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Sensor Selection in Arbitrary Dimensions

Volkan Isler, and Malik Magdon-Ismail

Abstract—We address the sensor selection problem which estimate the location of the target. On the other hand, power

arises in tracking and localization applications. In sensor se- and bandwidth limitations may prevent the utilization ofaagle
lection, the goal is to select a small number of sensors whose

measurements provide a good estimate of a target's state (such .
. ) . researchers focused @ensor selectioso as to choose a small
as location). We focus on the bounded uncertainty sensing model

where the target is a point in thed dimensional Euclidean space. number of sensors while guaranteeing high quality estisnate
Each sensor measurement corresponds to a convex, polyhedral 1N€ Sensor selection problem is typically formulated aeies.
subset of the space. The measurements are merged by intersagt We are given the location of the sensors as well as prior
corresponding sets. We show that, on the plane, four sensorsinformation about the location of the target. In additiore are

are sufficient (and sometimes necessary) to obtain an estimategiven a sensing model, which gives us the quality of an estima

whose area is at most twice the area of the best possible estimate0

obtained by intersecting all measurements). We also extend this .

( y ) g. ) and the target's true state. The goal is to select a small sBumb

result to arbitrary dimensions and show that a constant number ) ) o

of sensors suffice for a constant factor approximation in arbitray of sensors so that the quality of 'Fhe estimate .IS high.

dimensions. Both constants depend on the dimensionality of the ~We address the sensor selection problem in the bounded un-

space but are independent of the total number of sensors in the certainty sensing model. In the planar version of this moeketh

network. sensor measurement corresponds to a convex subset of tiee pla
Note to Practitioners We merge measurements by intersecting corresponding tsubse

o _ o _ and the quality of the estimation is inversely proportiotzathe
In many applications, sensing and communication constraints MAY. of the intersection. This formulation generalizesimadly to
render using all availabl nsors infeasible. In h scenariost-selg. . . . .
ender using all available sensors infeasible. In such scenariost-se ﬁlgher dimensions: The state of the target is representeddoynt
ing a small number of sensors — whose collaborative performancelri]an

number of sensor nodes at a given time. Consequently, many

f the target’s state (e.g. position) for a given set of chasnsors

T _ _ . The measurement from a sensddentifies a subset of the
estimating the state of a target is comparable to the best poss@pl)%ceU(s) c ®? which contains the true state of the target. For

achievable error — becomes important. This paper focuses on sensor . L .
example, in camera-network applicatiog(s) is a proper cone

whose measurements can be specified as an intersection of halfsp%cgﬁ In general, the target's state can be higher dimeaigior

e.g. cameras, whose measurements correspond to conesyoNes . . . . .
g P ) P example, it can contain its location and additional attelsusuch

that a “small” set of good sensors can be selected from an arbitrarg/. . . o
as its temperature. If a single sensor node contains boitiqros

set of measurements in any dimensibrOf practical importance are - N
and temperature sensors, it is natural to minimize the nummbe

the two casesd = 2 (where four sensors suffice for a good estimatei;ctive sensor nodes so as to minimize the total communicatio

ndd = igh nsors are en h). L . -
andd = 3 (eight sensors are enough) the network. Therefore, sensor selection in arbitrary disiens
Index Terms— Sensor networks: camera networks and sensor

selection; Computational Geometry and Object Modeling: Geo- may be of interest in cert.a|n.appl|cat|ons. .
metric algorithms, languages, and systems: minimum enclosing Recently, sensor selection in the bounded uncertainty hinade

simplex, polytope approximation. been addressed in [14]. The authors showed that when the mea-
surements correspond to convex, polygonal subsets of dreepl
I. INTRODUCTION one can choose six sensors such that the resulting undgrtain

. ) ) . from these measurements is at most twice the uncertainty tha
A sensor-network consists of sensing devices with communi-

. . ) " would have been obtained by queryiatj the sensors [14] — no
cation, computation and sensing capabilities. One of tiagry . .
L i . matter how large the number of sensors is, six sensors siiffice
applications of sensor-networks is tracking. In most syste o ) )
. . ) ) ] a 2-approximation. In the present work, we improve on thisiite
multiple nodes participate in the tracking task and coltabeely . .
in the following directions.
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2) In the 3-d case (e.g. cameras in 3d space), we show tha degrees of freedom of minimal simplices in [25]. There ar
8 sensors suffice for a 9-approximation, and at lgastre no results on finding minimum enclosing simplices efficigfitir
needed to guarantee bounded approximation. generald By the result of Klee [16], any minimum simple&

3) In higher dimensions, we obtain an analogous result. Lietersects the convex body at every one of its facet centroids.
n be the number of sensors in the network ahtbe the The centroidal simplexS. with vertices at these centroids has
dimensionality of the space. We show that wittt@nstant volume equal tovolume(S)/d? (this folklore result may be
number of measurements, independent 0bne can obtain deduced from the result in [7], alternatively see the probf o
a constant factor approximation, also independent of Lemma 6.3). By convexity,S. C C, and so it immediately
Both constants depend ah The main tool we use is a follows that the minimum enclosing simplex is & volume
construction of an enclosing simplex of a convex polygorapproximation toC. We give an explicit construction for an

which may be of independent interest. enclosing simplex with a better volume bound by an extraofact
of d. Our construction goes throughl@cally maximal inscribed
Il. RELATED WORK simplex. Dudley [9] gives an efficient construction of ersitm

Sensor selection has received significant recent attenti®@lytopes for a convex polytope in arbitrary dimension, wehe
In [10], a selection algorithm is presented where the mimmuth€ approximation ratio is a decreasing function of the nemb
mean squared error of the best linear estimate of the obgsit p Of vertex points in the approximating body. In particulam, i
tion in 2-D is the metric for selection. The work in [5] addses 2 and 3 dimensions, a polytope with(1/¢) vertices suffices
a generic utility-based sensor selection scheme and fisgegn (constructive) for arO(e) approximation. We study what can be
factor approximation algorithms for a class of set-weighuélity ~done with a small (constant) number of vertices.
functions. Sensor selection in the bounded uncertaintyeinod ~ Other useful, simple enclosing bodies are parallelepipeltis-
the plane was studied in [14]. The present work improves i&n tfpoids and balls, which have been the focus of significantreke
result and generalizes it to arbitrary dimensions. Minimal enclosing parallelepipeds in 2 and 3 dimensions are

In [21], an information driven sensor quergpproach was Studied in [2], [23], [26]. Approximations to minimal ensing
proposed. In this approach, at any given time, only a singk&lls have been studied in arbitrary dimension [18], [28] & is
sensor (leader) is active. After obtaining a measuremér, tshown in [13] that the ellipsoid method can be used to coostru
leader selects the most informative node in the network agf affine transformation such that the unit ball is contaiired
passes its measurement to this node which becomes the fa@/convex body which in turn is contained in the/d ball. This
leader. In subsequent work, researchers addressed ldadigore Immediately gives a construction for an enclosing elligsaith
state representation, and aggregation issues [20], [28fmsor Volume approximation®?/2. Efficient (1 + ¢)-approximations to
selection method based on the mutual information principle Minimum volume ellipsoids are given in [19] and it is shown
presented in [11]. Recently, amtropy based heuristic approachin [15] that the minimum volume ellipsoid gives @ volume
was proposed [27] which greedily selects the next sensedioce  @PProximation to the convex polytope. There is no bound on
overall uncertainty. The bounded uncertainty model, whigh the number of intersection points of the convex body and the
focus on in this paper, is frequently used for localizatiortie €nclosing ball or ellipsoid, thus simplices and parallgdefs are

robotics and sensor-networks literature. Examples carobadf More suited to obtaining good volume approximations with a
in [8], [24]. small subset of the halfspaces. Other types of constrasmtsh
as axial symmetry [3], have also been studied. Applicatiohs
constructions which tightly enclose a set of points or bafse
. . . . _become prevalent, e.g. proximity based algorithms andékern
Here we consider enclosing a convex polytope given by its re- .
. . . . . methods for clustering [4], [12].
dundantH-representation (linear inequalities). Enclosing convex
objects is a well researched topic. Typically the convexeobijs
given by a redundant -representation (convex hull of vertices).
The typeV and H canonical representations of convex polytopes, In this section, we formulate the sensor selection probhfe.
and moving between the two are discussed in [1]. are given a set of sensors as well as an estimate of the sttte of
Optimal, or near optimal, linear algorithms exist for contarget. A query to a senserylocalizes the object to a subset of the

structing enclosing simplices in 2 and 3 dimensions, [22]]][ spaceU(s) ¢ R? which contains the state of the target. We call

A. Related Geometric Results

IIl. PROBLEM FORMULATION

The centroidal property of minimum enclosing simplicesdin U (s) the measurementorresponding to senser We assume that
dimensions was given in [16] which was exploited in analgzinU(s) is an intersection of halfspaces, i.e., the region to which a
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sensor localizes an object is given by a convex polytopes{plys Lemma 1 part (i) holds even if the convex polygénis replaced
unbounded). This certainly applies to many sensor modelshwhby an arbitrary bounded convex shage Lemma 1 part (ii) is
identify the sensed region with a proper cone. proven in the next section. The remainder of the argument to
After querying a subsef) of the sensors, the target can bestablish the advertised result using Lemma 1 is analogotiet
“localized” to the setn,cqU(s). It is natural to define the analysis in [14]. We paraphrase some of the results in [1#\be
uncertainty of the measurement aslume(NseqU(s)). Since Theorem 2 (Isler, Bajcsy [14])Suppose that for any convex
intersection is monotonic, it is optimal to query every segns polygon P, one can find a minimum enclosing convex polygon
Unfortunately, in most sensor-network applications, tisisnot @ with » edges satisfying the following two properties:
feasible due to communication and power constraints. WeYStU (i) 4req(Q) < A - area(P);
what can be achieved with querying only a small, specifically(ii) at leastk < r edges ofQ intersectP at edges and the
constant, number of sensors.
We restrict thesensor
selection  problem to
halfspace measurements.
This definition
immediately generalizes
to measurements which

remaining (at most) — k edges intersecP at a vertex.

Then, for any set of measuremertis there exists a subset’

with |H'| < 2r — k for which area(H') < X - area(H).

The basic idea in the proof is that for the edgesfwhich
intersect edges aP, one selects the measurements corresponding
to those edges . The remaining edges @} intersect vertices

bt vt . vt _of P and each vertex aP corresponds to two measurements. Let
are arbitrary convex polytopes, since any convex po ani S
y polytop y polytep m > k be the number of edges @ which intersect edges of

intersection of a finite number of halfspaces. Eebe a set oy .
P. Then the total number of measurementsrist 2(r — m) =

halfspaces irR?, whose intersection is bounded and non-empty.
P ’ p%r—m < 2r—k. To conclude, note that these measurements form

Each halfspacé, € H as a measurement. The setup is illustrated S
) ] ) ) a convex polygon which is enclosed én and therefore has area
in the figure above, whereis the target object. For any subset
, - ) ,.at most that of@.

of the measurementd{’ C H, we define the uncertaintg(+") . . .

] ] ] ) Corollary 4.1: Any set of measurements in 2-dimensions can
as thed-dimensional volume of the intersection of all halfspaces . .
) Do e ) . o be 2-approximated with a subset of at most 4 measurements.
in H' (if it is finite, and oo otherwise).H’ is a p-approximation

to M if E(H) < p-E(H).

Proof: Apply of Lemma 1 withr =3, k=2 andX =2 in
Theorem 2. [ |
Isler and Bajcsy [14] used a result similar to Lemma 1 for

. . minimum enclosing parallelograms with = 4, ¥ = 2 and
We first consider the 2-d problem and show that 4 mea-

. A = 2 which gave that six measurements was enough. One of
surements are enough for a 2-approximationHo These 4

) . ) our contributions is to reduce the number of required senbgr
measurements can be determinedim") by selecting the subset . . L .
) ] o ) ) ) 2, without sacrificing on the approximation ratio.
of size 4 with minimum uncertainty. Practically, this medhat . h h
Finally, we note that 3 1

No matter how many sensors are available, a carefully . o oo acit —
is optimal, i.e., there exist

settings where any collec- "2 7
In 2 dimensions, the volume of a convex polytope is its area, §gon of three measurements T .

. - . h
E(H') = area(H"). We will explicitly usearea as the uncertainty ~gnnot provide a constant '

measure in the results of this section. We also assume fram ng,.tor approximation to the error. To see this, consider the
on that the uncertainty when using all the hyperplanestiis 5 rangement of four measurements shown on the right, with th
bounded, i.e., the hyperplanex H define a convex polygon. (5rget object localized in the shaded box. Intuitively, tmea-

The main tool which will establish our result is Lemma 1 whicly ;rements serve to localize the position in one of the difoess
bounds the area of the minimum enclosing triangle (MET) fofnq the other two localize the position in the other dimemsio
any convex polygon. It is easy to verify that any subset of 3 measurements has an

Lemma 1 (Minimum Enclosing Triangle (MET)et P be ,nhounded uncertainty, and hence an infinite approximaticor.
any convex polygon. Then, there is a trian@lewhich contains

P satisfying the following two properties:

IV. SENSORSELECTION ON THEPLANE

chosen set of four sensors suffices to localize to within
twice the uncertainty attainable using all the sensors

It is natural to extend this result to higher dimensions, tmos
practically 3 dimensions. The comments above suggest Wt t
(i) area(T) < 2-area(P); sensors are needed to localize in each dimension, and irafact
(i) at least two edges of are parallel to two sides aP. similar example shows that at least sensors are necessary for
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a bounded approximation id dimensions. We conjecture thatthus, we conclude that

this is also an upper bound on the required number of sensors VA

, o , B'C' = BC < BC.
to obtain a constant factor approximation, however, outyaig YZ
will only yield an upper bound ofi(d + 1) for generald. Therefore, area(A'B'C') < area(ABC) and A'B'C’ is an
enclosing triangle with at least one more edge interseciing
A. Proof of the MET Lemma edge of P. Iterating this argument, property:) follows.

We have not found any published proof of Propefty.
Therefore we present a proof here which will be easy to géirera
to arbitrary dimension. We now show that there exists a gte@n
that encloses” with area at most 2. Lety be amaximumarea
triangle that is enclosed bi. Without loss of generality, we can
assume that the vertice§ B, C of T;; are also vertices oP. (If
not, then some vertex df, is on an edge of.

This edge must be parallel to A

Let 7" be an MET for a convex polygo® with area(P) = 1.
We can assume that every edgelomust intersect with an edge
or vertex of P (if not we can accomplish this by shrinkirig).
First, we show that one can always select a new triafiglaith
area(T") < area(T) satisfying property(ii) of Lemma 1. Then,
all that will remain is to show that there exists at least gragle
satisfying property(:) of Lemma 1. The basic proof idea is to
take any enclosing triangl€ and alter it to an enclosing triangle
T’ without increasing the area and such titahad one additional the base offp opposite the vertex, ¢
side flush withP. Repeating this argument one more time theWr if not then we can move the

. . . . B
gives part(ii) of Lemma 1. The situation is illustrated below. vertex in the direction of increas-
¢ A A ing height, increasing the area of 7
) Ty, which is a contradiction. If the
c X edge is parallel to the base, then we can move the vertex along
v h the edge to a vertex aP, without changing the area @f.) The
z P final arrangement is illustrated in the figure to the right.
hy hx&< Construct the lineg 4, (5, £ passing throug, B, C respec-
B B a ol C tively and parallel to the edges b, c respectively. Letl’ be the

) ) ) _ triangle formed byl 4, ¢p,¢c as illustrated in figure (a) below.
Let the vertices ofl" be A, B, C' with respective opposite edgeslf any point of P lies outsideT’, thenTy is not a maximum area

a,b,¢ and suppose that fewer than two edgesdhtersect with inscribed triangle, so every point ¢ must be insidel’, hence
edges ofP. We now show how to increase the number of edg%s encloses?.
of T" which intersect with edges @? by at least one. So suppose
that two edge9,c of T intersectP at the verticesX,Y of P.
Orient the triangle with base and consider the heightsy, hy
of X,Y with respect to the base. The setup is illustrated in
the figure above. Without loss of generality, we can assurae th
hx > hy and leth be the height ofA abovea. Draw the line
¢ through A parallel toa and consider the point’ which is A
shifted towardX on ¢. As we shift A/, we consider the triangle
A'B’C’ in which A’B’ passes throughy, A’C’ passes through
X and B’C’ is on the line passing through As we shift A’
either A’ B’ will intersect the upper edge @# atY or A'C’ will
intersect the lower edge df at X. We stop shiftingA’ when The trianglesTy, Ty, T3 illustrated in figure (a) above are all
one of these situations occurs (both conditions could atsmro congruent to7y, hence area(T) = 4 - area(Tp). Thus, if
simultaneously). Suppose thatC” intersects the lower edge &f  area(Tp) < 3, thenarea(T) < 2 and we are done. So suppose
at X (A’B’ may or may not intersect the edgeyat An identical that area(Ty) > % We use a different construction to obtain
argument applies in the other case in whi¢hB’ intersects the 7. We define three triangle%,, T}, 7. as shown in figure (b)
upper edge ofP at Y. Construct the line parallel ta through above. Let/, be the line parallel ta and tangent ta” at vertex
Y which intersectsAC at Z and A'C’ at Z' with YZ' < YZ X. Thus,T, is the triangleBCX. Note thatP is divided into
(equality occurs ithy = hx). two sub-polygons by (one which containsd and one which
AYZ and ABC are similar, thereforeh/hy = BC/Y Z; does not). The sub-polygon which does not contdincould
A'YZ' and A'B'C’ are similar thereforéh/hy = B'C’/YZ'; be empty, and sd, could be empty. This does not affect the

(b)
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argument. BCX is a maximum area triangle with bagethat that finding the maximum enclosed simplex for a convex pglgto

can be embeded into the sub-polygonfothat does not contain is NP-hard [17]. However, finding a locally maximal simplex
A. T, and T, are constructed similarily. Note thatrea(P) = (Definition 6.1) is a differentiable local optimization fnem,

1 > area(Ty) + area(Ta) + area(Ty) + area(Te). Let hy be and hence can be solved efficiently using convex optiminatio
the altitude in7Ty from A to a, and similarily definehp,he. techniques [6]. Tightly enclosing convex bodies using $emp

Let hx be the altitude fromX to « in T, and similarily define geometric objects is an important problem, especially asea p

hy,hz. Thenarea(Ts) = area(Ty) - hx /ha, and similarily for cursor to collision detection of point sets, with applicas in

area(Ty), area(T}). Thus, we have computational geometry, machine learning, etc. By Lemntae,
feasible set of any number of linear inequalities (assunitin
1> area(Tp) - 1+hl+hl+hl . Q) Y . . d ( . o
ha hp  he non-empty and bounded) is approximated by the feasiblefset o
Since area(Ty) > % by assumption, we have th%{f + % 4 constant number of carefully chosen inequalities. Thusyiha 3

#Z < 1. TrianglesABC and A’B'C’ are similar. We now bound M&Y be of independent interest.
area(A'B'C"). Consider enlargingl BC into A’B'C’ in three Proof Sketch:We begin with the locally largest simplex/

steps through a sequence of similar trianglé®C — Auv — which can be inscribed insidB. If volume(M) is small (at most

yuC' — A'B'C'. Let the three length scale factors for thesé)' then analogous to the 2-dimensional case, we show how to
cover P with a simplex whose volume ig? times larger than
hy hy hy volume(M). Thus, anyM ES has volume at mosi?volume(M).
Ar=1+ ha’ A2 =1+ b Az =1+ Noehe On the other hand, ifolume(M) is large (at least;), we show
The length scale factor for the entire enlargemenBC — how to expand every height (perpendicular length from aexeix
& face) inM slightly so as to enclosg. This results in a new sim-

A'B'C’ is A\1A2A3 which after some manipulation reduces t
.
A Aods = )\1)\2+% _ )\ﬁ%Jr% _ H%Jr%jL%. Since Plex M’ which is a homothet of/. We show that the length scale

. d 5; .
area scales as length squaregea(T) = (A Aeds)? - area(Ty), factor for the enlargement is+ 37, 7, where for each height
h; in M, the corresponding height it is h; + &;, increased by

enlargements bgq, A2, \3. It is easy to verify that

we have that

2 6;. Thus, in this enlargement, the volume increases by a factor
(T) = H_hiX_Fhl_s_}LZ . (To) d  §\d o i ,
area = ha kg " he areallo (143250 7). Sincevolume(M) is large, thes;’s are not large,
(i) <1 . hx . hy . hz) ) and infact it is the case tha(tl + Zj:o fl—) volume(M) < 1. It
< —t+—+ ; d
ha hp  hc then follows thatolume(M') = (1 + E?:o %) volume(M) <

i i i d—1
concluding the proof (inequality (a) above follows from)(1) (1 n E?:o %) . The result follows becausevlume(M) >

Z,andsoi+3¢ 2t < d.Lemma 3 gives a’~!-approximation
for the measurement selection:
In this section we show thai(d + 1) measurements suffice to  Theorem 4:There exists a subset’ C H with |H'| < d(d+1)
obtain ad’~!-approximation for sensor selectioni. For2 and and&(#’) < a4~ . £(H).
3 dimensions, tighter results can be shown. We have seenrthat i  Proof: The simplexs is the intersection ofl + 1 halfspaces
2-dimensions, 4 measurements suffice for a 2-approximaia. f,. ..., f;, with boundariesdfo,...,df,;. Each hyperplan@f;
will shortly show that in3-dimensions, 8 sensors (as opposed tgan be chosen to intersect with, i.e. df; contains a face,; of
12) suffice for a9-approximation. P with 0 < deg(g;) < d—1 (in the worst case)f; contains only
The main tool we will need is a bound on the volume of a vertex of P); g; is defined by the intersection of — deg(g;)
minimum enclosing simplex (MES), which is given in the lemmaalfspaces ir{, denoted by, .. .,hz’l_deg(gi). ThereforeP C
below. nj h% C fi, and henceP C N; ; b} C N, f; = S. Using Lemma
Lemma 3:Let P be a bounded convex polytope &f' with 3, we havevolume(n; ; h}) < volume(S) < d*~' - volume(P).
minimum enclosing simplexs. Then volume(S) < d*~' - To conclude, lett’ = {n}};; and note thatH/| = X7 ;d —
volume(P). deg(g;) < d(d+1). ]
We present here a sketch of the proof of Lemma 3. The proofThe sumdeg(S) = Z?:o d — deg(g;) which determinesH/|
idea is analogous to the 2d-case, and we defer the full teghniin the proof above is often referred to & number of degrees
details to Section VI. Our proof constructs an enclosingpsix of freedomof the enclosing simplexs. If S is minimal, tighter
with the required volume bound fromlacally maximal inscribed upper bounds (than the trivialld + 1)) for deg(S) can be used
simplex. In our contextP is a bounded convex polytope, howeveto strengthen the result. In particular, far = 2, deg(S) <
our proof applies to an arbitrary bounded convex body. We not [22], and for d = 3, deg(S) < 8 [25]. Therefore, in2

V. ARBITRARY DIMENSION
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dimensions, we have a-approximation with4 measurements; i
in 3 dimensions, &@-approximation with8 measurements; and,
for d > 3, ad?~!-approximation withi(d+ 1) measurements. By
considering hyperplanes supporting the faces d@fdimensional
parallelepiped ast (|H| = 2d), we immediately get the lower
bound of2d measurements to obtain a bounded approximation.
Thus, the results fod = 1,2 are tight. Further, by letting® be a c T
ball, it is clear that one cannot expect more than an expa@ient

approximation ratio with a constant number of halfspaces. o

la

VI. PROOF OFLEMMA 3 Fig. 1. The reflected homothetic simplex correspondingddor d = 2, 3.

A simplex S(vog,...,vq) = {x = Z?:o Aivilhi €
RT, 3% A = 1} is the convex closure off + 1 points
vo, - .., vq. (We will usually suppress the vectors definifigvhen
the context is clear, and will use; to refer to the vector of
coordinates of the vertices of the simplex as well as theoest
themselves.) The hypervolume §fis given by

z-e; > v;-e;. Forany\ € (0,1], letz(\) = v;+ A(z—v;). Then
z(\) -e; > v; - e, i.e. the simplexS), in which v; is replaced by
z()\) has larger height abovg, and hence larger volume (because
A;, the hyperarea of;, is not changed). Sinc® is convex, and
vi,z € P, z(\) € P, and hence the simpleg, C P for all
volumeg(S(vo,...,vq)) = %|det(v1—vo,vQ—v0,...,vd—v0)|, A € (0,1]. Every ball of radiuse aboutv; containsz()\) for

X < e and henceSy cannot have maximum volume among all

where the subscripd (which will usually be omitted) indicates ) o o o
choices ofv; in this ball, contradicting the maximality of,. |

that the volume isi-dimensional. For each vertex;, we define
the opposite facef; as the convex closure of the remainidg
vertices, and lee; be a unit normal taf; in the direction ofv;.
Let h; be the height of; abovef;, and letuf, ..., u’,_; be the
vertices definingf;. f; defines ad — 1 dimensional space, and by
projectingu; onto an orthogonal basis for this space, we obtain
(d — 1)-dimensional simplex whosgl — 1)-dimensional volume
we define as the — 1 dimensional hyperarea of;, denoted by
A, Ai = volumeg_1(uf),...,u’_;). In terms of 4;, we have
volume(S) = é hy - Ay Proof: We refer to the notation in Figure 1. Sinég and

Let S be a minimum enclosing simplex (MES) for the convexo are homothets, the lemma amounts to the length scale factor
polygon P with volume(P) = 1. We can assume that every edg@eingd. Ford = 2, itis clear thatf; partition S into 4 congruent
of S must intersect (if not we can shrinks). Our proof on the {riangles, and so the length scale factor is 2.
volume bound ofS will be to construct an enclosing simple¢ We proceed by induction o, so suppose that the claim holds
with small volume. Our construction will usenaaximal inscribed N d — 1 dimensions ford > 3 (i.e., the length scale factor is
simplex d — 1), and considerd dimensions. Consider any vertax of

Definition 6.1 (Maximal Inscribed Simplex (MIS)X simplex So and its opposite facef;; the face f; is parallel to f; and
So(vo,...,vq) inscribed inP is maximalif for every v;, and Passes througl;. Now consider any other vertex;, and its
some sufficiently small balB. (v;) centered at;, So(vo, . ..,vq) Ccorresponding hyperplang parallel to its opposite facg; and
has maximum volume among all other simplices whose verjex Passing througlv;. This hyperplanef; intersects the hyperplane
is replaced by any other; € Bc(v;) N P. containing f; at thed — 2 dimensional hyperplane denoted by
From now on,Sy(vo, . . ., vg4) will denote an MIS forP. We now in Figure 1. In 3 dimensiong; is a line as illustrated in Figure
present a useful property of an MIS, which allows us to camstr 1. We will consider thel — 2-dimensional surface$p;} for all
enclosing simplices from it. J#

Lemma 6.2:Let f/ be the hyperplane parallel o and passing  Vertex v; is a vertex of thed — 1 dimensional simplexf;.
throughv; for the MIS S;. Let qj denote the closed halfspaceSince f; and fj‘ are parallel, so are their intersections with
bounded byf! which containsv;. Thenqj containspP. the hyperplanef;. Thus, for the(d — 1)-simplex f;, p; is the

Proof: Suppose that;” does not contair, so some point (d—2)-dimensional hyperplane parallel to thé—2)-dimensional
z € P resides in the complementary open halfspace;to So opposite face of the vertex; in the simplexf;. Let hj be the

By Lemma 6.2, the simple¥; = miqj containsP, and hence
we can construct an enclosing simplex framy MIS. We refer
to S; as thereflected homothetic simplesorresponding taSy
— since all the faces of; are parallel to faces ofy, S; is a
hé)mothet ofSy. We illustrate the reflected homothetic simplex
for the 2 and 3 dimensional cases in Figure 1. The next lemma
boundsvolume(S1) in terms ofvolume(Sp).

Lemma 6.3:volume(S1) = d - volume(Sp).
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Lemma 6.5:Let Sy be an arbitrary simplex, and |éf be
the homothetic simplex obtained frot, by translating each
face out by a height;. Then,volume(T) < (1 +3%, Z—i)d
volume(Sp).

Proof: It suffices to prove that the length scale factor relating
toSpis1+3%, fL— To see this we view the transformation
from Sy to T' as a sequence of enlargements, the first is centered
at v with scale factor\g = (hg + dg)/ho, Which corresponds to
pushing out the facg, to the plane containing, by a distancey.

In this enlargement, all other faces get enlarged, but nemaithe
same plane. The next enlargement is centered at the nevioposit
of vi and has scale factor such that the new enlarged fageis

(d — 1)-dimensional halfspace bounded py which containsf;. Pushed out to the plane containing by an amount, . Sinceh,
Then, the(d—1)-simplexS,_; = N;jh;” containsf; in exactly the increased to\g -1, we conclude thak; = (614 Xo-h1)/Ao-h1.
same way thas; containsSy, i.e. S;_; is the enclosing reflected We continue with an enlargement centered at the new position
homotheticd — 1-simplex for the(d — 1)-simplex f;, to which we 0f v with scale factor\y = (62 + AoA1 - h2)/AoA1 - h1; and so

can apply the induction hypothesis. Thus, the length sealtof ©On, we have enlargements succesively at the the new pasition
from f; to Sy_q is (d —1). of vs,...,v4 until we finally obtain7. Suppose that the scale

Now consider the simples$’ defined by the vertices of,;_; factor for the firstc enlargements i8q, ..., A\x_1. Thenk'EhIe scale
andw;, the vertex ofS; oppositef!. S’ is clearly a homothet of factor for the(k + 1)th enlargement is\;, = % =
S1, and hence is also a homothet &f. The base ofs’ is S;,_; 1+ hkl‘[&ﬁ The scale factor for the transformation frasp
and the base ofy is f;, and these two bases are related by the T is given by[]¢_, \,. We evaluate this product as follows:
length scale factofd—1), which must therefore also be the 'engﬂl_[i:o M = g - Hi;(l) Meo= (1+ %) . 2:(1) Ao, =
scale factor for the heights. Thusgight(S’) = (d—1)-h;. Since o
height(S1) = h; + height(S’), we conclude thaheight(Sy) =

d - h;, i.e. the length scale factor relatirffy to S; is d. ]

Fig. 2. Expansion ofSy to the enclosing simplef” in d = 2, 3.

"0 M + 2. 1t follows by induction that[Tg_o A, = 1+
> £+, concluding the proof, ]

The next lemma bounds the sum+ 3¢ i which appears
Continuing with the proof of Lemma 3, ifolume(Sp) < é, in the lemma above '

: d—1
then Sy V\.IhICh enclosesP has a vollume a.t mos{®~ . We Lemma 6.6:volume(Sp) - (14—2?:0 %) <1
now consider the caseolume(Sp) > 3. In this case we use a Proof: Define the simplicedy, ..., T, as follows.T; is the
different construction to obtain an enclosing simplex.sT$gcond

. . _ convex closure op; and f; — T; is a simplex with baseg; and
construction does not require that the simplgxbe an MIS. height 5;. The bodyQ = Sy U Ty U--- U Ty is enclosed inP,

Let Sp be any simplex enclosed iR (eg. an MIS), with the hencevolume(Q) < volume(P) = 1. The simplicesZ; and T;
facesfy,..., f4 and normalsy, ..., ey, Where, for each facg;,
e; is directed fromf; towards its corresponding vertex. Let

are disjoint except on a set of measure zero. This followmfro
the fact that the height gb; abovef; is at least as large as the
p; € P be a maximizer of-p; -e;, i.e. a point of maximum height pgjg ¢ ofp; abovef; (and vice-versa) and Lemma 6.9 which is
in P which is below f;. Let §; = —p; - e; be the height ofb;  , technical result which we will prove later. Heneejume(T; N
below f;, and consider the hyperplangparallel tof; containing ..y _ o similarly 7; and S, intersect atf; which has measure
pi. Let qj be the halfspace bounded gy which containsv;. zero, hencewolume(Q) = volume(Sp) +Z§1:o volume(T;) < 1.
Analogous to the proof of Lemma 6.2, singe has maximum N 14 s b
height below f;, it follows that qj must containP. Therefore, Ijl;?l:((:gjod)e' note that by (Vikolume(Ts) = 3 - Ai - hi.

we have An immediate corollary of Lemmas 6.5 and 6.6 is

. _ + d—1

Lemma 6.4:Let T = N;q;". ThenP C T. Corollary 6.7: volume(T) < (1 + Z?:o %) .
Lemma 6.4 gives another construction of an enclosing sixaplero complete the proof of Lemma 3, suppose thalme(So) >
Further, T is a homothet ofSy (all its facesq; are parallel to é; then, by Lemma 6.6 + Zf:o % < d, and by Corollary 6.7,
fi, pushed out by a distancg). We refer toT" as theexpanded we have thatolume(T) < d?~'. We recap all these results in
homothetic simplexorresponding t&, and P. The next lemma the following theorem.
bounds the volume of . The situation is illustrated in Figure 2 Theorem 6.8:Let P be a bounded convex po|yt0pe. Then the
for d = 2,3. setting. following algorithm constructs an enclosing simplgxsatisfying
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Fig. 3. Disjointness of simplices subtended by non-par#leés.

volume(S) < d?~! - volume(P).
1: ConstructSy, a locally maximal inscribed simplex fap.
2: if volume(Sp) < é then

H',i.e.G intersectsH; and Hy at H andG intersects; and H,
at H'. Fy and F, lie on opposite sides aof, as doH] ™~ n H,"
and p,. Note thatG separatesi; N I, containsF; and since
H,” nH," is a translate off; N H; along a line joiningH
to H’, it follows that 7, and H~ n H4 " are on the same side
of G. Sincep, € H,  n H4", it follows that F; andp; are on
the same side of7, and soG separates; U p; from F» U ps.
Since G separates; U p; from F» U po, it also separates their
convex closures. Thus, the intersection of their convesuies is
a subset of7, and sincevol(G) = 0, this intersection must also
have zero volume. [ ]

A. Algorithm Analysis

We briefly discuss the running time of the algorithm sum-
marized in Theorem 6.8. The first step to compute a single
maximal inscribed simplex is a local optimization probleh o
a differentiable objective over a convex set. Since it is @alo

3. Let S be the reflected homothetic simplex correspondingearch problem, it can be solved efficiently, and we discuss

to Sp.
else

&

some approaches to this in Section VI-B. Computingme(Sp)
involves computing a-dimensional determinant which @(d%).

5 Let S be the expanded homothetic simplex correspondinge will shortly show that all the other tasks that need to beesb

to Sp and P.

can be reduced to solvin@(d) d-dimensional linear programs

A Technical Lemma on the Disjointness of Maximum Heightith » = |#| inequality constraints. Solving one such program
Simplices.:We now present the technical lemma which is usekesO(d?n) operations, hence the entire running time is given

in the proof of Lemma 6.6. This lemma shows that theare
disjoint. To be specific, let/; and Hs be two non-paralle{d—1)-
dimensional hyperplanes with unit normails, es. Let H; and
H intersect at thel — 2 dimensional hyperplané’. Let Hfr
and H; be two halfspaces defined by, and H,. Define two
regionsR = H; N Hj, and its complemenR = ;" U H.
Assume that, e, are in the direction o, H, respectively.
Let F; and F»> be sets of points irkR which reside onH; and Hs
respectively. For a poinp € R, we define its heights abové;
and H, respectively asii(p) = —p-e; andha(p) = —p - e2.
Let p1,p2 € R be two points such thap; is higher thanps
with respect toH; and the reverse is true with respectHe, i.e.

by M(n,d) + O(d®n), whereM is the complexity of finding the
maximal inscribed simplex.

We now walk through the tasks in the algorithm.

If volume(Sp) < é, we construct the reflected homothetic
simplex for Sy. This can be accomplished because: we can
computee; by projectingv; — v; to the space orthogonal 6 in
O(d®); (vi,e;) then definesf!, which in turn gives the reflected
homothet. However, it is not the reflected homothet which we
desire, but its intersection point witA. This task can be solved
by simply augmenting< with an additional equality constraint
(x —v;) - e; = 0 and finding a feasible point which is a linear
program. Thus, we havél + 1) linear programs, each with

hi(p1) > hi(p2) and ha(p1) < ho(p2). Let T1 be the convex constraints.

closure of ', Up; andT: the convex closure of, Ups. ThenTy

If volume(Sp) > é, we do not actually need the expanded

and T are disjoint (up to a set of measure zero). The situatigfomothet. We only need its points of intersection withwhich

is illustrated in Figure 3.
Lemma 6.9:vol(T71 N'Ty) = 0.

Proof. DefineH; asH; uHifr and similarily ;. Consider
point p» and let H] be the hyperplane containing, which is
parallel to [y, and similarily definer’;. Let 0’ = H} N HY,
which is parallel tof. Also definer|* 1}~ H," H,” ina
similar way. Sincehi(p1) > hi(p2) andha(p1) < h2(p2), pP1

are exactly the pointp; described in the previous section. Thge
are exactly the solutions to tl{¢+1) linear programsninx x - e;
such thatx € H, again(d+1) linear programs with. constraints.
Once the points of intersectiop; have been constructed, it
only remains to recover the constraints %h which are active.
For eachp;, this is anO(dn) task, for a total timeD(d?n). One
final note is that more thas active constraints may be recovered

must be lie inH{ "~ mHéJr as illustrated by the shaded region irfor each point of intersection. In this case, any subset ef th

Figure 3. Now consider the hyperplagewhich containsH and

active constraints of sizéd whose interesction is contained in
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the corresponding halfspaq?f suffices. At least one such subset|[3]
exists.

B. Constructing a Maximal Inscribed Simplex [4]
The first step in our construction is to obtain a locally max

imum inscribed simplex. This is a standard, differentialoleal
optimization problem

5]

(6]

max det V, such thatV € H,

[7]
whereV = [v; — vy, ..

.,vqg—volandV € H iff v, € H for all
i=0,...,d. The domain ofV is convex, as is easily verified, and [&]
the determinant is differentiable, hence ellipsoid altyonis can
be used to obtain a local minimum. From a practical perspedti
is better to maximizéog det V7'V An added benefit of choosing
logdet VTV is thatlog det is concave ors¢., (positive definite [10]
symmetric matrices), hence maximizing it on any convex stbs

of Si+ is a convex optimization problem.

(9]

(11]

VII. CONCLUSION
[12]

In the bounded uncertainty model, using measurements flom a
sensors gives the optimal uncertainty for localizing agrin this
paper, we showed that, one can always selecrstaniumber of
sensors and guarantee a localization uncertainty closetimal
(bounded by a constant times optimal). In particular, wenstb
that 4 sensors suffice for a 2-approximation in 2-dimensams
8 sensors suffice for a 9-approximation in 3-dimensionshBdt
these sensors sets can be computed efficiently. We also dhowe
how these results can be generalized to arbitrary dimessiod
that a constant factor approximation can be obtained by astanh
number of sensors. Both constants depend on the dimerisjon%?]
but are independent from the total number of available gsnso

(14]

(15]

(16]

An important issue which remains unaddressed is robustimess

this paper, we assumed that the locations of all sensorsarerk (18]

Sensor selection in the presence of uncertainties regasginsor

locations is an important future research direction. [19]
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