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Efficient Determination of Four-Point Form-Closure
Optimal Constraints of Polygonal Objects

Jordi Cornellà and Raúl Suárez, Member, IEEE

Abstract—This paper proposes a new and more efficient solution
to the problem of determining optimal form-closure constraints
of polygonal objects using four contacts. New grasp parameters
are determined based only on the directions of the applied forces,
which are then used to determine the optimal grasp. Given a set of
contact edges, using an analytical procedure a solution that is either
the optimal one or is very close to it is obtained (only in this second
case an iterative procedure is needed to find a root of a nonlinear
equation). This procedure is used for an efficient determination of
the optimal grasp on the whole object. The algorithms have been
implemented and numerical examples are shown.

Note to Practitioners—This paper presents an algorithm that
improves previous approaches in terms of efficiency in the determi-
nation of the optimal object constraint maximizing the minimum
wrench that the object can support in any direction. The problem
can always be solved using numerical optimization techniques but
when time is relevant an efficient algorithm becomes of interest.
Practical applications include optimal determination of fixtures
and object grasps.

Index Terms—Fixture design, form closure, grasp synthesis, in-
trinsic grasp parameters, optimal constraint.

I. INTRODUCTION

T HE obtention of grasps or fixtures capable of ensuring the
immobility of the object despite external disturbances has

been a topic of extensive study and has been characterized by
one of the following properties: form-closure (the position of
the fingers ensures the object immobility) or force-closure (the
forces applied by the fingers ensure the object immobility) [1].
Relevant works on this topic have determined necessary and suf-
ficient conditions for the existence of a form-closure grasp [2]:
the necessary conditions that four frictionless contacts and two
frictional contacts must satisfy to obtain force-closure grasps of
2-D polygonal objects [3], a sufficient condition for force-clo-
sure grasps with three fingers on 2-D polygonal objects [4] and
for four finger grasps on 3-D polyhedral objects [5], and nec-
essary and sufficient conditions for three finger force-closure
grasps of 2-D and 3-D objects [6]. Considering any number
of contact points, a qualitative test was presented to determine
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whether they allow a force-closure grasp of a 3-D object [7] and
an algorithm to determine the set of all the force-closure grasps
of polygonal objects [8], [9].

Finding the optimal force/form-closure grasp was the next
problem in grasp and fixture planning and several criteria were
proposed for the grasp quality evaluation [10]. Some criteria
consider only geometrical aspects of the grasp, for instance
the minimization of the distance between the object’s center
of mass and the geometric center of the grasping points [4],
used in several grasp synthesis algorithms (e.g., [11]). Other
criteria determine the optimal object constraint considering
constraints on the fingers forces [12]; the most used criterion in
this line, known as the criterion of the maximum ball, evaluates
the maximum wrench that the grasp can safely resist in any
direction considering limited finger forces [13], [14]. This cri-
terion was used to evaluate force-closure grasps generated with
different strategies [15]–[17], but although these approaches
provide good grasps they do not generate the optimum. The
synthesis of optimal grasps considering this criterion and with
a low computational cost is a problem that remains unsolved.
The main drawback of the general approaches developed until
now is their computational cost, thus they must be simplified
to be applied in systems with time constraints [18]. Variations
of this criterion were also used to obtain general procedures,
for instance using linear programming [19], or using a dif-
ferent norm to compute the module of the wrenches [20] even
when the convergence to the optimal grasp is not guaranteed.
Specifically, in the field of fixture design, it is common to use
heuristics and exhaustive search procedures to obtain the final
fixture design [21], [22]. Other criteria decouple forces and
torques [23] or define an invariant metric [24]. A comparison of
several criteria was done in [25]. Good overviews of the related
problems in this field were done by Shimoga [26] and Bicchi
[27].

After this introduction, Section II details the contributions
and scope of this paper and Section III describes the constraint
on the finger forces and the grasp quality measure used in this
paper. Section IV presents the algorithm to obtain the optimal
grasp on the whole object and Section V presents an efficient
procedure to obtain the optimal grasp on a given set of edges,
which is the main contribution of this paper. Numerical ex-
amples are included in Section VI. Section VII presents some
concluding remarks and future research lines. There is also an
Appendix describing a geometrical substitution to reduce the
computational cost of the proposed approach.

II. CONTRIBUTIONS OF THIS PAPER

This paper presents a new and efficient procedure to deter-
mine the optimal form-closure grasp (hereafter FC grasp) of 2-D
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polygonal objects using four frictionless contacts and the quality
measure of the maximum ball (four is the minimum number
of frictionless contacts that allow an FC grasp [28], and it is
a conservative solution with respect to friction, whose existence
increases the robustness of the grasp). The obtention of a pro-
cedure to solve this specific problem with a reasonable com-
putational cost was presented as an open problem in the litera-
ture [12] and, to our knowledge, it has not been solved yet. The
approach developed here follows a previous work [29], where
the optimal position of a fourth finger given the positions of the
other three was solved in a fully analytical way. In this paper,
the determination of the optimal position of the four fingers is
deeply analyzed and a procedure to determine the optimal grasp
without involving hard iterative searches is presented. Specifi-
cally, the main contributions of this paper are as follows.

1) Grasp analysis: Determination of a new set of intrinsic
grasp parameters function of the object shape, which
are used to identify different cases for the optimal grasp
determination.

2) Grasp synthesis: Development of an efficient procedure to
determine the optimal grasp in each case considering one
of the most popular quality measures. The procedure ana-
lytically obtains a solution that is either the optimal one or
is very close to it. In this second case, an iterative proce-
dure is needed to find a root of a nonlinear equation.

The authors are not aware of any previous work that ana-
lytically determines the optimal grasp of 2-D objects using the
quality measure of the maximum ball. The approach presented
by [30] identified equivalent cases for the optimal grasp al-
though not all of them were solved. Here, a faster identification
of each case is presented as well as the methodology to solve all
of them. The proposed approach to determine FC grasps with
four frictionless contacts is of practical interest in the design of
fixtures for 2-D polygonal objects and some particular cases of
3-D polyhedral objects [31]–[33].

In this paper, it is assumed that the contacts between the ob-
ject and the fingertips are punctual and that the forces applied by
the fingers act only against the object boundary (positivity con-
straint). The vertices of the object are not considered as possible
contact points even when concave vertices may be actually con-
sidered for grasping purpose. There is no constraint regarding
the number of fingers per edge, thus, in this approach, it is pos-
sible to consider two fingers on the same edge (for polygonal
objects a minimum of three edges must be contacted to allow
an FC grasp).

III. GRASP QUALITY MEASURE
A. Constraint on Finger Forces

Let be a contact point on the object boundary described
with respect to the object center of mass, and let , with

and , be the force exerted by the finger at . In
the absence of friction, , where indicates
the inward direction normal to the contact edge (Fig. 1). The
force exerted by each finger produces a torque with respect to
the object center of mass , and the components
of and form the wrench vector , where

is the constant that adjusts the metric of the wrench space.
The proposed approach is independent of , thus, for simplicity,
from now on it is considered and therefore it is removed
from the equations.

Fig. 1. Force ��� applied by finger � at contact point ��� .

The forces applied by the fingers can be subject to different
constraints [12]). Here, it is considered that the total force ex-
erted by the fingers is limited to (for instance, due to a
maximum available power for all the finger actuators); then, the
resultant force on the object is

with (1)

Geometrically, this implies that lies inside the polygon
defined in the force space as [Fig. 2(a)]

Convex Hull with (2)

Analogously, the resultant wrench on the object lies inside the
polyhedron defined in the wrench space as [Fig. 2(b)]

Convex Hull for (3)

In an FC grasp, and must contain the origin of the force
and wrench space, respectively [2].

In the rest of this paper, for simplicity and without loss of
generality, we consider and therefore will refer
always to the maximum (unitary) possible applied force.

B. Quality Measure Definition

The quality of an FC grasp is given by the maximum
wrench that the finger forces can generate in any direction of
the wrench space [13], i.e.,

(4)

Geometrically, is the radius of the maximum ball centered at
the origin of the wrench space and fully contained inside .
Let be the distance from the origin of the wrench space to
the plane defined by and (the wrenches produced by
fingers and ). Then, can be expressed as

(5)

The same concept can be applied to define a quality measure
considering only the force space [23] as

(6)
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Fig. 2. Constraint and quality measure on: (a) force space (polygon � and
circumference of radius� ) and (b) wrench space (polyhedron � and sphere
of radius �).

Fig. 2 shows the geometrical interpretation of the constraints
and and the quality measures and , respectively.

Note that is the projection of on the force space and it is
not possible to obtain a sphere fully contained in with radius
larger than . Therefore, is an upper bound for .

IV. OPTIMAL GRASP OVER WHOLE OBJECT

This section presents the procedure to obtain the optimal
grasp over the whole object. The following terms will be used.

Definition 1: The edge-optimal grasp is the set of four
contact points that generates the optimal grasp on a given set of
three or four contact edges.

Definition 2: The object-optimal grasp is the set of four
contact points that generates the optimal grasp over the whole
object (i.e., is the best ).

Given a combination of three or four edges for the finger con-
tacts, the direction , of the force applied by each
finger, is known, and from them and then

are directly obtained. Therefore, can be easily computed
from (6) once the contact edge of each finger is given.

The object-optimal grasp over the whole object is ob-
tained with the following algorithm, which uses of a set of

contact edges as an upper bound for the quality of any grasp
produced on those edges.

Algorithm 1(Computation of )

Let be the set of possible different combinations of three
and four edges:

1) Initialize
2) Determine the subset of with the combinations of

edges that satisfy .
3) Compute for each combination of edges in .
4) Order from better to worse .
5) For each combination of edges in and following the

order established in step 3, do:
5.1) Determine and its quality .
5.2) If then and .
5.3) If is greater that the value of of the next
combination of edges then exit the loop.

6) Return and its quality .

The determination of in step 5.1 is the critical operation
in terms of computational cost. The rest of this paper deals with
an efficient procedure to solve this problem, which is the key
contribution of this paper.

V. OPTIMAL GRASP OVER A SET OF CONTACT EDGES

Given the set of three or four contact edges, the direction
and, therefore, the component of each wrench ,
is known; then, determining is equivalent to determine the
values of that maximize (refer again to
Fig. 2). Since is known, the value of determines the po-
sition of the contact point on the corresponding edge; for this
reason, from now on we will frequently refer to the problem of
finding the optimal contact points as the problem of finding
the optimal values of .

A. Ranges of Torque That Allow Form-Closure Grasp

Based on the univocal relation between the contact point
and the torque , the following concepts are defined.

Definition 3: The real range of is the set of values of
produced by the contact force applied at any point on

the contact edge , i.e., .
Definition 4: The directional range of is the set of

values of produced by the contact force at any point on
the supporting line of the contact edge , that allows an FC
grasp given any other three wrenches and applied on
the object, i.e.,

and

Note that may include values of that are not physi-
cally possible due to the actual finite length of the edge .
Then, four contact points allow an FC grasp
if . Fig. 3 shows an example of an FC grasp and
the directional ranges for each contact.

is defined for three other fixed wrenches, thus it is a con-
tinuous set bounded by values of that produce a grasp
with ; geometrically, implies that the origin of the
wrench space belongs to a face of whose vertices are and
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Fig. 3. FC grasp and directional ranges � .

two other wrenches and , i.e.,
with and . Solving
this equation for and expanding its components results in the
following:

(7)

(8)

(9)

where and , but
and cannot be simultaneously null because

and cannot be simultaneously null.
Given two known wrenches and , the corresponding

extreme of can be determined as follows.
1) Solving and from (7) and (8) is

(10)

2) If and , then the resulting from
(9) is an extreme of that produces (if either

or , the resulting from (10) makes
that the plane defined by and contains the origin,
but with the origin outside the face of ).

The exact determination of the extremes of is only pos-
sible when the other three applied wrenches are known (i.e.,
the positions of the other three contact points are given), be-
cause and are necessary in (9), but knowing whether an
extreme exists or not can be determined by knowing how many
pairs and [from (10)] have nonpositive values for

, and this depends only on the directions of
the applied forces. According to the number of existing finite
extremes for a directional range it is classified as follows.

1) Limited: and are two finite ex-
tremes where (e.g., and in Fig. 3).

2) Infinite: or are the
unique finite extremes where while the quality for

is a finite value (e.g., and in Fig. 3).
( is the distance from the origin of the force space to the
segment ).

Given the contact edges, the directions of
the applied forces are known, and analyzing the combinations

Fig. 4. Examples of determination of types of directional ranges from applied
forces. (a) General case:� and� are infinite and� and� are limited.
(b) General case (with two fingers on the same edge): � and � are infinite
and � and � are limited. (c) Particular case (with two opposite forces):
� is limited and � �� � and � are infinite. (d) Particular case (with
two pairs of opposite forces): all directional ranges are infinite.

of signs in (10) for the possible relative directions of forces the
following cases were identified [34].

1) General case: If the angles between the applied forces are
different from , there are two infinite directional ranges
corresponding to the torques generated by the two forces
lying between the negated of the other two [Fig. 4(a) and
(b)].

2) Particular cases: If the angle between two forces is , there
are three infinite directional ranges corresponding to the
torques generated by the other two forces and the force that
lies between them [Fig. 4(c)], and if the angles between two
pairs of forces are , the four directional ranges are infinite
[Fig. 4(d)].

Then, in an FC grasp there always exist two wrenches whose
force components define two consecutive vertices of and
whose torque components have infinite directional ranges.

Let and be two consecutive vertices of and
be torques with infinite directional ranges, and, considering the
general case, let be one of the two limited
directional ranges, i.e., . Substituting and

by the expressions derived from (9), we obtain (note that
the subscripts and could be swapped)

(11)

and solving and from (11)

(12)

(13)

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on March 26,2010 at 13:50:22 EDT from IEEE Xplore.  Restrictions apply. 



CORNELLÀ AND SUÁREZ: EFFICIENT DETERMINATION OF FOUR-POINT FORM-CLOSURE OPTIMAL CONSTRAINTS OF POLYGONAL OBJECTS 125

Therefore, has an upper bound while has a bottom bound,
implying that and (or vice
versa if the subscripts and were swapped).

The two particular cases are limits of the general case. Adding
arbitrarily small to the direction of one of the aligned forces,

the particular cases are transformed into the general case, and
the same result is obtained when .

B. Optimal Grasp Cases

Jia [30] established a relation between the number of faces
of at a distance of the origin and the number of contact
points lying on an extreme of an edge, obtaining the following.

Case 1: If is the distance to one face of , then the four
contact points lie on the extremes of the edges.
Case 2: If is the distance to two faces of , then at least
two contact points lie on the extremes of the edges.
Case 3: If is the distance to three faces of , then at
least one contact point lies on an extreme of the edge.
Case 4: If is the distance to the four faces of , then
there may be no contact point lying on an extreme of the
edge.

This determines the number of contact points that lie on an
extreme of an edge in the optimal grasp; nevertheless, given a set
of contact edges, the approach does not determine which cases
can actually exist and which contact points lie on extremes of
the edges. Therefore, all the possible combinations have to be
checked. Moreover, only the first and second cases were solved.

The approach presented here completely solves this problem
and identifies (with reduced computation) which cases are pos-
sible and which contact points lie on extremes of the edges. For
this purpose, the following concepts are defined, based only on
the directions of the given contact edges.

Definition 5: The internal bounds, and , of an FC
grasp are the distances from the origin of the force space to each
one of the segments determined by two nonconsecutive vertices
of (e.g., and in Fig. 5).

Definition 6: The directional-optimal grasp is the set of
four points that generates the optimal grasp on the supporting
lines of the given grasping edges (i.e., the lengths of the edges
are not considered and only their directions are relevant).

Note that the points that determine may not lie on the
actual object boundary, thus could actually be unreachable.

Consider now the following propositions whose detailed
proofs can be found in [34].

Proposition 1: Let and be three known wrenches
(i.e., three wrenches produced at three known contact points on
the object) and let be a wrench whose torque component
is unknown (i.e., the contact edge is known but the contact point
is unknown). The optimal value that produces the optimal
grasp without considering the real range can be analytically
determined knowing the upper bound , the internal bounds

, and , and the type of the directional range , ac-
cording to the following cases.

1) If is infinite and , then ac-
cording to .

2) Else (i.e., is limited or ):
a) If , then is the solution of

(14)

Fig. 5. Examples of internal bounds and of three cases in determination of
directional-optimal grasp of Proposition 2: (a) � � � and � � � ;
(b) � � � and � � � ; and (c) � � � and � � � .

where and are the distances from the
origin of the wrench space to the faces of defined
by and , such that the
triangles defined by and
intersect with the circumference of radius in the
force space.

b) Else (i.e., ) is one of the solutions of

(15)

(16)

(17)

where and are the distances from the
origin of the wrench space to the faces of defined
by and
(i.e., the three faces of that contain ).

This proposition refines the results presented in [29] and, in
order to obtain , it is applied considering all the possible re-
lations between the upper bound, the internal bounds, and the
types of directional ranges, obtaining the following result.

Proposition 2: Let and be the wrenches whose force
components determine the upper bound , and let and
be the other two wrenches. The directional-optimal grasp,
can be determined according to the values of and the internal
bounds and as follows:

1) If and , then
and are determined from

(18)

subject to (19)
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2) If and , then
and are determined from

(20)

subject to (21)

3) If and , then and are
determined from

(22)

subject to (23)

Fig. 5 shows examples of the force directions that produce
each case in Proposition 2.

Note that has always at least one torque tending to infi-
nite (since the optimization problem is unbounded, it also hap-
pens when and , but in this case it is
not possible to determine which one tends to infinite). Then, in
order to obtain the reachable optimal grasp, some optimal con-
tact points lie on extremes of the edges, according to the fol-
lowing proposition.

Proposition 3: If , then the optimal reachable
torque is the extreme of closest to .

From Propositions 2 and 3, the use of the upper bound and the
internal bounds (parameters that depend only on the directions
of the applied forces) allows us an easy identification of the
optimal contact points that for sure lie on the extremes of the
edges and of the faces of at a distance from the origin in
the optimal case. Then, the cases presented by [30] are easily
identified.

Since the real range of all the contact points has not been con-
sidered yet, the current optimal grasp may actually be unreach-
able; in this case, the reachable optimal solution will have ad-
ditional contact points lying on edge extremes and the possible
combinations of edge extremes for this contact points must be
considered in the search of .

C. Computation of Edge-Optimal Grasp

In the wrench space, determining is equivalent to deter-
mining four reachable wrenches
(i.e., with ) that fix the vertices of the polyhedron
to contain the largest possible sphere centered at the origin.

From Propositions 2 and 3, the optimal positions of some
points lie on extremes of the edges while the optimal positions
of the others are the solution of a optimization problem that can
be expressed in a generic form as

(24)

subject to (25)

where includes constraints depending on the
considered optimization problem (note that the number of un-
known torques is always ).

Since the constraints of the optimization problem defined by
(24) and (25) are equalities, this problem can be translated into
a system of equations using the Lagrange theorem [35]. Letting

be the Lagrange multipliers vector, the solu-
tion of the optimization problem can be determined by solving
the following system of equations:

(26)

(27)

where is the gradient operator. Since there are constraints
and unknown torques, (26) and (27) represent a system of

equations with unknowns (including the torques
and the Lagrange multipliers).

Equation (26) represents linear equations with respect
to the Lagrange multipliers. Since the determination of the La-
grange multipliers is not necessary, an evaluation function
can be obtained eliminating them from (26). For instance, for
the optimization problem described by (18) and (19) with two
unknown torques, , is

(28)

Equation (27) represents constraints (nonlinear equations)
with respect to unknown torques. Analytically, it is
possible to solve a maximum of two constraints with two
unknowns. Considering this fact and the evaluation function

, the following algorithm allows to efficiently determine the
edge-optimal grasp on a given set of edges.

Algorithm 2 (Computation of )

Given a set of contact edges, is determined as:
1) Determine and .
2) Obtain the constraints that form and the contact

points whose optimal positions lie on extremes of the
edges (Propositions 2 and 3).

3) Depending on , do:
a) If or , solve from (27) for,

respectively, each of the four or eight combinations
resulting from fixing the position of each unknown
torque on each extreme of the corresponding edge.

b) If , solve the four resulting subsystems of two
constraints of resulting from fixing the positions
of each pair of unknown torques on two extremes of
the corresponding edges.

4) As a result of step 3:
a) If at least one of the computed sets of torques is

reachable, take as initial reachable solution the one
with largest .

b) If none of the obtained sets of torques is reachable:
i) If there is only one unknown torque, its optimal

value is on the edge extreme closest to the
value computed in step 3. Then, has all the
contact points lying on extremes of the edges.
Return .

ii) Else fix the position of each unknown torque
on an extreme of an edge and obtain new
constraints applying Proposition 1 for the
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remaining unknown torques (note that is
independent of the selected extremes). Go to
step 3.

5) Obtain the evaluation function and evaluate the initial
reachable solution.

6) If , determine in which direction the contact points
fixed on extremes of the edges in step 3 have to be moved
in order to make

a) If the points have to be moved inside the edge,
apply an iterative numerical procedure to obtain the
solution that satisfies and .

b) Else the initial reachable solution cannot be
improved.

7) If , determine in which direction the contact points
fixed on extremes of the edges in step 3 have to be moved
in order to make the distances from the origin to the four
faces of be the same.

a) If the points have to be moved inside the edges,
apply an iterative numerical procedure to obtain a
new solution.

b) Else the initial reachable solution cannot be improved
8) If Steps Return as the best of the solutions computed

in steps 4a, 6a, or 7a.

As a difference from the approach proposed by [30], where
cases 3 and 4 were not solved, Algorithm 2 is complete, since
it always finds the optimal grasp taking into account all the
possible cases. Moreover, this algorithm is also really efficient,
since in many cases the initial reachable solution obtained in
step 4 either is or is very close to it, completely avoiding
or at least decreasing the number of iterations in steps 6a or 7a,
which, in any case, are not hard iterative procedures since they
are function of only one torque and they can be easily solved
using the Bolzano theorem.

VI. EXAMPLES

Numerical examples of the proposed methodology are pre-
sented here using the object shown in Fig. 6. Since the optimal
grasp has always at least one contact point on an edge extreme,
in order to avoid placing a contact point on a vertex of the object,
the real ranges were slightly reduced considering a security dis-
tance from the object vertices. The object has eight edges, so the
total number of possible sets of three and four edges is 238 (95
of them with containing the origin). Considering the upper
bounds , only 26 of them have been evaluated by Algorithm 1
to obtain .

The examples show the determination of and the determi-
nation of for other three combinations of edges. The optimal
grasp was also computed using the brute force method taking
50 sample points per edge and evaluating all the possible con-
tact combinations. The results were always coincident (up to the
sample resolution).

In all the examples the contact points are numbered such that
the normal forces define consecutive vertices of and the
upper bound is determined by .

Example 1 (Edges , and ): The edge-optimal
grasp on this set of edges is the object-optimal grasp .
This is the 11th evaluated set of edges considering the order

Fig. 6. Object used in examples and initial data (directions normal to edges and
real ranges � of possible actual torques).

based on the upper bounds. According to the numbering con-
vention of the contact points: and

. Following Algorithm 2 to obtain :
1) Determine .
2) and . Then from (23)

, and
it is not possible to determine which contact points lie on
an extreme of the edge.

3) , then the four subsystems of two constraints of
are solved fixing the positions of two unknown contacts on
extremes of the edges.

4) Step 3 produced reachable solutions, with the best
one, produced when and ,
being:

, and
.

5) Evaluating this initial reachable grasp in :
If is fixed, then .
If is fixed, then .

6) for values greater than or smaller than .
Then, the solution of step 4 cannot be improved.

7) The distances to the four faces of tend to be equal
for values greater than . Then, the solution of step
4 cannot be improved.

8) Steps 6 and 7 do not improve the solution, then is the
grasp obtained in step 4.

Fig. 7(a) shows the resulting contact points.
Example 2 (Edges and ): The quality of

on this set of edges is close to the quality of . This is the
fourth evaluated set of edges considering the order based on the
upper bounds. According to the numbering convention of the
contact points: and .
Following Algorithm 2, is obtained when and

, being:
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Fig. 7. Edge-optimal grasps and intersection of directional range with real range for each contact point (bold segments). Case (a) is object-optimal grasp � .

and
. Fig. 7(b) shows the resulting contact points.

Example 3 (Edges and ): This set of
edges produces one of the worst cases in the determina-
tion of the optimal grasp because none of the constraints
of the optimization algorithms can be satisfied. This is the
third evaluated set of edges considering the order based
on the upper bounds. According to the numbering conven-
tion of the contact points:
and . Following Algorithm 2, is obtained for

, with
and

. Fig. 7(c) shows the resulting contact points.
Example 4 (Edges with two contact points, and ):

This is the 17th evaluated set of edges considering the order
based on the upper bounds. According to the numbering con-
vention of the contact points: and

. Following Algorithm 2 to obtain :
1) Determine .
2) and . Then, from (19)

and the optimal positions of and
lie on an extreme of the edge.

3) , then the constraint of is solved for the four
combinations resulting from fixing the position of each un-
known contact point on each extreme of an edge.

4) None of the results computed in step 3 are reachable.
Then, the following best solution is obtained when all
the contacts lie on extremes:

and . As
a result, this grasp is and the algorithm ends.

Fig. 7(d) shows the resulting contact points (note the mark on
limiting the intersection of the directional range with the real

range for each of the two contact points on this edge).

VII. CONCLUSION AND FUTURE WORK

This paper provides a new efficient approach to determine
the optimal form-closure grasp on polygonal objects using the
quality measure of the maximum ball. The upper bound, the
internal bounds, and the type of directional range have being
identified as intrinsic grasp parameters that can be easily deter-
mined since they depend only on the directions of the applied
forces and are useful in the optimal grasp search. These param-
eters are used to identify and solve the different cases in the
determination of the object-optimal grasp. The upper bound is
also used as a bound in the search of the object-optimal grasp.
One advantage of the proposed approach is that there are cases
in the computation of an edge-optimal grasp where some con-
tact points can be analytically determined; in addition, in the
search of the object-optimal grasp it is not necessary to obtain
the edge-optimal grasp for all the sets of edges.

This paper introduces a new concept: the directional-optimal
grasp, defined considering virtual edges with infinity lengths.
Although the directional-optimal grasp may actually be un-
reachable, it is useful to determine the feasible cases of optimal
grasp and which optimal contact points lie on extremes of the
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Fig. 8. Two-dimensional qualitative example showing that� � � when
� � � .

edges. With this information, an initial solution is obtained in
a fully analytical way, that is either the edge-optimal grasp
or very close to it; in this second case an iterative numerical
procedure, function of only one unknown, is used to obtain the
edge-optimal grasp.

The main concepts used in this approach depend only on the
directions of the applied forces and can be easily determined.
This encourages us to extend this work considering frictional
contacts, nonpolygonal objects, and 3-D objects in future work.
As a step in this direction, a new necessary and sufficient con-
dition for the existence of form-closure grasps has been defined
both for frictionless and frictional contacts [36] and extended to
nonpolygonal objects [37]. The extension of the methodology
presented here to the determination of the optimal grasp in these
cases is still a problem under development.

APPENDIX

COMPUTATIONAL ASPECTS

The constraints included in (27) are four-order equations
when the distances are considered,
but the order of these constraints can be reduced using the
following geometrical substitution.

Consider the constraint (the same reasoning
can be applied to the other constraints) and let ,
and be the planes defined in the wrench space by

and , expressed as

(29)

(30)

(31)

where and are the vectors normal to the planes
and and are the independent terms, all of them being
linear functions of and .

The constraint implies that is a bisector
plane of and , and any vector normal to intersects

and at points located at the same distance from .
Then, selecting the normal vector that passes through the origin,
the distances and from the origin to and ,

respectively, satisfy and can be used instead of
(see Fig. 8). Using (29)–(31), can

be expressed as

(32)

Since and are linear functions of
and , (32) expressed as a function of or is a

three-order equation, while the same equation expressed as a
function of or is a linear equation. Using (32) to represent
the constraints, a system of two constraints with two unknowns
torques can be solved in a fully analytical way.
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