH{P}A{R} (normalAR)=Q
C, T+ {~(—normal AR)} F {0}
C,TH{P{A:F[ {0}

(compensate)

(bp)

5. Soundness

This section confirms the soundness of our verification
system. We will first give two definitions, then formalize
the soundness theorem.



Definition 1 (Validity). We denote that a specification
{P} A {Q} is valid under C,T, i.e. C,T |= {P}A {0}, if
forallo € ¥, if o = P and (A, o) ~ o' for some ¢, then

o' E=Q.

Definition 2 (Soundness). Our verification system for
BPEL* is sound if all provable specifications are indeed
valid, that is, if C, T+ {P} A {Q}, then C, T |= {P} A {Q}.

The theorem for soundness can be stated as below:

Theorem 1. The verification system for BPEL*, given in
the last section, is sound.

As is indicated by Definition 2 above, we need to
show that, for any P,A,Q, if C,T+ {P} A {Q}, then
C,TE {P} A{Q}. The proof can be accomplished by
structural induction over A. Due to space limitation, we
omit the proof here. A detailed proof can be found in our
companion technical report [12].

6. Example

In this section a purchase example, which is a modified
version of that in the book [6], is exhibited to illustrate the
verification of a real business process.

The general flow of the example is as follows. First
the business process receives the price for each single item
(stored in variable p) and the class of the customer from
other service with communication (into variable y). Then it
decides the discount ratio according to the customer class,
and receives the number of items to store in ¢. After hav-
ing all the items purchased, it computes the shipping fare
according to the value of £. At last the real average price
(including shipping cost) for each item is calculated and
replied, which may fail and hence call for compensation.

This business process, denoted as BP, is written in
BPEL" below.

{| n1:{recap; q:=p?p:=—p:skip};

rec b y;
if y =1 then

Ny {p:=px0.57p:=px2:skip}
else

ns: {p:=px0.87p:=px1.25:skip};
ng:{recct; p:=pxt?p:=p/t:skip};
if £ > 500 then

ns : {p:=p+5007p:=p—>500:skip}
else

ng:{p:=p+t?p:=p—t:skip};
if t > 0 then p := p/t;rep d p else throw

Ine; Tns; Tng; Ing; Ine; Iny |}
For this business process we propose a rather compli-
cated specification to verify:

{ normal } BP { p=q/2+500/tV p=0.8¢+500/t vV
p=q/2+1V p=08¢+1Vp=—q}

Here we give an outline of the verification for BP with
the backwards searching strategy. First, for the whole busi-
ness process, we use the rule of (bp) to get three subgoals
GG1, G5, and (3 for further verification:

Gy : C, T+ {normal} A {R}

G2 : (normal AR) = Q

Gs: C, T+ {~(-normal AR)} F {0}
where A stands for the codes before the last *:” in the pro-
cess, Q is the postcondition we want to verify, F’ represents
the six compensations (1ng; 1ns;. . .; 1ny), and the gener-
ated assertion R should be no stronger than the strongest
postcondition for A given the precondition normal, and no
weaker than (part of) the weakest precondition for F given
the postcondition Q, and should establish Q given normal.
Due to space limitation, the concrete representation of R is
omitted here.

To discharge G, by the (seq) rule, it is sufficient to dis-
charge six smaller subgoals (given in the report), which are
then proved by several rules including (scope), (rec), (as-
sign) and (if). the implication in G is quite straightforward
to prove by logic, resulting in part of the postcondition (p=
q/24500/t Vv p=0.8¢+500/t V p=q/2+1 V p=0.8¢+1).
The verification of (3 mainly utilizes the (compensate)
rule to “consume” the compensation segments within R to
achieve the last disjunctive part of postcondition (p = —¢q).

A detailed proof for this example can be found in the
technical report [12] in a strict backward manner of verifi-
cation.

7. Related Work

The concept of compensation dates back to Sagas [8] and
nested transactions [13]. There are many attempts to for-
malize workflow languages [1, 9, 4], and still many of them
are about compensation.

On the semantics of such languages there are many in-
vestigations. Qiu et al. [15] provided a formal operational
semantics to a simplified version of WS-BPEL to specify
the execution path of a process with possible compensation
behavior. Pu et al. [14] also presented an abridged edition
of WS-BPEL, discussed its operational semantics, and de-
fined the equivalence between two processes with its pro-
posed n-bi-simulation. He et al. [10] also focused on the
process equivalence from the perspective of an observation-
oriented model and its algebraic laws. Zhu et al. [20] made
a link among different semantics (operational, denotational
and algebraic) of the WS-BPEL language with the approach
of the unifying theories of programming. These works can
also be reference semantics for our verification system.

Apart from the work on semantic models, researchers
have also tried to model and verify the WS-BPEL processes.



Duan et al. [5] introduced a logic model to formally spec-
ify the semantics of workflow and its composite tasks de-
scribed as WS-BPEL abstract processes, and made a de-
duction of the weakest pre-condition for workflow. Fu et
al. [7] showed some techniques to analyze and verify the
WS-BPEL specified interactions among Web services with
SPIN. Hamadi and Benatallah [9] transformed the formal
semantics of the WS-BPEL composition operators to an ex-
pression of Petri nets, and hence allowed the verification of
properties and the detection of inconsistencies both within
and between services. None of these works have attempted
in verifying WS-BPEL-like fault handling and compensa-
tion as we have done in this paper.

8. Conclusion

In this paper we proposed an axiomatic system to verify
the correctness of BPEL* processes. We have concentrated
on a core subset of WS-BPEL, namely, BPEL*, presented a
complete state model including the fault state and variables
for it, and created its operational semantics with state tran-
sition rules. Based on this, the assertions and Hoare triples
and their semantics are set up, and the verification rules for
BPEL* are formalized as well. We have also proven the
soundness of this system by structural induction, and pro-
vided an example as an illustration. Possible future works
include (1) extending the logic to cover more language fea-
tures of WS-BPEL, and (2) mechanizing the verification
system for practical use.
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